CONTAMINATION SCREENING EVALUATION REPORT

SR 115 (Lem Turner Road) Over Trout River Bridge #720033 Jacksonville, Duval County, Florida

Financial Project Identification (FPID) No: 437437-2-22-01

PREPARED FOR:

Florida Department of Transportation (FDOT), District 2 1109 South Marion Avenue Lake City, Florida 32025

and

Parsons 1300 Riverplace Boulevard, Suite 200 Jacksonville, Florida 32207

PREPARED BY:

Aerostar SES LLC 3550 St. Johns Bluff Road South Jacksonville, Florida 32224 (904) 565-2820

ASL Project No.: M3010.1403.0005.16

August 2, 2021

Prepared by:

ashman

Date: August 2, 2021

Kevin Ashman, P.G. Geologist

Reviewed by: Frank Redway

Senior Program Manager

Date: <u>August 2, 2021</u>

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated, December 14, 2016, and executed by FHWA and FDOT.

Table of Contents

Execu	tive Summary1
1.0	Introduction
1.1	Scope of Services
1.2	Project Description
1.3	Alternative Alignments
1.4	Previous Reports
1.5	Limitations
2.0	Investigative Methodology
2.1	Site Reconnaissance
2.2	Historical Review
2.3	Regulatory Review
2.4	Interviews
2.5	Risk Rating7
2.6	Land Use
3.0	Soils/Geology
3.1	Soils/Geology9
3.2	Hydrogeology9
4.0	Investigation Results
5.0	Conclusions and Recommendations
6.0	References

Figures

Figure 1 Figure 2 Figure 3 Figure 4	Topographic Project Location Map Potential Contaminated Sites Map Land Use Map Site Ranking Map	
Tables		_
Table 1 Table 2 Table 3	Minimum Search Distances of Regulatory Databases Soil Types and Depth to Water Table Information Site Summary and Risk Evaluation	

Appendices

Appendix A	Site Photographs
Appendix B	Historical References Documentation
Appendix C	Environmental Database Report
Appendix D	Regulatory Information
Appendix E	Custom Soil Resource Report for Duval County, Florida
Appendix F	Asbestos Survey Report, dated February 10, 2021
Appendix G	Limited Level 2 Soil Assessment report, dated June 17, 2020
Appendix H	Qualifications of Environmental Professionals

List of Acronyms and Abbreviations

ACMs	Asbestos-Containing Materials
ASL	Aerostar SES LLC
APLUS	Aerial Photo Look Up System
AST	Aboveground Storage Tank
BLS	Below Land Surface
CAR	Contamination Assessment Report
CERCLIS	Comprehensive Environmental Response Compensation and Liability Information System
CORRACTS	RCRA Corrective Action
CSE	Contamination Screening Evaluation
DCPAO	Duval County Property Appraiser's Office
EDI	Early Detection Incentive
EDR	Environmental Data Resources, Inc.
ERNS	Emergency Response Notification System
FDEP	Florida Department of Environmental Protection
FDOT	Florida Department of Transportation
FHWA	Federal Highway Administration
FINDS	Facility Index System
FPID	Financial Project Identification
GCTL	Groundwater Cleanup Target Level
IC/EC	Institutional/engineering control
LUST	Leaking Underground Storage Tank
MDL	Method Detection Limits
ug/L	Micrograms Per Liter
mg/kg	Milligrams Per Kilogram
NFRAP	No Further Remedial Action Planned
NPL	National Priority List
NRCS	Natural Resources Conservation Service
OCULUS	FDEP's Document Management System
OVA	Organic Vapor Analyzer
PAHs	Polycyclic Aromatic Hydrocarbons
PALMM	Publication of Archival, Library & Museum Materials
PD&E	Project Development and Environment
PID	Photoionization Detector
ppm	Parts Per Million
RCRA	Resource Conservation and Recovery Act
RCRAGN	RCRA Generator
RE#	Real Estate Number
ROW	Right-of-Way
SCTL	Soil Cleanup Target Level
SEMS	Superfund Enterprise Management System
SPLP	Synthetic Precipitate Leaching Procedure
SQG	Small Quantity Generator
SR	State Road
SRCO	Site Rehabilitation Completion Order
STCM	Storage Tank Contaminated Facility
SVOC	Semi-volatile Organic Compounds
SWF/LF	Solid Waste Facility/Landfill
TPHCWG	Total Petroleum Hydrocarbon Criteria Working Group
TRPH	Total Recoverable Petroleum Hydrocarbons
U.S.C.	United States Code
USGS	United States Geological Survey
UST	Underground Storage Tank
VCP	Voluntary Cleanup Program
VOA	Volatile Organic Aromatics
VOC	Volatile Organic Compounds
VOH	Volatile Organic Halocarbons
-	<u> </u>

Executive Summary

The purpose of this study was to conduct a Level 1 Contamination Screening Evaluation (CSE) along State Road (SR) 115 (Lem Turner Road) from Broward Road to Trout River Boulevard in Jacksonville, Duval County, Florida, hereafter referred to as the subject corridor. The purpose of this study is to replace the Lem Turner Road bridge over the Trout River.

The Level 1 CSE was conducted to identify potentially contaminated sites located along the subject corridor that may adversely impact the proposed construction activities. This investigation was completed and the report was prepared in accordance with the FDOT Project Development and Environment (PD&E) Manual, Part 2, Chapter 20, dated July 1, 2020.

The subject corridor is approximately 0.4 miles in length. The subject corridor consists of varying development, which primarily includes residential and commercial properties and marshes. Properties developed along the subject corridor to the north of the Trout River bridge are primarily used for commercial purposes, and properties developed along the subject corridor to the south of the Trout River bridge are primarily used for residential and commercial purposes.

A total of nine sites were identified as having the potential to impact the subject corridor from hazardous substance and/or petroleum contamination. These sites were evaluated and rated either "No," "Low," "Medium," or "High" potential for petroleum or hazardous substance contamination.

Two (2) of the corridor sites were rated "No." One (1) of the corridor sites was rated "Low." Five (5) of the corridor sites were rated "Medium" for having a potential to impact the subject corridor from petroleum and/or hazardous substance contamination. One (1) of the corridor sites was rated "High" for having a greater potential to impact the subject corridor from petroleum and/or hazardous substance contamination. Depending on the proposed construction activities, these sites may warrant additional analysis. Specific recommendations for further assessment should be evaluated along with any proposed right-of-way (ROW) acquisition and/or construction activities.

Parsons provided Aerostar SES LLC (ASL) with a copy of an Asbestos Survey Report, dated February 10, 2021, conducted by APTIM Environmental & Infrastructure, Inc. The asbestos-containing materials (ACMs) survey was conducted on the Lem Turner Road bridge over the Trout River. ACMs were identified in the cementitious drain scuppers and in the end cap mastic.

Parsons also provided ASL with a copy of a Limited Level 2 Soil Assessment report, dated June 17, 2020, conducted by APTIM Environmental & Infrastructure, Inc. A total of five soil borings were advanced to a total depth of five feet below land surface (BLS) in the vicinity of the intersection of Lem Turner Road and Trout River Boulevard near proposed light pole locations. The soil samples collected from each soil boring were analyzed with an organic vapor analyzer equipped with a photoionization detector (OVA-PID). Concentrations were at or below 0.1 parts per million (ppm), and no petroleum staining or odors were noted. No soil samples were collected for laboratory analysis.

1.0 <u>Introduction</u>

ASL was contracted by Parsons to conduct a Level 1 CSE along SR 115 (Lem Turner Road) from Broward Road to Trout River Boulevard in Jacksonville, Duval County, Florida, hereafter referred to as the subject corridor. The purpose of this study is to replace the Lem Turner Road bridge over the Trout River.

A Topographic Project Location Map is included as Figure 1. A Potential Contaminated Sites Map is included as Figure 2. A Land Use Map is included as Figure 3. A Site Ranking Map is included as Figure 4.

The CSE was performed to identify environmental conditions associated with the subject corridor and determine the potential for encountering contamination within the proposed construction area. This section of the report describes the scope of work completed in conducting the CSE and also presents any limitations associated with our findings.

1.1 Scope of Services

ASL was to identify, evaluate, and prepare recommendations concerning potential project contamination problems within and/or adjacent to the subject corridor's proposed ROW in accordance with Part 2, Chapter 20 of the PD&E Manual dated July 1, 2020.

The assessment consisted of three tasks: review background information, conduct a property assessment, and prepare the CSE report documenting the findings with appropriate recommendations. Specifically, ASL's environmental site assessment consisted of the following steps:

- Visited the subject corridor, made observations, obtained photographic documentation of the sites (Appendix A), and interviewed regulatory personnel (as needed). The interviews and site inspections were conducted whenever possible to identify past or current materials handling and operating practices that could result in potential impact due to petroleum product or hazardous substance contamination.
- Performed a review of readily available aerial photographs (Appendix B), city directories, and/or Sanborn maps to identify past uses of the corridor and adjoining properties.
- Performed a review of federal, state, tribal, and local environmental agency databases to identify potential on-site and off-site environmental concerns. A copy of the environmental database report is included in Appendix C.
- Conducted file reviews, as needed, at the local regulatory department and/or the Florida Department of Environmental Protection (FDEP). Copies of applicable regulatory information are included in Appendix D.

1.2 Project Description

The purpose of this study is to replace the Lem Turner Road bridge over the Trout River. The proposed improvements include the replacement of the existing bridge over the Trout River and minor improvements to Lem Turner Road north and south of the existing bridge between Broward Road and Trout River Boulevard. The project is located in Duval County, Florida, and is within the urban area boundary of the City of Jacksonville.

1.3 Alternative Alignments

Two alternatives (Alternatives 1 and 2) are being evaluated in this study. Alternatives 1 and 2 consist of the replacement of the existing Lem Turner Road bridge over the Trout River and minor improvements to Lem Turner Road north and south of the existing bridge between Broward Road and Trout River Boulevard.

Alternative 1 would replace the existing bridge along the existing alignment with a temporary bridge placed to the west. Alternative 1 would require Temporary Construction Easements, which impacts 5 parcels along the south end of the bridge to accommodate the temporary bridge. There are no anticipated impacts to the existing structures located on these parcels.

Alternative 2 would replace the existing bridge along the existing alignment with a temporary bridge placed to the east. Alternative 2 impacts 2 parcels with a permanent right-of-way impact along the south end, including a residential structure located on the parcel, and a Temporary Construction Easement on the north end that would impact one parcel.

1.4 **Previous Reports**

Parsons provided ASL with a copy of an Asbestos Survey Report, dated February 10, 2021, conducted by APTIM Environmental & Infrastructure, Inc. A copy of the report is included in Appendix F. The ACMs survey was conducted on the Lem Turner Road bridge over the Trout River. ACMs were identified in the cementitious drain scuppers and in the end cap mastic.

Parsons also provided ASL with a copy of a Limited Level 2 Soil Assessment report, dated June 17, 2020, conducted by APTIM Environmental & Infrastructure, Inc. A copy of the report is included in Appendix G. A total of five soil borings were advanced to a total depth of five feet BLS in the vicinity of the intersection of Lem Turner Road and Trout River Boulevard near proposed light pole locations. The soil samples collected from each soil boring were analyzed with an OVA-PID. Concentrations were at or below 0.1 ppm, and no petroleum staining or odors were noted. No soil samples were collected for laboratory analysis.

1.5 Limitations

ASL's assessment represents a review of certain information relating to the subject corridor that was obtained by methods described in Section 1.1 and did not include sampling or other monitoring activities at the property. While ASL has used reasonable care to avoid reliance upon data and information that is inaccurate, ASL is not able to verify the accuracy or completeness of all data

and information available during the investigation and some of those conclusions would be different if the information upon which they are based is determined to be false, inaccurate or incomplete.

ASL makes no legal representations whatsoever concerning any matter including, but not limited to, ownership of any property or the interpretation of any law. ASL further disclaims any obligations to update the report for events taking place after the time during which the assessment was conducted.

This report is not a comprehensive site characterization and should not be construed as such. The opinions presented in this report are based upon the findings derived from a site reconnaissance, a limited review of specified regulatory records and historical sources, and comments made by the interviewees.

CSEs, by their very nature, are limited. ASL has endeavored to meet what it believes is the applicable standard of care, and in doing so, is obliged to advise the Clients of CSE limitations. ASL believes that providing information about limitations is essential to help the Clients identify and thereby manage its risks. Through additional research, these risks can be mitigated - but they cannot be eliminated. ASL will, upon request, advise the Clients of the additional research opportunities available, their impact, and their cost.

Along with all of the limitations set forth, the accuracy and completeness of this report is necessarily limited by physical obstructions to observations. While a ground reconnaissance was conducted where possible, private property at most of the parcels along the subject corridor prevented a complete visual inspection.

2.0 <u>Investigative Methodology</u>

This investigation was conducted in order to evaluate the potential for petroleum product or hazardous substance contamination at properties located within and adjacent to the subject corridor. An environmental specialist inspected the sites along the subject corridor; however, visual inspections were limited by legal access to private properties. Each individual parcel was not accessed as part of this investigation. Historical information including aerial photographs, maps, documents, and city directories were reviewed when available to determine the historical usage of the subject corridor and surrounding properties. Federal, state, tribal, and local environmental agency data were reviewed to determine if the potential for environmental conditions exist at or in the immediate vicinity of the subject corridor. The proximity of the subject area to items such as aboveground/underground storage tanks (ASTs/USTs), hazardous waste facilities, landfills, or known contaminated sites can create the potential for hazardous environmental conditions to be present at the subject corridor. Based on the information gathered, each property was assigned a contamination evaluation rating, as defined in Part 2, Chapter 20 of the FDOT PD&E Manual.

2.1 Site Reconnaissance

During the month of June 2021, an environmental specialist inspected the subject corridor and adjacent properties. Local geologic and hydrogeologic conditions of the subject corridor and surrounding areas were observed and documented. The subject corridor and sites with potential for hazardous substance/petroleum contamination to the subject corridor were investigated for signs of adverse environmental impacts such as operations, housekeeping, stressed vegetation, or stained soils. All phases of the site inspection were documented. A limited site inspection was conducted by inspecting each site to document the presence of potential environmental concerns which may include on-going contamination or situations which could result in contamination. A Potential Contaminated Sites Map is included as Figure 2.

2.2 Historical Review

Examination of aerial photography generally allows determination of the past uses of the subject corridor and adjacent properties. Identification of the previous usage of the land can provide an indication of the present-day environmental status of the subject corridor and its adjacent properties. Aerial photographs from 1943, 1952, 1959, 1969, 1975, 1988, 1997, 2005, 2013, and 2020 were reviewed to determine historical land use in the investigation area. Aerial photographs prior to 1943 were not available for review. Aerial photographs were obtained from the Publication of Archival, Library & Museum Materials (PALMM) and the FDOT Aerial Photo Look Up System (APLUS). Historical aerial photographs are included in Appendix B.

City directories and Sanborn Fire Insurance Maps are reviewed to further identify past uses of the subject corridor's adjacent parcels. City directories published by Hill-Donnelly Corporation and the City Publishing Company were reviewed at the Jacksonville Library Main Branch located in Jacksonville, Florida, at a maximum of five-year intervals from 1953 to 2018. Sanborn Fire Insurance Maps did not provide coverage of the subject corridor. In addition, Duval County

Property Appraiser's Office (DCPAO) property record cards were reviewed for construction dates of structures located along the subject corridor.

Data obtained from the historical records reviewed indicated that the subject corridor along Lem Turner Road north of the Trout River was primarily undeveloped wooded and grassy land and rural residential and/or commercial properties in the 1940s and 1950s and has become increasingly residential and commercial since the 1960s. The subject corridor along Lem Turner Road south of the Trout River was primarily undeveloped wooded land and rural residential properties in the 1940s and has become increasingly residential and commercial properties in the 1960s.

2.3 Regulatory Review

ASL contracted Environmental Data Resources, Inc. (EDR), to perform the environmental database report. Environmental agency information was found concerning the subject corridor through the database search and regulatory file reviews conducted as part of this investigation. A copy of the regulatory database report is included in Appendix C. Additional supporting regulatory documentation is provided in Appendix D. The following state and federal sources listed in Table 1 were consulted during this record review:

TABLE 1							
Minimum Search Distances of Regulatory Databases							
Federal NPL Site List (National Priorities List)	0.5 mile						
Federal delisted NPL Site List	0.5 mile						
Federal SEMS (Superfund Enterprise Management System) (former CERCLIS List)	0.5 mile						
Federal SEMS-ARCHIVE (former CERCLIS NFRAP Facilities List)	0.5 mile						
Federal RCRA (Resource Conservation and Recovery Act) CORRACTS TSD (Treatment, Storage, and Disposal) Facilities	0.25 mile						
Federal RCRA Non-CORRACTS TSD Facilities	0.25 mile						
Federal RCRA Generators Lists (RCRAGN)	0.25 mile						
Federal institutional/engineering control (IC/EC) registries	0.25 mile						
Federal ERNS List (Emergency Response Notification System)	Subject corridors only						
State and Tribal Equivalent NPL Lists	0.5 mile						
State and Tribal Equivalent CERCLIS	0.5 mile						
State and Tribal Landfill and/or Solid Waste Disposal Site Lists (SWF/LF)	0.5 mile						
State and Tribal leaking storage tank lists (LUST)	0.25 mile						
State and Tribal registered storage tank lists (AST/UST)	0.25 mile						
State and Tribal institutional/engineering control (IC/EC) registries	0.25 mile						
State and Tribal voluntary cleanup program (VCP) sites	0.25 mile						
State and Tribal Brownfield sites	0.25 mile						
Dry cleaner facilities	0.25 mile						
Cattle dipping vats	0.25 mile						

2.4 Interviews

Interviews were conducted, as needed, either in person, by telephone, or by email with individuals that provided information pertaining to the environmental status of the subject corridor. The interviewing process is most extensively used when additional information is needed to determine and verify details associated with an area of environmental concern (i.e., land use history, occurrence of hazardous substance spills, locations of storage tanks, etc.). For this investigation, interviews were conducted with regulatory officials, as needed, but not with individual site owners. ASL interviewed Mr. Tommy Moore, FDEP Public Records Request Liaison, regarding Sites 1, 8, and 9. Mr. Moore indicated that the FDEP had no files available for review associated with the current address listings for Sites 1 and 8 and no additional files available for review for Site 9. ASL also interviewed Ms. Allene Rachal, City of Jacksonville Environmental Quality Division, regarding Site 5. Ms. Rachal indicated that a copy of a Tank Closure Assessment Report, dated August 8, 2003, had been uploaded to OCULUS.

2.5 Risk Rating

Each identified potential contamination site has been classified with a rating of either "No, Low, Medium, or High" for the potential to impact the subject corridor as described in Chapter 20, Section 20.2.2.4 of the FDOT PD&E Manual. These ratings are described as follows:

- **No:** A review of available information on the property and a review of the conceptual or design plans indicates there is no potential contamination impact to the project. It is possible that contaminants have been handled on the property. However, findings from the Level I evaluation indicate that contamination impacts are not expected.
- Low: A review of available information indicates that past or current activities on the property have an ongoing contamination issue; the site has a hazardous waste generator identification (ID) number, or the site stores, handles, or manufactures hazardous materials. However, based on the review of conceptual or design plans and/or findings from the Level I evaluation, it is not likely that there would be any contamination impacts to the project.
- **Medium:** After a review of conceptual or design plans and findings from a Level I evaluation, a potential contamination impact to the project has been identified. If there is insufficient information (such as regulatory records or site historical documents) to make a determination as to the potential for contamination impact, and there is reasonable suspicion that contamination may exist, the property should be rated at least as a "Medium". Properties used historically as gasoline stations and which have not been evaluated or assessed by regulatory agencies, sites with abandoned in place underground petroleum storage tanks or currently operating gasoline stations should receive this rating.
- **High:** After a review of all available information and conceptual or design plans, there is appropriate analytical data that shows contamination will substantially impact

construction activities, have implications to ROW acquisition or have other potential transfer of contamination related liability to the FDOT.

2.6 Land Use

The subject corridor is approximately 0.4 miles in length. The subject corridor consists of varying development, which primarily includes residential and commercial properties and marshes. Properties developed along the subject corridor to the north of the Trout River bridge are primarily used for commercial purposes, and properties developed along the subject corridor to the south of the Trout River bridge are primarily used for residential and commercial purposes. A Land Use Map is included as Figure 3.

SR 115 (Lem Turner Road) Over Trout River Bridge #720033, Jacksonville, Duval County, Florida

August 2, 2021

3.0 <u>Soils/Geology</u>

3.1 Soils/Geology

The Natural Resources Conservation Service (NRCS) website was reviewed to identify native soil characteristics in the vicinity of the subject corridor. A *Custom Soil Resource Report for Duval County, Florida*, is presented in Appendix E of this report. The primary soil types (approximately five percent of land or greater within the area of interest) occurring in the vicinity of the subject corridor and their associated depth to water information is provided in Table 2.

TABLE 2 Soil Types and Depth to Water Table Information						
Soil Type	Depth to Water Table					
Mascotte fine sand, 0 to 2 percent slopes	About 6 to 18 inches					
Tisonia mucky peat, 0 to 1 percent slopes, very frequently flooded	About 0 to 6 inches					
Urban land	Not Applicable					
Water	Not Applicable					

3.2 Hydrogeology

The three major components to the subsurface hydrogeology of northeastern Florida are the unconfined surficial aquifer system, the Floridan aquifer system, and the nearly impermeable sediments of the intermediate confining unit, which separates the two aquifer systems. The surficial aquifer system is present along the northeast coast of Florida and extends to the southwest coast, below Tampa Bay.

In northeastern Florida, the surficial aquifer system consists of, in ascending order: the upper Hawthorn Formation, which was deposited during the middle Miocene epoch; the upper Miocene or Pliocene deposits; and the Pleistocene and recent deposits. Sediments of Pleistocene and more recent epochs were deposited during the formation of marine terraces and beach ridges. The thicknesses of these deposits range from less than 10 feet in the St. Johns River Valley to approximately 100 feet in western Clay County. They consist of soil, muck, coarse to fine sand, shell and some clayey sand. The surficial sand yields small amounts of water while the sand and shell beds along the coast yield moderate quantities. The potentiometric surface of the shallow aquifer system generally follows the configuration of the land surface. High water levels occur after periods of heavy rainfall, and the lowest water levels occur after the drier periods of the year. Water levels may be as deep as 35 feet below land surface with a yearly water level fluctuation in wells of approximately two to five feet.

The intermediate confining unit consists primarily of sediments within the Hawthorn Formation. The Hawthorn Formation, deposited during the middle Miocene epoch, consists primarily of darkgray to olive-green silty clay, clayey soil, and dry and sandy limestone, all containing moderate to large amounts of black phosphate sand, granules, and pebbles. Throughout most of northeast

Florida, the clay and silty clay within the Hawthorn Formation serve as a confining layer or aquiclude that retards upward movement of water from the underlying artesian Floridan aquifer system as well as inhibiting downward movement of surficial aquifer waters. The Hawthorn Formation ranges in thickness from about 250 feet to as much as 500 feet.

In northeastern Florida, the top of the Floridan aquifer system is approximately 250 to 600 feet below land surface and ranges from 1,500 to 2,400 feet in thickness. The Floridan is a confined, artesian aquifer throughout most of northeast Florida and is highly permeable. The Floridan aquifer system is the principal source of fresh water for northeast Florida, with the limestone and porous dolomite beds yielding very large quantities of water. Municipal wells range from 1,000 to 1,500 feet in depth and penetrate the Ocala Group, the Avon Park and the Lake City Limestones of Eocene age. These formations and the Suwannee Limestone Formation comprise the Floridan aquifer system.

4.0 <u>Investigation Results</u>

A total of nine sites were identified as having the potential to impact the subject corridor from hazardous substance and/or petroleum contamination. Two (2) of the corridor sites were rated "No." One (1) of the corridor sites was rated "Low." Five (5) of the corridor sites were rated "Medium" for having a potential to impact the subject corridor from petroleum and/or hazardous substance contamination. One (1) of the corridor sites was rated "High" for having a greater potential to impact the subject corridor hazardous substance contamination.

A brief description of each site is provided below:

- Site 1. Don's Fuel Oil Service/Hunt's Motors a former fuel oil service facility; a former automotive facility.
- Site 2. Former Strip Mall a former printing facility; a former carpet cleaning facility.
- Site 3. Chevron #46863-George's a registered RCRAGN, Facility Index System (FINDS), UST, and LUST facility; a former gas and service station.
- Site 4. Trout River Food Mart a registered UST and LUST facility; a current and former gas station; a former service station.
- Site 5. Alpha & Omega Dry Cleaners/Ed Stalvey's Fuel Oil Service a registered UST facility; a former fuel oil service facility; a former drycleaner facility.
- Site 6. Bells Affordable Auto Sales a current automotive sales facility; a former auto detailing facility.
- Site 7. TNT Automotive Solutions a current automotive sales facility.
- Site 8. Franko's Upholstery a former service station; a former auto repair facility.
- Site 9. Allied Auto & Truck Repair, Inc. a registered RCRAGN facility; a current and former auto repair facility; a former dry cleaner facility.

The following sites received a "Medium" risk evaluation rating:

- Site 1 Don's Fuel Oil Service/Hunt's Motors, 10224 Lem Turner Road. A fuel oil service facility occupied the site in 1962, and an automotive facility occupied the site in 1972. No known ASTs, USTs, or discharges have been reported at the site.
- Site 4 Trout River Food Mart, 10203 Lem Turner Road. Various gas and service stations have operated at the site since at least 1957. The tank pits associated with the five known current and former USTs were located on the southeastern portion of the site, approximately 90 feet east of the Lem Turner

Road ROW. An additional former tank pit is suspected to have been located on the southeastern portion of the site, approximately 75 feet east of the Lem Turner Road ROW. Two discharges of unleaded gasoline were reported for the facility in 1987. A Site Rehabilitation Completion Order (SRCO) was issued for the petroleum discharges in 2017. Historical assessment activities conducted in 1993 at the site included laboratory analyses for volatile organic halocarbons (VOHs). Solvent-related contaminant concentrations were noted below their respective laboratory method detection limits (MDLs); however, the groundwater samples collected from the monitor wells in the vicinity or downgradient of the former service bays did not appear to be analyzed for solvent-related contaminants.

- Site 5 Alpha & Omega Dry Cleaners/Ed Stalvey's Fuel Oil Service, 2945 and 2947 Broward Road. A fuel oil service facility occupied the site from at least 1982 to at least 2003, and a drycleaner facility occupied the site in 2013. The former USTs were located on the southeastern portion of the site, approximately 300 feet east of the northern terminus of the subject corridor. No contamination above cleanup target levels was identified in the 2003 Tank Closure Assessment report. No assessment work has been conducted at the site in association with the former drycleaner facility. No known discharges have been reported at the site.
- Site 8 Franko's Upholstery, 9864 Lem Turner Road. Service stations occupied the site in 1953, and auto repair facilities occupied the site from at least 1962 to at least 2003. No known discharges have been reported at the site. Soil samples collected from the Lem Turner Road ROW adjacent to Site 8 were analyzed with an OVA-PID; however, no soil samples were collected for laboratory analysis.
- Site 9 Allied Auto & Truck Repair, Inc., 9834-9854 (even) Lem Turner Road. An auto repair facility currently occupies the site, and various auto repair facilities occupied the site from at least 1972 to at least 1987 and in 2008. Drycleaner facilities occupied the site from at least 1962 to at least 1967. The site is reportedly connected to a septic system. No violations were noted for the facility. Soil samples collected from the Lem Turner Road ROW adjacent to Site 9 were analyzed with an OVA-PID; however, no soil samples were collected for laboratory analysis. No known discharges have been reported at the site.

The following sites received a "High" risk evaluation rating:

• Site 3 Chevron #46863-George's, 10162 Lem Turner Road. Various gas and service stations operated at the site from 1958 to 1989. The unleaded and leaded gasoline USTs were formerly located on the northeastern portion of the site, approximately 25 feet west of the Lem Turner Road ROW. The waste oil UST was formerly located on the southwestern portion of the site, approximately 90 feet west of the Lem Turner Road ROW. A petroleum discharge was

reported for the facility in 1988. An SRCO was issued for the petroleum discharge in 1996. Historical assessment activities conducted in 1993 at the site included laboratory analyses for VOHs. Solvent-related contaminant concentrations were noted below their respective laboratory MDLs; however, no monitor wells located between the former service bays and the subject corridor appear to have been analyzed for solvent-related contaminants.

The results of the Level 1 CSE and site-specific information are summarized in Table 3.

5.0 <u>Conclusions and Recommendations</u>

This Level 1 CSE represents a preliminary inquiry and investigation of the properties along the subject corridor to determine the existence of contamination based on:

- apparent possible sources of contamination;
- apparent possible neighboring sources of contamination;
- review of regulatory information obtained from federal and state agencies; and
- review of available city directories, Sanborn Fire Insurance Maps, and aerial photographs.

Based on the information presented in this report, the remainder of this section discusses the conclusions of the assessment.

No known contamination has been noted within the existing ROW or the proposed ROW acquisition areas; however, multiple areas of known and/or potential contamination have been identified within the vicinity of the subject corridor. Potential contaminated sites identified within the vicinity of the subject corridor fuel oil service facilities, former service stations, current and former gas stations, current and former auto repair facilities, former dry cleaner facilities, a former printing facility, and a former carpet cleaning facility. Petroleum- and solvent-related contaminants are associated with these facilities.

Of the nine (9) sites investigated, two (2) sites received a "No" risk rating, one (1) site received a "Low" risk rating, five (5) sites received a "Medium" risk rating, and one (1) site received a "High" risk rating. Regarding Alternatives 1 and 2, there are no differences to the potential for encountering contamination. Further assessment in the vicinity of the sites that received a "Medium" or "High" risk rating should include soil and/or groundwater sampling if subsurface is work is proposed on, or adjacent to, the site. Impacts to construction are not anticipated at this time from the sites that received a "No" or "Low" risk rating.

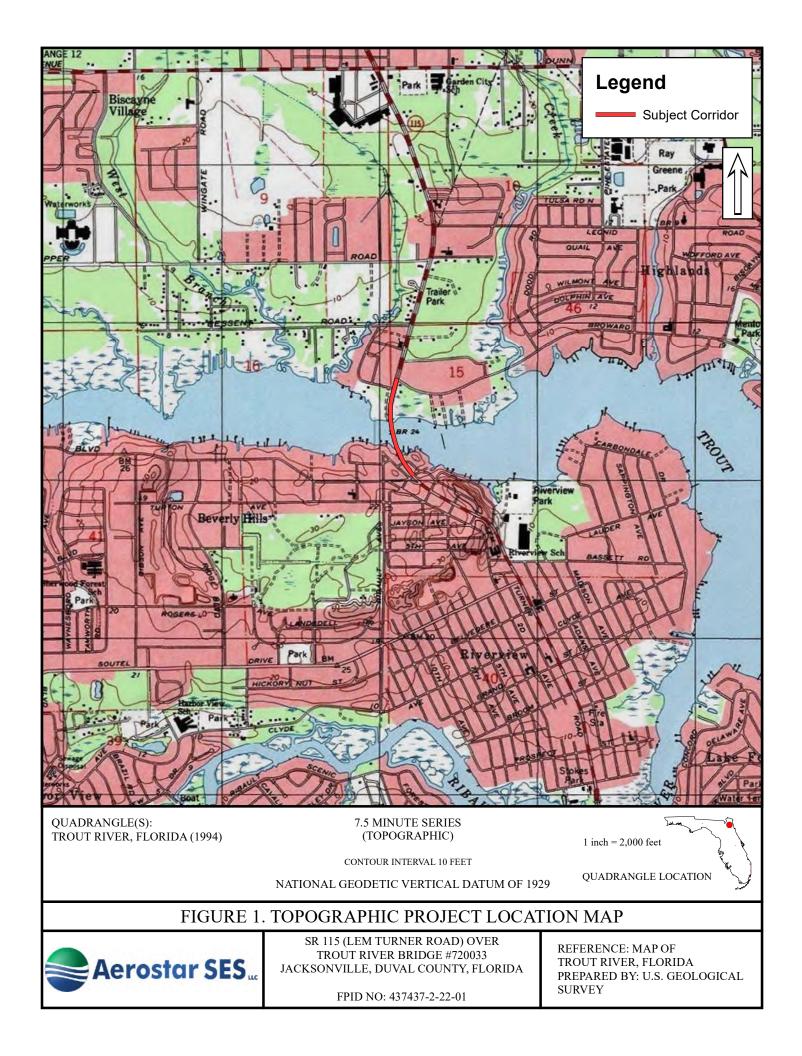
Site-specific recommendations are summarized in Table 3. These rankings and recommendations are preliminary. Depending on the type of proposed construction in their vicinity, the sites may warrant additional environmental assessment. Specific recommendations for further assessment should be evaluated along with proposed ROW acquisition and/or construction activities.

A February 2021 Asbestos Survey Report identified ACMs in the cementitious drain scuppers and in the end cap mastic on the existing bridge. Abatement of the ACMs will need to be conducted by a licensed abatement contractor prior to the proposed demolition of the existing bridge.

6.0 <u>References</u>

Asbestos Survey Report, APTIM Environmental & Infrastructure, Inc., dated February 10, 2021.

Custom Soil Resource Report for Duval County, Florida, NRCS Web Soil Survey.

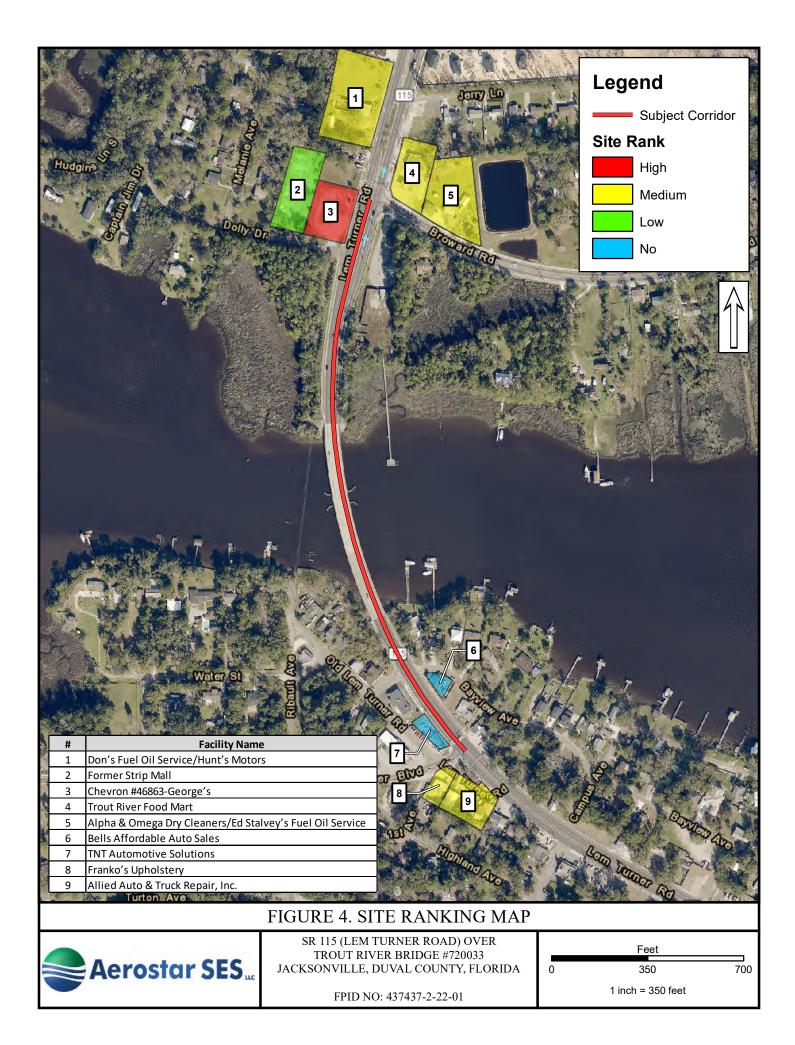

FirstSearch Area/Linear Report, EDR, April 28, 2021.

Limited Level 2 Soil Assessment, APTIM Environmental & Infrastructure, Inc., dated June 17, 2020.

United States Geological Survey (USGS) Topographic Map of "Trout River, Florida," dated 1994.

Website:	<u>URL:</u>
APLUS	https://fdotewp1.dot.state.fl.us/AerialPhotoLookUpSystem/
DCPAO	https://www.coj.net/departments/property-appraiser
Duval County Property Map	https://maps.coj.net/DuvalProperty/
FDEP Cattle Dipping Vat List	https://floridadep.gov/waste/district-business- support/documents/cattle-dipping-vats-florida
FDEP Map Direct	https://ca.dep.state.fl.us/mapdirect/
FDEP STCM Database	https://prodlamp.dep.state.fl.us/www_stcm/reports/Stcm02
NRCS Web Soil Survey	http://websoilsurvey.nrcs.usda.gov/app
OCULUS	https://depedms.dep.state.fl.us/Oculus/servlet/login
PALMM	http://palmm.fcla.edu/
USGS	https://www.usgs.gov

FIGURES



FPID NO: 437437-2-2	2_{-01}

1 inch = 350 feet

TABLE 3

SITE SUMMARY AND RISK EVALUATION

Specific Sites Identified	Site Description and History	Documented Contamination/ File Review Results/Site Observations	Figures and Photographs	Potential Areas of Contamination Concern	Groundwater Flow Direction	FDOT Ranking System Results
Site 1 Don's Fuel Oil Service/Hunt's Motors Current Address(es): 10224 Lem Turner Road Historical Address(es): 10236 Lem Turner Road Site Owner(s): North Jacksonville Family Worship Center, Inc. RE# 021093-0010 FDEP Fac. ID#: NA	 This site is currently occupied by the North Jacksonville Family Worship Center. The present-day site buildings were constructed in 1961. Sanborn Fire Insurance Maps did not cover the site vicinity. Aerial photographs reviewed indicated that the site appeared to be wooded and grassy land transected by a driveway in 1943, developed with a residential-type structure in 1952, and grassy and cleared land in 1959. The site has been developed with one of the present-day commercial structures since at least 1969 and with the other present-day commercial structure since at least 1975. According to the city directories reviewed, the site was occupied by a residence in 1956 and has been occupied by multiple commercial businesses from at least 1962 to at least 2018, including: Don's Fuel Oil Service (1962) and Hunt's Motors (1972). The site has been occupied by a church 	The site was not identified in the database report or FDEP Map Direct and OCULUS websites; however, two facilities of potential concern were identified in the city directories reviewed. A fuel oil service facility was listed at the site in 1962, and an automotive facility, which may have potentially conducted auto repair operations, was listed at the site in 1972. No known ASTs, USTs, or discharges have been reported at the site.	Figures 2 and 4; Appendix A- Photo 1	Former auto repair operations; former fuel oil service facility; former ASTs and/or USTs and associated piping	Not Available	 MEDIUM – This site is located approximately 175 feet north of the northern terminus of the subject corridor, north of the intersection of Lem Turner Road and Broward Road. A fuel oil service facility occupied the site in 1962, and an automotive facility occupied the site in 1972. No known discharges have been reported at the site. Further assessment in the vicinity of the site should include soil and/or groundwater sampling for volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs), total recoverable petroleum hydrocarbons (TRPH), and the 4 RCRA metals if subsurface work is proposed on, or adjacent to, the site.
Site 2	since at least 2003.This site is currently vacant. The site is not	The site was not identified in the database report or FDEP Map Direct and OCULUS	Figures 2 and 4;	Former printing	Not Available	LOW – This site is located approximately 150 feet west of the
Former Strip Mall Current Address(es): 3041 Dolly Drive Historical Address(es): NA Site Owner(s): DSW Lem Turner LLC	 presently developed with any structures. Sanborn Fire Insurance Maps did not cover the site vicinity. Aerial photographs reviewed indicated that the site appeared to be wooded and/or grassy land from at least 1943 to at least 1988 and was developed with a commercial structure from at least 1997 to 	websites; however, two facilities of potential concern were identified in the city directories reviewed. A printing facility as listed at the site from at least 1997 to at least 2003, and a carpet cleaning facility was listed at the site from at least 2008 to at least 2018. No known USTs or discharges have been reported at the site.	Appendix A- Photo 2	facility; former carpet cleaning facility		northern terminus of the subject corridor, west of the intersection of Lem Turner Road and Broward Road. A printing facility occupied the site from at least 1997 to at least 2003, and a carpet cleaning facility occupied the site from at least 2008 to at least 2018. No known discharges have been reported at the site. Impacts to construction are not anticipated at this time.
RE# 020994-0000 FDEP Fac. ID#: NA	 at least 2013. The site has been vacant land since at least 2020. According to the city directories reviewed, the site was occupied by multiple commercial businesses from at least 1992 to at least 2018, including: Jaguar Printing & Graphics (1997-2003) and Stain-Tech Carpet Cleaners (2008-2018). 					

Specific Sites Identified	Site Description and History	Documented Contamination/ File Review Results/Site Observations	Figures and Photographs	Potential Areas of Contamination Concern	Groundwater Flow Direction	FDOT Ranking System Results
Site 3 Chevron #46863-George's Current Address(es): 10162 Lem Turner Road Historical Address(es): NA Site owner(s): DSW Lem Turner, LLC RE# 020995-0000 FDEP Fac. ID#s: 110002550953, FLD981859135, and 16/8506977	 This site is currently vacant. The site is not presently developed with any structures. Sanborn Fire Insurance Maps did not cover the site vicinity. Aerial photographs reviewed indicated that the site appeared to be wooded land in 1943. The site appeared to be developed with a commercial structure in 1952 and developed with a suspected gas and/or service station from at least 1969 and developed with another suspected gas and/or service station from at least 1975 to at least 1997. The dispenser islands appeared to be located on the northeastern portion of the site at both of the former facilities, approximately 10 to 40 feet west of the present-day Lem Turner ROW. The location of the former USTs associated with the facility from the 1950s and 1960s is unknown; however, ASL suspects they were located on the northeastern portion of the site has been vacant land since at least 2005. According to the city directories reviewed, the site was occupied by various service stations from at least 1962 to at least 1987, including: Standard Oil (1972-1977), George's Chevron Station (1982), and Gasson's Lem Turner Chevron (1987). The site has not been listed since 1992. 			Contamination	Flow	 HIGH – This site is located adjacent to the west of the northern terminus of the subject corridor, west of Broward Road and north of Dolly Drive. Various gas and service stations operated at the site from 1958 to 1989. The site was listed as a RCRAGN, FINDS, UST, and LUST facility and was reportedly connected to two septic systems. No violations were noted from the RCRAGN facility. Four USTs were formerly located at the site. Three of the USTs were located on the northeastern portion of the site, approximately 25 feet west of the Lem Turner ROW. The waste oil UST was located on the southwestern portion of the site, approximately 90 feet west of the Lem Turner ROW. A petroleum discharge was reported for the facility in 1988. The discharge received an SRCO was issued for the petroleum discharge in 1996. Although the 1988 discharge received an SRCO in 1996, the most recent report indicated that benzene was noted at a concentration of 14 ug/L in monitor well MW-3, which is above its respective GCTL of 1 ug/L. Monitor well MW-3, which is above its respective GCTL of 1 ug/L. Monitor well MW-3 was located on the southwestern portion of the site, included laboratory analyses for VOHs. Solvent-related contaminant concentrations were noted elow their respective laboratory MDLs; however, no monitor wells located on the southwestern portion of the site, included laboratory analyses for VOHs. Solvent-related contaminant concentrations. Further assessment in the vicinity of the site should include soil and/or groundwater sampling for VOCs, SVOCs, TRPH, and the 4 RCRA metals if subsurface work is proposed on, or adjacent to, the site.
		VOHs. Solvent-related contaminant concentrations were noted below their respective laboratory MDLs; however, no monitor wells located between the former service bays and the subject corridor appear to have been analyzed for solvent-related contaminants.				

Specific Sites Identified	Site Description and History	Documented Contamination/ File Review Results/Site Observations	Figures and Photographs	Potential Areas of Contamination Concern	Groundwater Flow Direction	FDOT Ranking System Results
Site 4 Trout River Food Mart Current Address(es): 10203 Lem Turner Road Historical Address(es): NA Site owner(s): Basel F. Brkat RE# 021029-0000 FDEP Fac. ID#: 16/8507541	 This site is currently occupied by Trout River Foods gas station. The present-day site building was constructed in 1984. Sanborn Fire Insurance Maps did not cover the site vicinity. Aerial photographs reviewed indicated that the site appeared to be sparsely wooded land from at least 1943 to at least 1952. In 1959, the northern portion of the site appeared to be developed with a residential-type structure and the southern portion of the site appeared to be located mith a suspected gas station. A suspected tank pit and associated dispenser islands appeared to be located within the northeastern corner of the present-day Lem Turner Road and Broward Road interchange in 1959. The entire site appeared to be located on the southeastern portion of the site, approximately 75 feet east of the Lem Turner Road ROW. The dispenser islands appeared to be located within the present-day Lem Turner ROW, approximately 75 feet north of the Broward Road interchange. The site has been developed with the present-day Lem Turner ROW, approximately 75 feet north of the Broward Road interchange. The site has been developed with the present-day Lem Turner ROW, approximately 75 feet north of the Broward Road interchange. The site has been developed with the present-day gas station since at least 1988. According to the city directories reviewed, the site was occupied by various gas or service station (1957-1962), Tarte F. M. & Son Sinclair Service Center (1967), Don's B P (1972), Step-Saver Store #107 (1987), and Island Food Stores Inc. #142 (1992). The site has not been listed since 1997. 	The site was identified in the database report and on the FDEP Map Direct and OCULUS websites as a UST and LUST facility. 16/8506977 (UST and LUST): According to the database report and documents reviewed on OCULUS, one 12,000-gallon vehicular diesel UST and three 12,000-gallon unleaded gasoline USTs were installed at the site in February 1984. The vehicular diesel UST was closed in place in March 1997, and the unleaded gasoline USTs were removed in April 2006. One 15,000-gallon unleaded gasoline UST was installed at the site in May 2006 and is currently in service. The current and former USTs associated with the present-day gas station are/were located on the southeastern portion of the site, approximately 90 feet east of the Lem Turner Road ROW. Discharges of unleaded gasoline were reported for the facility on February 6, 1987, and June 27, 1987. The discharges were eligible for state-assisted cleanup funding under the EDI program and assigned a combined cleanup score of 42. According to a Remedial Action Interim Report, dated March 21, 2016, reviewed on OCULUS, contaminant concentrations in groundwater samples collected from the site were reportedly below their respective GCTLs and/or laboratory detection limits during the most recent sampling event. An SRCO was issued for the discharges on January 23, 2017. Groundwater flow direction was reportedly towards the south-southwest, cross-gradient to the subject corridor. Depth to water in the shallow aquifer at the site is approximately 1 to 3.5 feet BLS. No discharges have been reported since January 2017; however, the facility received several violations during a February 2020 inspection of the present-day UST system. The violations included the Veeder Root system being in alarm, failing to document financial responsibility, failing to train operators, the presence of a wooden stick in a gasoline fill port, the presence of water in some of the spill buckets and sumps, the fading of two fill port lids, failing to post a current placard, failing to replace m	Photographs Figures 2 and 4; Appendix A- Photo 4			 MEDIUM – This site is located adjacent to the northeast of the northern terminus of the subject corridor, northeast of the intersection of Lem Turner Road and Broward Road. Various gas and service stations have operated at the site since at least 1957. The site was listed as a UST and LUST facility. At least five current and former USTs are/were located at the site. The tank pits associated with the five known current and former USTs were located on the southeastern portion of the site, approximately 90 feet east of the Lem Turner Road ROW. An additional former tank pit is suspected to have been located on the southeastern portion of the site, approximately 75 feet east of the Lem Turner Road ROW. Two discharges of unleaded gasoline were reported for the facility in 1987. The discharges were eligible for state-assisted cleanup funding under the EDI program. An SRCO was issued for the petroleum discharges in 2017. No discharges have been reported since January 2017; however, the facility received several violations during a February 2020 inspection of the present-day UST system. No information was available for review to indicate if the violations had been corrected. Historical assessment activities conducted in 1993 in the vicinity of former tank pit on the southeastern portion of the site included laboratory analyses for VOHs. Solvent-related contaminant concentrations were noted below their respective laboratory MDLs; however, the groundwater samples collected from the monitor wells in the vicinity or downgradient of the former service bays did not appear to be analyzed for solvent-related contaminants. Further assessment in the vicinity of the site should include soil and/or groundwater sampling for VOCs, SVOCs, TRPH, and the 4 RCRA metals if subsurface work is proposed on, or adjacent to, the site.
		laboratory MDLs. The former service bays are suspected to have been located approximately 50 feet north-northwest of the former tank pit. The groundwater samples collected from the monitor wells in the vicinity or downgradient of the former service bays did not appear to be analyzed for solvent-related contaminants.				

Specific Sites Identified	Site Description and History	Documented Contamination/ File Review Results/Site Observations	Figures and Photographs	Potential Areas of Contamination Concern	Groundwat Flow Direction
Site 5 Alpha & Omega Dry Cleaners/Ed Stalvey's Fuel Oil Service Current Address(es): 2945 and 2947 Broward Road Historical Address(es): NA Site Owner(s): Larry D. Stalvey Trust and Diane Neuman Trust RE#s 021028-0010 and 021028-0020 FDEP Fac. ID#: 16/8629668	This site is currently occupied by Southern Response Services. The buildings associated with 2945 Broward Road appeared to be vacant. The present-day site buildings were constructed in 1949 and 1985. Sanborn Fire Insurance Maps did not cover the site vicinity. Aerial photographs reviewed indicated that the eastern portion of the site appeared to be wooded and/or grassy land from at least 1943 to at least 1952 and has been developed with two of the present-day structures since at least 1959. The eastern portion of the site was also developed with an additional structure from at least 1988 to at least 2005. The western portion of the site appeared to be wooded and/or grassy land from at least 1943 to at least 1975 and has been developed with the present-day structure since at least 1988. According to the city directories reviewed, the site has been occupied by multiple commercial businesses since at least 1982, including: Ed Stalvey's Fuel Oil Service (1982-2003) and Alpha & Omega Dry Cleaners (2013).	The site was identified in the database report and on the FDEP Map Direct and OCULUS websites as a UST facility. 16/8629668 (UST): According to the database report and documents reviewed on OCULUS, four 10,000- gallon USTs were installed at the site in June 1975 and removed in July 2003. The database report and the FDEP STCM database indicated that all four of the USTs contained fuel oil; however, a Tank Closure Assessment report indicated that the four USTs contained kerosene, diesel fuel, unleaded gasoline, and fuel oil. The former USTs were located on the southeastern portion of the site, approximately 300 feet east of the northern terminus of the subject corridor. According to a Tank Closure Assessment report, dated August 8, 2003, a soil sample was collected from the former tank pit and analyzed for volatile organic aromatics (VOAs), polycyclic aromatic hydrocarbons (PAHs), and TRPH. Naphthalene (34 milligrams per kilogram [mg/kg]), 1- methylnapthalene (12 mg/kg), and 2-methylnapthalene (8.4 mg/kg) were noted above the leachability soil cleanup target level (SCTL). In addition, TRPH (5,700 mg/kg) was noted above the residential, commercial/industrial, and leachability SCTLs. An additional soil sample was collected from the same location and analyzed via the Synthetic Precipitate Leaching Procedure (SPLP) to verify the presence of leachable PAHs and via the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Series Method for TRPH fractions. Contaminant concentrations were below their respective SCTLs. A groundwater sample collected from the former tank pit was analyzed for VOHs, PAHs, TRPH, ethylene dibromide, and lead (total and dissolved). Contaminant concentrations were below their respective GCTLs. A City of Jacksonville Air and Water Quality Division letter, dated November 5, 2003, indicated tank closure assessment requirements had been satisfied and no contamination was identified. No known discharges have been reported for the facility. Former Drycleaner: A dryclean	Figures 2 and 4; Appendix A- Photo 5	Former USTs and associated piping; former fuel oil service facility; former drycleaner facility	Not Availabl
Site 6 Bells Affordable Auto Sales Current Address(es): 9955 Lem Turner Road Historical Address(es): NA Site Owner(s): Wayne E. Bell RE# 029452-0010 FDEP Fac. ID#: NA	This site is currently occupied by Bells Affordable Auto Sales. The present-day site building was constructed in 1988. Sanborn Fire Insurance Maps did not cover the site vicinity. Aerial photographs reviewed indicated that the site appeared to be wooded and/or grassy land from at least 1943 to at least 1975 and has been developed with the present-day commercial structure since at least 1988. A trailer-type structure appeared to be staged on the property in 1959, and staged vehicles were visible on the property in 2020. According to the city directories reviewed, the site has been occupied by multiple commercial businesses since at least 1992, including: White Diamonds Auto Detailing (2003).	The site was not identified in the database report or FDEP Map Direct and OCULUS websites; however, an automotive sales facility currently occupies the site and an auto detailing facility occupied the site in 2003. Based on site observations, the size and layout of the structure, and a review of historical aerial photographs, the auto sales facility does not appear to conduct any major auto repair operations. No known USTs or discharges have been reported at the site.	Figures 2 and 4; Appendix A- Photo 6	Current auto repair operations	Not Availab

ater	FDOT Ranking System Results
m	
able	MEDIUM – This site is located approximately 125 feet east of the northern terminus of the subject corridor, east of the intersection of Lem Turner Road and Broward Road. The site was listed as a UST facility.
	A fuel oil service facility occupied the site from at least 1982 to at least 2003, and a drycleaner facility occupied the site in 2013. Four 10,000-gallon fuel oil USTs were formerly located at the site. The former USTs were located on the southeastern portion of the site, approximately 300 feet east of the northern terminus of the subject corridor. No contamination above cleanup target levels was identified in the 2003 Tank Closure Assessment report. No assessment work has been conducted at the site in association with the former drycleaner facility. No known discharges have been reported at the site.
	Further assessment in the vicinity of the site should include soil and/or groundwater sampling for VOCs and SVOCs if subsurface work is proposed on, or adjacent to, the site.
able	NO – This site is located adjacent to the northeast of the subject corridor, adjacent to the southeastern corner of the intersection of Lem Turner Road and Bayview Avenue. An automotive sales facility currently occupies the site, and an auto detailing facility occupied the site in 2003. ASL does not suspect that any major auto repair operations have been conducted at the site. No known discharges have been reported for the at the site.
	impacts to construction are not anticipated at this time.

Specific Sites Identified	Site Description and History	Documented Contamination/ File Review Results/Site Observations	Figures and Photographs	Potential Areas of Contamination	Groundwater Flow	FDOT Ranking System Results			
Site 7	This site is summently accumied by TNT	The site was not identified in the detabase report or EDED Man Direct and OCHI LIS	Figures 2 and 4	Concern	Direction	NO – This site is located adjacent to the west of the southern terminus			
TNT Automotive Solutions	This site is currently occupied by TNT Automotive Solutions. The present-day site building was constructed in 1949.	The site was not identified in the database report or FDEP Map Direct and OCULUS websites; however, an automotive sales facility has occupied the site since at least 2018. Based on site observations, the size and layout of the structure, and a review of historical	Figures 2 and 4; Appendix A- Photo 7	Current auto repair operations	Not Available	of the subject corridor, west of the intersection of Lem Turner Road and Trout River Boulevard. An automotive sales facility has occupied			
Current Address(es): 9901 Old Lem		aerial photographs, the auto sales facility does not appear to conduct any major auto				the site since at least 2018. ASL does not suspect that any major auto			
Turner Road	Sanborn Fire Insurance Maps did not cover the site vicinity.	repair operations.				repair operations have been conducted at the site. No known discharges have been reported for the at the site.			
Historical Address(es): NA		Limited Level 2 Soil Assessment Report, dated June 17, 2020:							
Site Owner(s): Troy Harris	Aerial photographs reviewed indicated that the site appeared to be wooded land in 1943	Parsons provided ASL with a copy of the above-referenced report conducted by APTIM Environmental & Infrastructure, Inc. A copy of the report is included in Appendix G.				Impacts to construction are not anticipated at this time.			
RE#s 029456-0000 and 029457-0000	and has been developed with the present- day structure on the southeastern portion	Two soil borings (SB-3 and SB-4) were advanced in the Lem Turner Road ROW adjacent to Site 7. The soil samples collected from each soil boring were analyzed with							
FDEP Fac. ID#: NA	since at least 1952. The northwestern portion of the site appeared to be developed with a billboard from at least 1969 to at	an OVA-PID. Concentrations were at or below 0.1 ppm, and no petroleum staining or odors were noted. No soil samples were collected for laboratory analysis.							
	least 1997 and has been primarily grassy land since at least 2005. Staged vehicles	No known USTs or discharges have been reported at the site.							
	were visible on the property in 2020.								
	According to the city directories reviewed, the site was occupied by a residence from								
	at least 1953 to at least 1956 and has been								
	occupied by multiple commercial								
	businesses since at least 1977, including:								
	TNT Automotive Solutions (2018).		F ¹ O 14	TT 1	NT / A 1111				
Site 8 Franko's Upholstery	This site is currently occupied by Franko's Upholstery. The present-day site building	The site was not identified in the database report or FDEP Map Direct and OCULUS websites; however, multiple facilities of potential concern were identified in the city	-	Hazardous waste generation; former auto	Not Available	MEDIUM – This site is located adjacent to the south of the southern terminus of the subject corridor, south of the intersection of Lem			
Franko's Opholstery	was constructed in 1924.	directories reviewed. Two service station facilities were listed at the site in 1953, and	Appendix A- Photo 8	repair operations;		Turner Road and Trout River Boulevard. Service stations occupied			
Current Address(es): 9864 Lem		various auto repair facilities were listed at the site from at least 1962 to at least 2003.		former USTs and		the site in 1953, and auto repair facilities occupied the site from at			
Turner Road	Sanborn Fire Insurance Maps did not cover the site vicinity.	Limited Level 2 Soil Assessment Report, dated June 17, 2020:		associated piping		least 1962 to at least 2003. An upholstery shop has occupied the site since at least 2008. Soil samples collected from the Lem Turner Road			
Historical Address(es): NA	Aerial photographs reviewed indicated that	Parsons provided ASL with a copy of the above-referenced report conducted by APTIM Environmental & Infrastructure, Inc. A copy of the report is included in Appendix G.				ROW adjacent to Site 8 were analyzed with an OVA-PID; however, no soil samples were collected for laboratory analysis. No known			
Site Owner(s): Travis C. Harris	the site appeared to be primarily wooded land in 1943 and has been developed with	One soil boring (SB-2) was advanced in the Lem Turner Road ROW adjacent to Site 8. The soil samples collected from the soil boring were analyzed with an OVA-PID.				discharges have been reported at the site.			
RE# 029482-0000	the present-day commercial structure since at least 1952. The commercial structure	Concentrations were at or below 0.1 ppm, and no petroleum staining or odors were noted. No soil samples were collected for laboratory analysis.				Further assessment in the vicinity of the site should include soil and/or groundwater sampling for VOCs, SVOCs, TRPH, and the 4			
FDEP Fac. ID#: NA	appeared to be expanded between 1959 and 1969. Staged vehicles have been visible on	No known USTs or discharges have been reported at the site.				RCRA metals if subsurface work is proposed on, or adjacent to, the site.			
	the property since at least 1969.	No known 05 15 of discharges have been reported at the site.				Site.			
	According to the city directories reviewed, the site has been occupied by multiple								
	commercial businesses since at least 1953,								
	including: Trout River service station								
	(1953), Marlow O. Hall service station								
	(1953), Andrew's Auto Body & Paint Shop								
	(1962-1967), Harris & Jenkins Auto Body & Paint Shop (1972), Harris & Ted K. Auto								
	Body Shop (1972), Andrew's Paint Shop								
	(1972-1977), Harris Auto Body Shop								
	(1977-1987), Harris Paint & Body Shop								
	(1992), Rod's Paint & Body (2003), and								
	Upholstery by Frank (2008-2018).								

Specific Sites Identified	Site Description and History	Documented Contamination/ File Review Results/Site Observations	Figures and Photographs	Potential Areas of Contamination Concern	Groundwater Flow Direction	FDOT Ranking System Results
Site 9	This site is currently occupied by Allied	The site was identified in the database report and on the FDEP Map Direct and	Figures 2 and 4;	Hazardous waste	Not Available	MEDIUM - This site is located adjacent to the south of the southern
Allied Auto & Truck Repair, Inc.	Auto & Truck Repair, Inc. The present-day	OCULUS websites as a RCRAGN facility.	Appendix A-	generation; current and		terminus of the subject corridor, south of the intersection of Lem
	site buildings were constructed in 1947.		Photos 9 and 10	former auto repair		Turner Road and Trout River Boulevard. An auto repair facility
Current Address(es): 9834-9854		FLD981865264 and SQG_27312 (RCRAGN):		operations; former		currently occupies the site, and various auto repair facilities occupied
(even) Lem Turner Road	Sanborn Fire Insurance Maps did not cover	According to the database report, documents reviewed on OCULUS, and a Facility		drycleaner operations		the site from at least 1972 to at least 1987 and in 2008. Drycleaner
	the site vicinity.	Detailed List Report, the facility initially registered as a SQG of hazardous waste in				facilities occupied the site from at least 1962 to at least 1967. The site
Historical Address(es): NA	A smiel who to ensure a new owned in disated that	1987 and was reclassified as a conditionally-exempt SQG in 2011. According to a January 2012 Inspection Report, reviewed on OCULUS, the facility consisted of a one-				was listed as a RCRAGN facility and is reportedly connected to a
Site Owner(s): Travis C. Harris	Aerial photographs reviewed indicated that the site appeared to be developed with a					septic system. No violations were noted for the facility. Soil samples collected from the Lem Turner Road ROW adjacent to Site 9 were
Site Owner(s): Travis C. Harris	small structure on the eastern portion and	bay automotive repair shop, which specialized in engine replacement, at that time. The facility was reportedly connected to city water and a septic system. According to the				analyzed with an OVA-PID; however, no soil samples were collected
RE# 029480-0000	primarily wooded land on the remaining	Facility Detailed List Report, waste streams reportedly generated by the facility include				for laboratory analysis. No known discharges have been reported at
KE# 029480-0000	portions in 1943. The site has been	antifreeze, lead-acid batteries, used oils and lubricants, contaminated rags, and used oil				the site.
FDEP Fac. ID#s: FLD981865264 and	developed with the present-day	filters. No violations were noted for the facility.				the site.
SQG_27312	commercial structures on the eastern and	inters. Ino violations were noted for the facility.				Further assessment in the vicinity of the site should include soil
500_27512	western portions since at least 1952. The	Current and Former Auto Repair:				and/or groundwater sampling for VOCs, SVOCs, TRPH, and the 4
	commercial structure on the eastern portion	Auto repairs operations were historically and are currently conducted at the site. No				RCRA metals if subsurface work is proposed on, or adjacent to, the
	appeared to be expanded between 1952 and	known assessment activities have been conducted at the site.				site.
	1959. Staged vehicles have been visible on					
	the property since at least 1975.	Limited Level 2 Soil Assessment Report, dated June 17, 2020:				
	1 1 2	Parsons provided ASL with a copy of the above-referenced report conducted by APTIM				
	According to the city directories reviewed,	Environmental & Infrastructure, Inc. A copy of the report is included in Appendix G.				
	the site has been occupied by multiple	Two soil borings (SB-1 and SB-2) were advanced in the Lem Turner Road ROW				
	commercial businesses since at least 1962,	adjacent to Site 9. The soil samples collected from each soil boring were analyzed with				
	including: Kinard Cleaners (1962),	an OVA-PID. Concentrations were at or below 0.1 ppm, and no petroleum staining or				
	Customer Cleaners & Laundry (1967),	odors were noted. No soil samples were collected for laboratory analysis.				
	Larry Shuler's Garage (1972), B&B Auto					
	Care (1977), Dynomite Auto & Truck	No known discharges have been reported for the facility.				
	Repair (1982-1987), and Sunshine Auto					
	Body & Repair (2008).					

APPENDICES

APPENDIX A

SITE PHOTOGRAPHS

1) Looking west across Lem Turner Road at Site 1.

2) Looking northwest at Site 2.

3) Looking north from Dolly Drive at Site 3.

 Looking northeast across the intersection of Lem Turner Road and Broward Road at Site 4.

5) Looking northwest from Broward Road at Site 5.

6) Looking east across Lem Turner Road at Site 6.

7) Looking east across Old Lem Turner Road at Site 7.

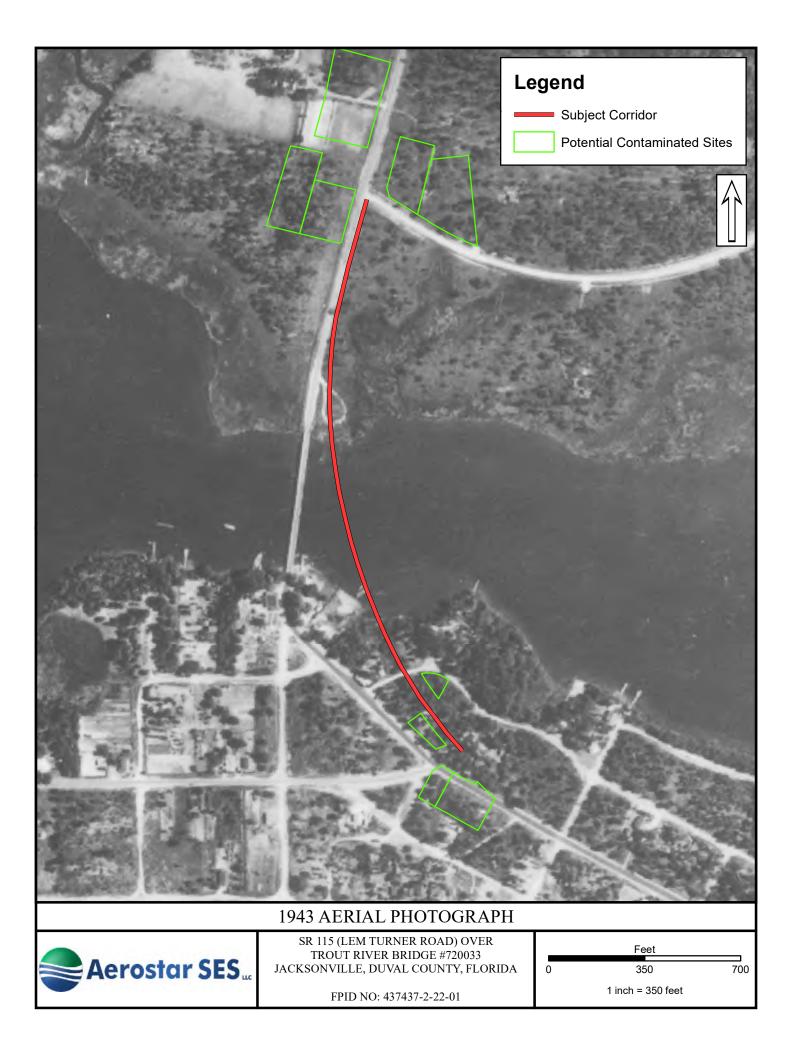
8) Looking southeast from the intersection of Trout River Boulevard and Old Lem Turner Road at Site 8.

9) Looking southeast from the intersection of Trout River Boulevard and Old Lem Turner Road at Site 9.

10) Looking southwest across Lem Turner Road at Site 9.

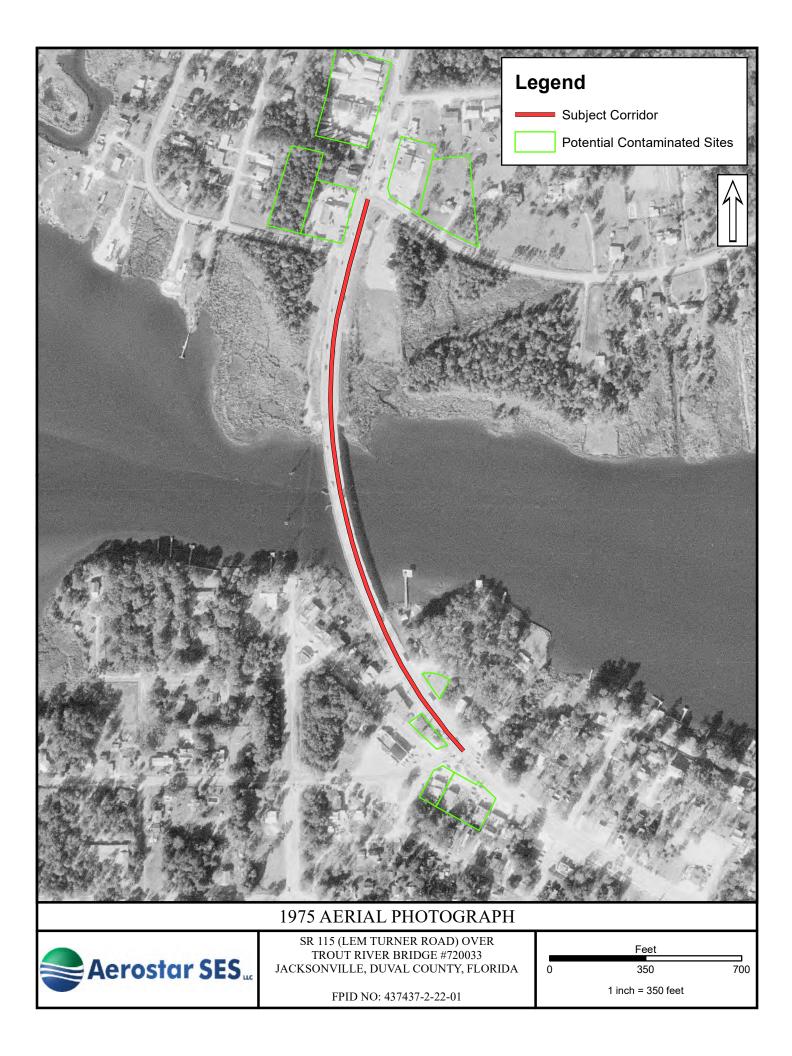
APPENDIX B

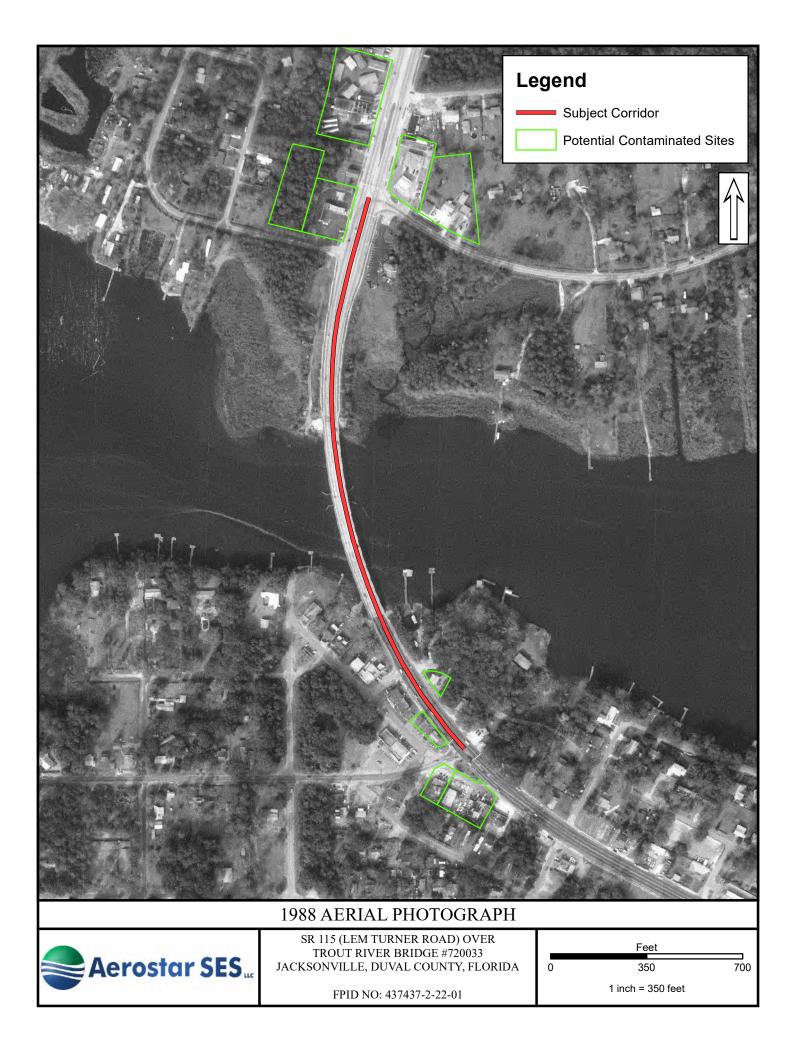
HISTORICAL REFERENCES DOCUMENTATION

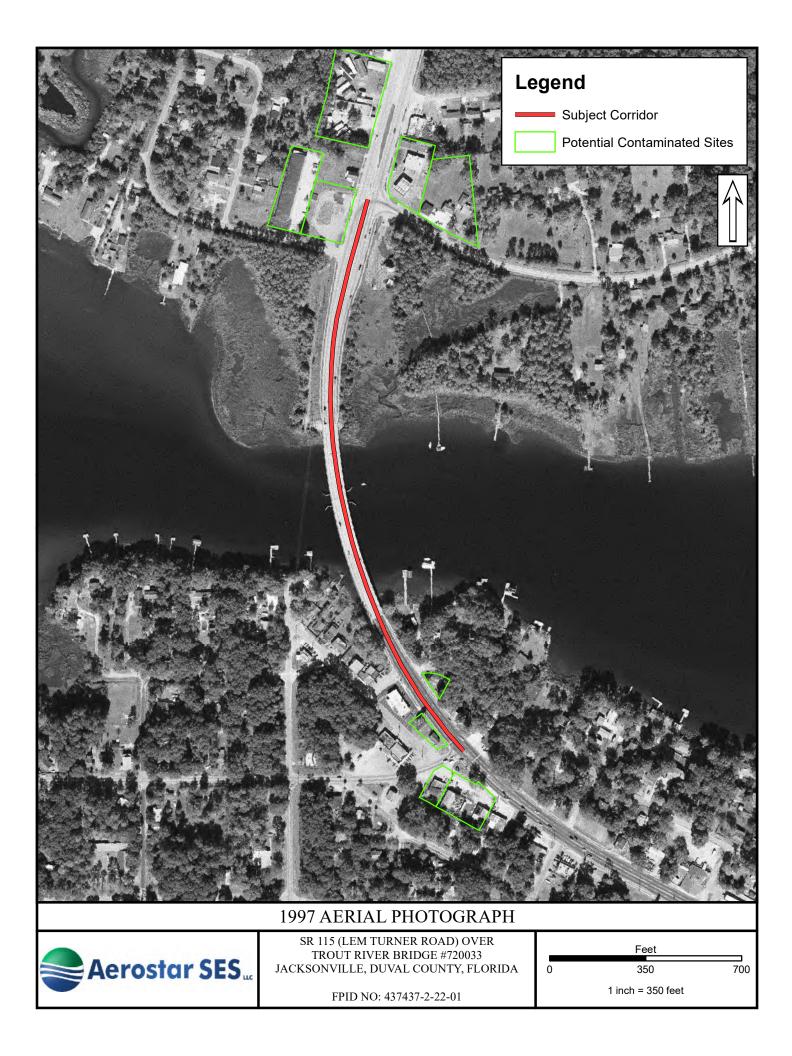


SR 115 (LEM TURNER ROAD) OVER TROUT RIVER BRIDGE #720033 JACKSONVILLE, DUVAL COUNTY, FLORIDA

	Feet	
)	350	700
	1 inch = 350 feet	


FPID NO: 437437-2-22-01





Aerostar SES ...

FPID NO: 437437-2-22-01

TROUT RIVER BRIDGE #720033 JACKSONVILLE, DUVAL COUNTY, FLORIDA
 Feet

 0
 350
 700

 1 inch = 350 feet
 350
 700

Lem Turner Rd Over Trout River Bridge Lem Turner Road Jacksonville, FL 32218

Inquiry Number: 6470938.5 April 28, 2021

Certified Sanborn® Map Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

Certified Sanborn® Map Report

Site Name:

Lem Turner Rd Over Trout Rive Lem Turner Road Jacksonville, FL 32218 EDR Inquiry # 6470938.5

Client Name:

Aerostar SES LLC 3550 St. Johns Bluff Road South Jacksonville, FL 32703 Contact: Kevin Ashman

04/28/21

The Sanborn Library has been searched by EDR and maps covering the target property location as provided by Aerostar SES LLC were identified for the years listed below. The Sanborn Library is the largest, most complete collection of fire insurance maps. The collection includes maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow, and others. Only Environmental Data Resources Inc. (EDR) is authorized to grant rights for commercial reproduction of maps by the Sanborn Library LLC, the copyright holder for the collection. Results can be authenticated by visiting www.edrnet.com/sanborn.

The Sanborn Library is continually enhanced with newly identified map archives. This report accesses all maps in the collection as of the day this report was generated.

Certified Sanborn Results:

Certification # 3C80-4EBE-98D9

PO # Lem Turner Rd Over Trout River

Project M3010.1403.0005.16

UNMAPPED PROPERTY

This report certifies that the complete holdings of the Sanborn Library, LLC collection have been searched based on client supplied target property information, and fire insurance maps covering the target property were not found.

Sanborn® Library search results Certification #: 3C80-4EBE-98D9

The Sanborn Library includes more than 1.2 million fire insurance maps from Sanborn, Bromley, Perris & Browne, Hopkins, Barlow and others which track historical property usage in approximately 12,000 American cities and towns. Collections searched:

Library of	Congress
------------	----------

University Publications of America

EDR Private Collection

The Sanborn Library LLC Since 1866™

Limited Permission To Make Copies

Aerostar SES LLC (the client) is permitted to make up to FIVE photocopies of this Sanborn Map transmittal and each fire insurance map accompanying this report solely for the limited use of its customer. No one other than the client is authorized to make copies. Upon request made directly to an EDR Account Executive, the client may be permitted to make a limited number of additional photocopies. This permission is conditioned upon compliance by the client, its customer and their agents with EDR's copyright policy; a copy of which is available upon request.

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental Site Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provide in this Report is not to be construed as legal advice.

Copyright 2021 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

APPENDIX C

ENVIRONMENTAL DATABASE REPORT

Lem Turner Rd Over Trout River Bridge

Lem Turner Road Jacksonville, FL 32218

Inquiry Number: 6470938.2s April 28, 2021

FirstSearch Area/Linear Report

6 Armstrong Road, 4th floor Shelton, CT 06484 Toll Free: 800.352.0050 www.edrnet.com

FORM-FXL-SPM

Search Summary Report

Category	Sel	Site	1/8	1/4	1/2	> 1/2	ZIP	TOTALS
IPL	Y	0	0	0	0	-	0	0
NPL Delisted	Ŷ	0	0	0	0	-	0	0
CERCLIS	Ŷ	0	0	0	0	-	0	0
NFRAP	Y	0	0	0	0	-	0	0
RCRA COR ACT	Y	0	0	0	-	-	0	0
RCRA TSD	Y	0	0	0	-	-	0	0
RCRA GEN	Y	0	2	1	-	-	0	3
Federal IC / EC	Y	0	0	0	-	-	0	0
ERNS	Y	0	-	-	-	-	0	0
State/Tribal CERCLIS	Y	0	0	0	0	-	0	0
State/Tribal SWL	Y	0	0	1	1	-	0	2
State/Tribal LTANKS	Y	0	3	2	-	-	0	5
State/Tribal Tanks	Y	0	4	4	-	-	0	8
State/Tribal IC / EC	Y	0	0	0	-	-	0	0
State/Tribal VCP	Y	0	0	0	-	-	0	0
ST/Tribal Brownfields	Y	0	0	0	-	-	0	0
US Brownfields	Y	0	0	0	-	-	0	0
Other Haz Sites	Y	0	0	0	-	-	0	0
Spills	Y	0	-	-	-	-	0	0
Other	Y	0	2	0	-	-	0	2
	- Totals	0	11	8	1	0	0	20

TARGET SITE LEM TURNER ROAD JACKSONVILLE, FL 32218

Disclaimer - Copyright and Trademark Notice

This Report contains certain information obtained from a variety of public and other sources reasonably available to Environmental Data Resources, Inc. It cannot be concluded from this Report that coverage information for the target and surrounding properties does not exist from other sources. NO WARRANTY EXPRESSED OR IMPLIED, IS MADE WHATSOEVER IN CONNECTION WITH THIS REPORT. ENVIRONMENTAL DATA RESOURCES, INC. SPECIFICALLY DISCLAIMS THE MAKING OF ANY SUCH WARRANTIES, INCLUDING WITHOUT LIMITATION, MERCHANTABILITY OR FITNESS FOR A PARTICULAR USE OR PURPOSE. ALL RISK IS ASSUMED BY THE USER. IN NO EVENT SHALL ENVIRONMENTAL DATA RESOURCES, INC. BE LIABLE TO ANYONE, WHETHER ARISING OUT OF ERRORS OR OMISSIONS, NEGLIGENCE, ACCIDENT OR ANY OTHER CAUSE, FOR ANY LOSS OF DAMAGE, INCLUDING, WITHOUT LIMITATION, SPECIAL, INCIDENTAL, CONSEQUENTIAL, OR EXEMPLARY DAMAGES. ANY LIABILITY ON THE PART OF ENVIRONMENTAL DATA RESOURCES, INC. IS STRICTLY LIMITED TO A REFUND OF THE AMOUNT PAID FOR THIS REPORT. Purchaser accepts this Report "AS IS". Any analyses, estimates, ratings, environmental risk levels or risk codes provided in this Report are provided for illustrative purposes only, and are not intended to provide, nor should they be interpreted as providing any facts regarding, or prediction or forecast of, any environmental risk for any property. Only a Phase I Environmental St Assessment performed by an environmental professional can provide information regarding the environmental risk for any property. Additionally, the information provided in this Report is not to be construed as legal advice.

Copyright 2020 by Environmental Data Resources, Inc. All rights reserved. Reproduction in any media or format, in whole or in part, of any report or map of Environmental Data Resources, Inc., or its affiliates, is prohibited without prior written permission.

EDR and its logos (including Sanborn and Sanborn Map) are trademarks of Environmental Data Resources, Inc. or its affiliates. All other trademarks used herein are the property of their respective owners.

Search Summary Report

Category	Database	Update	Radius	Site	1/8	1/4	1/2	> 1/2	ZIP	TOTALS
NPL	NPL	12/30/2020	0.500	0	0	0	0	-	0	0
	Proposed NPL	12/30/2020	0.500	0	0	0	0	-	0	0
NPL Delisted	Delisted NPL	12/30/2020	0.500	0	0	0	0	-	0	0
CERCLIS	SEMS	12/30/2020	0.500	0	0	0	0	-	0	0
NFRAP	SEMS-ARCHIVE	12/30/2020	0.500	0	0	0	0	-	0	0
RCRA COR ACT	CORRACTS	12/14/2020	0.250	0	0	0	-	-	0	0
RCRA TSD	RCRA-TSDF	12/14/2020	0.250	0	0	0	-	-	0	0
RCRA GEN	RCRA-LQG	12/14/2020	0.250	0	0	0	-	-	0	0
	RCRA-SQG	12/14/2020	0.250	0	0	0	-	-	0	0
	RCRA-VSQG	12/14/2020	0.250	0	2	1	-	-	0	3
Federal IC / EC	US ENG CONTROLS	10/28/2020	0.250	0	0	0	-	-	0	0
	US INST CONTROLS	10/28/2020	0.250	0	0	0	-	-	0	0
ERNS	ERNS	12/14/2020	TP	0	-	-	-	-	0	0
State/Tribal CERCLIS	SHWS	01/13/2020	0.500	0	0	0	0	-	0	0
State/Tribal SWL	SWF/LF	01/12/2021	0.500	0	0	1	1	-	0	2
State/Tribal LTANKS	LAST	02/01/2021	0.250	0	0	0	-	-	0	0
	LUST	01/25/2021	0.250	0	3	2	-	-	0	5
	INDIAN LUST	10/01/2020	0.250	0	0	0	-	-	0	0
State/Tribal Tanks	UST	01/26/2021	0.250	0	4	2	-	-	0	6
	AST	01/26/2021	0.250	0	0	2	-	-	0	2
	INDIAN UST	10/01/2020	0.250	0	0	0	-	-	0	0
State/Tribal IC / EC	ENG CONTROLS	12/23/2020	0.250	0	0	0	-	-	0	0
	INST CONTROL	12/23/2020	0.250	0	0	0	-	-	0	0
State/Tribal VCP	VCP	12/13/2020	0.250	0	0	0	-	-	0	0
ST/Tribal Brownfields	BROWNFIELDS	12/07/2020	0.250	0	0	0	-	-	0	0

TARGET SITE:LEM TURNER ROAD
JACKSONVILLE, FL 32218

Search Summary Report

Category	Database	Update	Radius	Site	1/8	1/4	1/2	> 1/2	ZIP	TOTALS
US Brownfields	US BROWNFIELDS	12/11/2020	0.250	0	0	0	-	-	0	0
Other Haz Sites	PRIORITYCLEANERS	10/26/2020	0.250	0	0	0	-	-	0	0
	FI Sites	12/31/1989	0.500	0	0	0	0	-	0	0
	US CDL	12/07/2020	TP	0	-	-	-	-	0	0
Spills	HMIRS	12/16/2020	TP	0	-	-	-	-	0	0
	SPILLS	01/04/2021	TP	0	-	-	-	-	0	0
	SPILLS 90	12/10/2012	TP	0	-	-	-	-	0	0
	SPILLS 80	09/01/2001	TP	0	-	-	-	-	0	0
Other	RCRA NonGen / NLR	12/14/2020	0.250	0	1	0	-	-	0	1
	TSCA	12/31/2016	TP	0	-	-	-	-	0	0
	TRIS	12/31/2018	TP	0	-	-	-	-	0	0
	SSTS	01/20/2021	TP	0	-	-	-	-	0	0
	RAATS	04/17/1995	TP	0	-	-	-	-	0	0
	PRP	12/30/2020	TP	0	-	-	-	-	0	0
	PADS	11/19/2020	TP	0	-	-	-	-	0	0
	ICIS	11/18/2016	TP	0	-	-	-	-	0	0
	FTTS	04/09/2009	TP	0	-	-	-	-	0	0
	MLTS	08/05/2020	TP	0	-	-	-	-	0	0
	RADINFO	07/01/2019	TP	0	-	-	-	-	0	0
	INDIAN RESERV	12/31/2014	0.250	0	0	0	-	-	0	0
	US AIRS	10/12/2016	TP	0	-	-	-	-	0	0
	FINDS	02/03/2021	TP	0	1	-	-	-	0	1
	DRYCLEANERS	01/20/2021	0.250	0	0	0	-	-	0	0
	FL Cattle Dip. Vats	09/27/2019	0.250	0	0	0	-	-	0	0
	- Totals			0	11	8	1	0	0	20

TARGET SITE:LEM TURNER ROAD
JACKSONVILLE, FL 32218

Site Information Report

Request Date:	APRIL 28, 2021	Search Type:	COORD
Request Name:	KEVIN ASHMAN	Job Number:	LEM TURNER RD OVER TROUT RIVER

Target Site:LEM TURNER ROADJACKSONVILLE, FL 32218

Site Location

	Degrees (Decimal)	Degrees (Min/Sec)		UTMs
Longitude:	81.696778	81.6967780 - 81° 41' 48.40''	Easting:	433078.6
Latitude:	30.417976	30.4179760 - 30° 25' 4.71''	Northing:	3365126.2
Elevation:	0 ft. above sea level		Zone:	Zone 17

Demographics

ADON Federal EPA		Non-Geo	coded: 0	Population:	N/A
	Radon Zone for DUVAL 0	County: 3			
: Zon	e 1 indoor average level >	> 4 pCi/L. >= 2 pCi/L and <= 4 pCi/L.			
Federal Area	Radon Information for DL	JVAL COUNTY, FL			
Number of sit	tes tested: 102				
Area	Average A	ctivity % <4 pCi/L	% 4-20 pCi/L	% >20 pCi/L	
Living Area Basement	0.480 pCi/ 0.380 pCi/		0% 0%	0% 0%	
State Databas Radon Tes	se: FL Radon st Results				
Zip	Total Buildings	% of sites>4pCi/L	Data Source		

Site Information Report

ſ	RADON			
	32218 32218 32218	25 65 3	0.0 1.5 0.0	Certified Residential Database Mandatory Non-Residential Database Mandatory Residential Database

Target Site Summary Report

Targ	et Property:	LEM TURNER ROAD JACKSONVILLE, FL 32218	JOB: LEM T	JOB: LEM TURNER RD OVER		'ER
TOTAL	: 20	GEOCODED: 20	NON GEOCODED: 0			
	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.

No sites found for target address

Sites Summary Report

DB Type Map IDID/Status	Site Name	Address	Dist/Dir ElevDiff	Pag
TOTAL: 20	GEOCODED: 20	NON GEOCODED:	0	
Target Property:	LEM TURNER ROAD JACKSONVILLE, FL 32218	JOB:	LEM TURNER RD OVER TROUT RIV	/ER

Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
A1	FINDS 110002550953	GASSONS LEM TURNER CHEVRON	10162 LEM TURNER RD JACKSONVILLE, FL 32218	0.00	+ 9	1
A1	RCRA NonGen / NI FLD981859135	LR GASSONS LEM TURNER CHEVRON	10162 LEM TURNER RD JACKSONVILLE, FL 32218	0.00	+ 9	2
A2	UST CLOSED 8506977	CHEVRON #46863-GEORGE'S	10162 LEM TURNER RD JACKSONVILLE, FL 32218	0.00	+ 9	8
A2	LUST CLOSED 8506977 NFA - NFA COMF	CHEVRON #46863-GEORGE'S PLETE	10162 LEM TURNER RD JACKSONVILLE, FL 32218	0.00	+ 9	10
3	UST OPEN 8507541	TROUT RIVER FOOD MART	10203 LEM TURNER RD JACKSONVILLE, FL 32218	0.00 North	+ 9	14
3	LUST OPEN 8507541 SRCR - SRCR CC	TROUT RIVER FOOD MART	10203 LEM TURNER RD JACKSONVILLE, FL 32218	0.00 North	+ 9	18
4	RCRA-VSQG FLD065918856	HOLT GENERATOR SHOP	10244 LEM TURNER RD JACKSONVILLE, FL 32218	0.01 North	+ 9	25
5	RCRA-VSQG FLD981865264	ALLIED AUTO & TRUCK REPAIR INC	9834 LEM TURNER RD JACKSONVILLE, FL 32208	0.02 SSE	+ 14	32
6	UST CLOSED 8629668	STALVEY FUEL OIL SERVICE	2945 BROWARD RD JACKSONVILLE, FL 32218	0.05 NNE	+ 9	40
7	UST CLOSED 9100914	S & W MUFFLER SHOP	9650 LEM TURNER RD JACKSONVILLE, FL 32208	0.09 SE	+ 37	42
7	LUST CLOSED 9100914 NFA - NFA COME	S & W MUFFLER SHOP	9650 LEM TURNER RD JACKSONVILLE, FL 32208	0.09 SE	+ 37	43

--NFA - NFA COMPLETE

Sites Summary Report

Tar		EM TURNER ROAD ACKSONVILLE, FL 32218	JOB: LEM TUR	NER RD OVEF	R TROUT RIV	/ER
ΤΟΤΑ	L: 20	GEOCODED: 20	NON GEOCODED: 0			
Map ID	DB Type ID/Status	Site Name	Address	Dist/Dir	ElevDiff	Page No.
8	SWF/LF 96160 INACTIVE (I)	MARSHALL PYKE JR	9600 LEM TURNER RD JACKSONVILLE, FL 32208	0.13 SE	+ 44	47
B9	LUST CLOSED 8507366 SRCR - SRCR C	KERR MCGEE #3078 OMPLETE	10420 LEM TURNER RD JACKSONVILLE, FL 32218	0.14 North	+ 9	48
B10	UST CLOSED 8507366	KERR MCGEE #3078	10420 LEM TURNER RD JACKSONVILLE, FL 32218	0.14 North	+ 9	53
11	AST CLOSED 9100459 CLOSED	JEA WATER ST PUMP #1	11 E WATER ST JACKSONVILLE, FL 32208	0.17 SE	+ 3	57
11	UST CLOSED 9100459	JEA WATER ST PUMP #1	11 E WATER ST JACKSONVILLE, FL 32208	0.17 SE	+ 3	58
11	LUST CLOSED 9100459 NREQ - CLEANU	JEA WATER ST PUMP #1 JP NOT REQUIRED	11 E WATER ST JACKSONVILLE, FL 32208	0.17 SE	+ 3	59
C12	AST CLOSED 9102986 CLOSED	HILL TOP MOTOR CO	9557 LEM TURNER RD JACKSONVILLE, FL 32208	0.18 SE	+ 39	63
C13	RCRA-VSQG FLD984209288	LEM TURNER BODY SHOP	9545 LEM TURNER RD JACKSONVILLE, FL 32208	0.20 SE	+ 23	64
14	SWF/LF 100601 NFA,NO FURTH	LIPMAN SAMUEL D TRUSTEE ER ACTION (F)	0 5TH AVENUE JACKSONVILLE, FL 32208	0.28 SE	+ 38	76

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			FINDS				
EDR ID:	1000385358	DIST/DIR: 0.00	00 E	LEVATION:	9	MAP ID:	A1
NAME: ADDRESS SOURCE:	GASSONS LEM TUR 10162 LEM TURNER JACKSONVILLE, FL DUVAL US EPA	RD		Rev: ID/Status: 1	02/03/2021 10002550953		
Environm RCRAIr Conser events a and trea progran correcti Florida Mainter	D: 110002550953 Click Here: ental Interest/Information fo is a national information vation and Recovery Action and activities related to at, store, or dispose of h in staff to track the notifi- ve action activities requires requires the environmental System ance (FDM) system man in data for the State of F	tion system that support (RCRA) program through facilities that generate nazardous waste. RCR cation, permit, complia ired under RCRA. Today Application (FIE aintains entity, environ Florida. Click this hyperlink	bugh the tracking of , transport, AInfo allows RCRA nce, and ESTA) Data	ur computer e Report.	to access		

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

IL

			RCRA N	NonGen / NL	_R			
EDR ID:	1000385358	DIST/DIR:	0.000	E	LEVATION:	9	MAP ID:	A1
NAME: ADDRESS:	GASSONS LEM TURN 10162 LEM TURNER JACKSONVILLE, FL 3 DUVAL	RD			Rev: ID/Status: I	12/14/2020 FLD981859135		
SOURCE:	US Environmental Pro	tection Agency						
Date Form Handler N Handler A Handler C EPA ID: I Contact N Contact A Contact C Contact Te Contact Te State Distr State Distr State Distr Mailing Cit Owner Na Owner Ty Operator T Short-Terr Importer A Mixed Wa Transporte Transfer F Recycler A Small Qua Smelting N Universal T Contact State Contact Te Contact Te Contact Te Contact Te Contact Te Contact Te Contact Te Contact Te State Distr Mailing Cit Owner Ty Coperator To Short-Terr Importer A Mixed Wa Smelting N Universal T Contact Te Contact Te Contac	 Private aste Generator Descrip er: Not reported eport Cycle: Not report ity: Not reported Indicator: Not reporte ict Owner: FL 	TURNER CHEV JRNER RD IVILLE, FL 3221 RD IVILLE, FL 3221 7 tion: Not a gene ted d RD VILLE, FL 32218 S-SLUSHER lo o emption: No nace Exemption lo ity: No orage and Dispo torage and Dispo	/RON 8-5045 8-5045 erator, verified 3-5045 : No sal Facility: I osal Facility: I	Not reported Not reported	d			
						- Continued o	n next pac	ae -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

JOB: LEM TURNER RD OVER TROUT RIVER

			RCRA NonGe	n / NLR			
EDR ID:	1000385358	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A1
	GASSONS LEM TURNE 10162 LEM TURNER R JACKSONVILLE, FL 32 DUVAL	D 218		Rev: ID/Status:	12/14/2020 FLD981859135		
SOURCE:	US Environmental Prote	ection Agency					
Federal F Hazardou Sub-Part Commerc Treatmen 2018 GPF 2018 GPF Permit Re Permit Re Permit Vo Permit Pro Post-Clos Closure W 202 GPR/ Corrective Subject to Non-TSDI TSDFs Of Corrective Environme Institution Human E2 Groundwa Operating Full Enfor Significan Unaddress Addressed Significan Financial Handler D Recognize Recognize Sub-Part	e State-Reg Handler: acility Indicator: Not reported s Secondary Material Indi K Indicator: Not reported ial TSD Indicator: No t Storage and Disposal Ty R Permit Baseline: Not R Renewals Baseline: Not R Renewals Baseline: Not R Renewals Baseline: Not R Renewals Workload Universe orkload Universe: Not rep ure Workload Universe: Not rep ure Workload Universe: Not rep ure Workload Universe: Not rep vorkload Universe: Not rep of Corrective Action Baseli e Action Workload Universe Corrective Action Universe Corrective Action Universe Corrective Action Universe A Corrective Action Universe A Corrective Action Universe Corrective Action Universe A Corrective Action Universe Corrective Action Universe A Control Indicator: No aposure Controls Indicator: No aposure Controls Indicator: No ater Controls Indicator: No aposure Controls Indicator: No aposurance Required: No Assurance Required: No ad Significant Non-Complie t Non-Complier With a Co Assurance Required: No ad Trader-Importer: No ad Trader-Importer: No ad Trader-Importer: No ad Trader-Importer: No ad Trader-Importer: No ad Significator: Not reported P Indicator: Not reported P Indicator: Not reported	icator: NN vpe: Not report on the Baselin Not on the Baselin Not on the Baselin Not on the Baselin Not reported ported ported ported ine: No se: No Been Imposed nder 3004 (u)/(viscretionary At No NCAPS ra No No NCAPS ra No r: N/A I/A ported No ported fei -12-14 18:29 ported No No ported ported fei -12-14 18:29	e eline ed Universe: No uth Universe: No anking No lo edule Universe: No				
Owner/Op	Owner Operator: perator Indicator: Operato perator Name: KATHY N		HER				

- Continued on next page -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA NonGe	n / NLR			
EDR ID:	1000385358	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A1
	GASSONS LEM TUR 10162 LEM TURNER JACKSONVILLE, FL 3 DUVAL US Environmental Pro	RD 32218	I	Rev: ID/Status:	12/14/2020 FLD981859135		
Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	tus: Private ame Current: 1986-10- ed Current: Not reporte berator Address: 10162 berator City,State,Zip: J berator Telephone: Not berator Telephone Ext: berator Fax: Not report berator Email: Not report	ed 2 LEM TURNER IACKSONVILLE, t reported Not reported red					
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op	Derator Indicator: Oper Derator Name: KATHY tus: Private ame Current: 1986-10- de Current: Not reporte Derator Address: 10162 Derator City,State,Zip: J Derator Telephone: Not Derator Telephone Ext: Derator Fax: Not report Derator Email: Not report	NORRIS-SLUSH 15 00:00:00. ed 2 LEM TURNER IACKSONVILLE, t reported Not reported red	RD				
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op	berator Indicator: Oper berator Name: GASSO tus: Private ame Current: 1986-10- ed Current: Not reporte berator Address: 10162 berator City,State,Zip: J berator Telephone: Not berator Telephone Ext: berator Fax: Not report berator Email: Not report	DNS LEM TURNE -15 00:00:00. ed 2 LEM TURNER IACKSONVILLE, t reported Not reported red	RD				
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op	berator Indicator: Owner berator Name: JACK G tus: Private ame Current: 1996-10- ed Current: Not reporte berator Address: 10162 berator City,State,Zip: J berator Telephone: Not berator Telephone Ext: berator Fax: Not report berator Email: Not report	GASSON 18 00:00:00. ed 2 LEM TURNER IACKSONVILLE, t reported Not reported red	RD FL 32218-5045		- Continued o	n next pag	1e -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA NonG	en / NLR			
EDR ID:	1000385358	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A1
	GASSONS LEM TURN 10162 LEM TURNER F JACKSONVILLE, FL 32 DUVAL US Environmental Prot	RD 2218		Rev: ID/Status: I	12/14/2020 FLD981859135		
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	perator Indicator: Opera berator Name: GASSON tus: Private ame Current: 1986-10-1 ed Current: Not reported berator Address: 10162 berator City,State,Zip: JA berator Telephone: Not berator Telephone Ext: I berator Fax: Not reporte berator Email: Not reporte	NS LEM TURNE 5 00:00:00. d LEM TURNER ACKSONVILLE, reported Not reported id	RD				
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	perator Indicator: Opera perator Name: GASSON tus: Private ame Current: 1986-10-1 ed Current: Not reported perator Address: 10162 perator City,State,Zip: JA perator Telephone: Not perator Telephone Ext: I perator Fax: Not reporte perator Email: Not reported	NS LEM TURNE 5 00:00:00. d LEM TURNER ACKSONVILLE, reported Not reported id	RD				
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	berator Indicator: Owner berator Name: JACK GA tus: Private ame Current: 1996-10-1 ed Current: Not reported berator Address: 10162 berator City,State,Zip: JA berator Telephone: Not berator Telephone Ext: I berator Fax: Not reporte berator Email: Not reporte	ASSON d LEM TURNER ACKSONVILLE, reported Not reported d					
Receive E Handler N Federal W State Dist Large Qua Recognize	enerators: Date: 2010-01-14 00:00: lame: GASSONS LEM /aste Generator Descript rict Owner: FL antity Handler of Univers ed Trader Importer: No ed Trader Exporter: No	TURNER CHE\ ion: Not a gen			- Continued o	n next pao	je -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA Non	Gen / NLR			
EDR ID:	1000385358	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A1
	GASSONS LEM TURN 10162 LEM TURNER JACKSONVILLE, FL 3 DUVAL	RD 2218		Rev: ID/Status:	12/14/2020 FLD981859135		
500RCE:	US Environmental Pro	lection Agency					
Spent Lea Current R Non Stora	ad Acid Battery Importer: ad Acid Battery Exporter eccord: No age Recycler Activity: No Manifest Broker: Not r	No					
Handler N Federal V State Disi Large Qu Recogniz Recogniz Spent Lea Spent Lea Current R Non Stora	Date: 2011-03-23 00:00 Jame: GASSONS LEM Vaste Generator Descrip trict Owner: FL antity Handler of Univers ed Trader Importer: No ed Trader Exporter: No ad Acid Battery Importer: ad Acid Battery Exporter decord: Yes age Recycler Activity: No c Manifest Broker: Not r	TURNER CHEV tion: Not a gene al Waste: No No No No					
Handler N Federal V State Dis Large Qu Recogniz Recogniz Spent Lea Spent Lea Current R Non Stora	Date: 1994-02-25 00:00 Jame: CHEVRON USA Vaste Generator Descrip trict Owner: Not reporte antity Handler of Univers ed Trader Importer: No ad Acid Battery Importer: ad Acid Battery Exporter lecord: No age Recycler Activity: No c Manifest Broker: Not r	PRODUCTS CO tion: Large Qua d sal Waste: No No No lot reported					
NAICS C	ICS Codes and Descript ode: 4471 escription: GASOLINE						
	ode: 562998 escription: ALL OTHER	MISCELLANEC	OUS WASTE MAN	NAGEMENT SERVIO	CES		
	as Received Notices of \ : No Violations Found	/iolations:					
Evaluatio	n Action Summary:						
					- Continued or	n next pag	ge -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

	RCRA NonGen / NLR							
EDR ID:	1000385358	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A1	
NAME: ADDRESS:	GASSONS LEM TURNI 10162 LEM TURNER R JACKSONVILLE, FL 32 DUVAL	D 218		Rev: ID/Status: F	12/14/2020 FLD981859135			
SOURCE:	US Environmental Prote	ection Agency						
Evaluation	s: No Evaluations Foun	d						

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

		-					
			UST				
EDR ID:	U001546318	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A2
ADDRESS: 1	CHEVRON #46863-GEOR 0162 LEM TURNER RD ACKSONVILLE, FL 3221			Rev: ID/Status: ID/Status:			
SOURCE: F	L Department of Environr	mental Prote	ction				
Type Descrip Facility Phor Region: ST/ Positioning N Lat/Long (dn Owner: Owner Id: 3 Owner Name Owner Addre Owner Addre Owner City,	us: CLOSED otion: Retail Station ne: Not reported ATE Method: UNVR ns): 30 25 11 / 81 41 50	ESK					
Owner Phon Tank Info: Name: CHE Address: 10 City: JACKS Zip: 32218 Tank Id: 1 Status: Rem Status Date: Install Date: Substance: Content Des Gallons: 100 Vessel Indica	e: 9258429002 VRON #46863-GEORGE 162 LEM TURNER RD SONVILLE noved 03/31/1989 7/1/1958 Unleaded gas cription: Unleaded Gas 000 ator: TANK on: UNDERGROUND	ïS					
Address: 10 City: JACKS Zip: 32218 Tank Id: 2 Status: Rem Status Date: Install Date: Substance:	noved 03/31/1989 7/1/1958	ËS			- Continued o	n next bac	16 -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

				UST				
EDR ID:	U001546318	DIST/DIR:	0.000		ELEVATION:	9	MAP ID:	A2
NAME: ADDRESS:	CHEVRON #46863-GE 10162 LEM TURNER F JACKSONVILLE, FL 32	RD			Rev: ID/Status: ID/Status:		1	
SOURCE:	FL Department of Envi	ronmental Prote	ection					
Tank Loca DEP Cont Name: Cl Address: City: JAC Zip: 3221 Tank Id: 3 Status: R Status Da Install Dat Substance Content D Gallons: § Vessel Inc Tank Loca DEP Cont	licator: TANK ntion: UNDERGROUND ractor: P HEVRON #46863-GEOF 10162 LEM TURNER R KSONVILLE 8 emoved te: 03/31/1989 e: 7/1/1958 e: Unleaded gas escription: Unleaded Gas 5000 licator: TANK ntion: UNDERGROUND ractor: P	RGE'S D						
Address: City: JAC Zip: 3221 Tank Id: 4 Status: R Status Da Install Dat Substance Content D Gallons: {	emoved te: 03/31/1989 e: 7/1/1958 e: Waste oil escription: Waste Oil 550 licator: TANK tition: UNDERGROUND ractor: P	D						

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

AME: CHEVRON #46863-GEORGE'S Rev: 01/25/2021 ID/Status: CLOSED JACKSONVILLE, FL 32218 ID/Status: CLOSED ID/Status: S06977 JACKSONVILLE, FL 32218 ID/Status: NFA - NFA COMPLETE SOURCE: FL Department of Environmental Protection UST: Name: CHEVRON #46863-GEORGE'S Address: 10162 LEM TURNER RD Divy State J2: JACKSONVILLE, FL 32218 Region: STATE Facility Id: 8506977 Facility Id: 85069				Ll	JST			
DDRESS: 10162 LEM TURNER RD ID/Status: CLOSED ID/Status: S06977 JACKSONVILLE, FL 32218 ID/Status: NFA - NFA COMPLETE SOURCE: FL Department of Environmental Protection	EDR ID:	U001546318	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A2
JACKSONVILLE, FL 32218 JACKSONVILLE, FL 32218 DOURCE: FL Department of Environmental Protection UST: Vame: CHEVRON #48863-GEORGE'S Vame: Status: UN62 LEM TURNER RD Varis Status: CHEVRON #48863-GEORGE'S Varis Status: CLOSED Tacility Carbon Status: CLOSED Tacility Classing Varis Varis Status: CLOSED Tacility Status: CLOSED Tacility Classing Varis Varis Status: CLOSED Tacility Classing Varis Varis Varis Varis Tacility Classing Varis Varis Varis Varis Varis Varis Varis Varis Varis Varis	NAME:	CHEVRON #46863-G	EORGE'S		Rev:	01/25	5/2021	
JACKSONVILLE, FL 32218 ID/Status: NFA - NFA COMPLETE SOURCE: FL Department of Environmental Protection UST: .usr: .u	ADDRESS:	10162 LEM TURNER	RD					
UST: Name: CHEVRON #46863-GEORGE'S Address: 0162 LEM TURNER RD Dity.State.Zip: JACKSONVILLE, FL 32218 Segion: STATE Tacility 1d: 8506977 Tacility Type: A - Retail Station Tacility State: State - State - State State: Not reported District: Kot Wen Ranked: Not reported District: Kot Not Reported District: State: State: State - State Tacility Cleanup State: CMPL - COMPLETED Contact Company: CHEVRON PRODUCTS CO Contact Address Ind: N State: FL District: State: 1997-11-04 00:00:00 Retaide Party ID: 3941 Typinary RP Rote: ACCOUNT OWNER RP Begin Date: 1994-05-20 RP Zp: 904 RP Extension: Not reported Discharge Cleanup Status; State - ZD Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID: 3941 RP Extension: Not reported Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID: 3941 RP Extension: Not reported Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID: 3941 RP Extension: Not reported Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID: 3941 RP Extension: Not reported Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID: 3941 RP Extension: Not reported Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID: 3941 RP Extension: Not reported Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID: 3941 RP Extension: Not reported Discharge Cleanup Status; 1997-11-04 00:00:00 Retaide Party ID		JACKSONVILLE, FL 3	32218				A COMPLETE	
Name: CHEVRON #46863-GEORGE'S Address: 10162 LEM TURNER RD City.State,Zip: JACKSONVILLE, FL 32218 Region: STATE acility Status: CLOSED "acility Status: CLOSED "acility Status: CLOSED "acility Phone: Not reported "acility Phone: Not reported "acility Phone: Not reported "acility Cleanup Rank: Not reported District: Northeast District Aut/Long (dms): 30 25 14.8804 / 81 41 49.2874 Section: 16 Township: 01 S Name: 26E "eature: Not reported Wethod: UNVR Jatum: 0 Score: 31 Score Effective Date: 1997-11-04 00:00:00 Score When Ranked: Not reported Address Update: Not reported Address Ind: N State: FL Zp: 32218, 5045 Score: 31 Score: 31 Score: 31 Score: 31 Score: 51 Score: 31 Score: 51 Score: 31 Score: 51 Score: 31 Score: 51 Score: 51 Score	SOURCE:	FL Department of Env	ironmental Prote	ction				
Facility Cleanup Status: CMPL - COMPLETED Contact: KEVIN CHARLES Contact Company: CHEVRON PRODUCTS CO Contact Address: PO BOX 6004 Contact City/State/Zip: SAN RAMON, CA 94583 Phone: (925)842-9002 Bad Address Ind: N State: FL Zip: 32218, 5045 Score: 31 Score Effective Date: 1997-11-04 00:00:00 Related Party ID: 3941 Primary RP Role: ACCOUNT OWNER RP Begin Date: 1994-05-20 RP Zip: 904 RP Extension: Not reported	Address: City,State,, Region: S Facility Id: Facility Sta Facility Sta Facility Typ Facility Pho Facility Cle District: No Lat/Long (of Section: 1 Township: Range: 26 Feature: N Method: U Datum: 0 Score: 31 Score Effe Score Whe Operator: Name Upd Address U	10162 LEM TURNER F Zip: JACKSONVILLE, TATE 8506977 tus: CLOSED be: A - Retail Station bne: Not reported anup Rank: Not report ortheast District dms): 30 25 14.8804 / 6 01S E lot reported NVR ctive Date: 1997-11-04 m Ranked: Not reported CALDWELL ate: Not reported podate: Not reported	RD FL 32218 ted 81 41 49.2874 4 00:00:00					
Zip: 32218, 5045 Score: 31 Score Effective Date: 1997-11-04 00:00:00 Related Party ID: 3941 Primary RP Role: ACCOUNT OWNER RP Begin Date: 1994-05-20 RP Zip: 904 RP Extension: Not reported	Facility Cle Contact: K Contact Co Contact Ac Contact Ci Phone: (9) Bad Addre	anup Status: CMPL - EVIN CHARLES ompany: CHEVRON P Idress: PO BOX 6004 ty/State/Zip: SAN RAM 25)842-9002	COMPLETED RODUCTS CO					
Primary RP Role: ACCOUNT OWNER RP Begin Date: 1994-05-20 RP Zip: 904 RP Extension: Not reported Discharge Cleanup Summary:	Zip: 32218 Score: 31 Score Effe	ctive Date: 1997-11-04	4 00:00:00					
Discharge Cleanup Summary:	Primary RF RP Begin I RP Zip: 90	PRole: ACCOUNT OV Date: 1994-05-20)4	VNER					
		-						
	Discharge	Cleanup Summary:				o		

			LU	JST			
EDR ID:	U001546318	DIST/DIR:	0.000	ELEVATION:	9	MAP ID: A	2
	CHEVRON #46863-G 10162 LEM TURNER JACKSONVILLE, FL 3		Rev: ID/Status: (ID/Status:) ID/Status:	8506977	2021 COMPLETE		
	FL Department of Env Date: 5/26/1988						
PCT Disc Cleanup I Discharge Disch Cle Cleanup \ Informatic Other Sou Eligibility Site Mana	harge Combined: Not r Required: R - CLEANU e Cleanup Status: NFA anup Status Date: 1/5/ Work Status: COMPLE on Source: E - EDI urce Description: Not re Indicator: E - ELIGIBLE ager: Not reported End Date: Not reported	P REQUIRED - NFA COMPLE 1996 TED eported	TE				
Facility ID Discharge Pct Disch Cleanup F Discharge Disch Cle Cleanup V Informatic Other Sou Applicatio Cleanup F Eligibility E Elig Statu Letter Of Redeterm Inspectior Site Mana Site Mgr E Tank Offic Deductibl Co-Pay A	e Amount: Not reported e Paid To Date: Not rep mount: Not reported aid To Date: Not report	lot reported P REQUIRED - NFA COMPLE 1996 TED ported eported ETECTION INCE					
Task Infor District: N Facility ID Facility St Facility Ty County:	rmation: NED 2: 8506977 atus: CLOSED /pe: A - Retail Station - DUVAL						
County ID): 16				- Continue	ed on next page -	

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			L	UST			
EDR ID:	U001546318	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A2
IAME:	CHEVRON #46863-G	EORGE'S		Rev:	01/25	/2021	
	10162 LEM TURNER	RD		ID/Status:			
	JACKSONVILLE, FL 3			ID/Status: ID/Status: I		A COMPLETE	
SOURCE:	FL Department of Env	ironmental Prote	ection				
Source Eff Discharge Cleanup R Discharge Disch Clea SRC Actio SRC Actio SRC Subr SRC Revie SRC Com SRC Com SRC Com Cleanup V Site Mgr E Tank Offic SR Task II SR Cleanuf SR Cleanuf SR Actual SR Compl SR Actual SR Actual SR Soil Tr SR Soil Tr SR Soil Tr SR Soil Tr SR Alterna SR Alterna S	D: 12794 up Responsible: RP - F og Eligibility Type: - Cost: Not reported etion Date: Not reported ate: Not reported n Date: 03-27-1989 emoval: Not reported roduct Removal: Not re onnage Removed: Not eatment: Y Treatment: Not reporte ate Proc Received Date ate Procedure Status D ate Procedure Status D ate Procedure Commen	P REQUIRED - NFA COMPLE 5-1996 RTHER ACTION PROVED FED ESPONSIBLE F ad eported reported ate: Not reported ate: Not reported A P - RESPONSIBLE F -	d PARTY			ued on next pag	
a i ayn	ion Bato. Not reported	a			Cantin		-

6470938.2s Site Details Page - 12

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			LUS	Г			
EDR ID:	U001546318	DIST/DIR:	0.000	ELEVATION:	9	MAP ID:	A2
NAME: ADDRESS:	CHEVRON #46863-GEC 10162 LEM TURNER RE JACKSONVILLE, FL 322)		Rev: ID/Status: ID/Status: ID/Status:			
SOURCE:	FL Department of Environ	nmental Prote	ection				
RA Clean RA Fundir RA Years	Order Approved: 1994-08 D: 12797 up Responsible: RP - RES ng Eligibility Type: - to Complete: Not reported Cost: Not reported	SPONSIBLE F	PARTY				
	Click here for Flo	orida Oculus:					

			UST	-		
EDR ID: U00134	9467 D I	ST/DIR:	0.002 North	ELEVATION:	9	MAP ID: 3
ADDRESS: 10203 LE	VILLE, FL 32218	tal Prote	stion	Rev: ID/Status: ID/Status: 3		1
UST: Facility Id: 8507541 Facility Status: OPEI Type Description: Re Facility Phone: 9047 Region: STATE Positioning Method: Lat/Long (dms): 30 2 Owner: Owner Id: 66924 Owner Name: TROL Owner Address: 102 Owner Address 2: A Owner City,St,Zip: J/ Owner Contact: SAL Owner Phone: 90422	etail Station 669086 5 22 / 81 41 44 1T RIVER FOOD MA 03 LEM TURNER R TTN: SALIM ALDIB ACKSONVILLE, FL 3 IM ALDIB	D				
Tank Info: Name: TROUT RIVE Address: 10203 LEM City: JACKSONVILL Zip: 32218 Tank Id: 1 Status: Closed in pla Status Date: 03/06/1 Install Date: 2/1/1984 Substance: Vehicula Content Description: Gallons: 12000 Vessel Indicator: TAI Tank Location: UND DEP Contractor: P	I TURNER RD E 997 4 r diesel Vehicular Diesel NK					
Name: TROUT RIVE Address: 10203 LEM City: JACKSONVILL Zip: 32218 Tank Id: 2 Status: Removed Status Date: 04/01/2 Install Date: 2/1/1984 Substance: Unleaded Content Description:	I TURNER RD E 006 4 d gas					
Content Description.	Unleaded Gas				- Continued o	on next page -

			UST			
EDR ID:	U001349467	DIST/DIR: 0.002			9	MAP ID: 3
NAME:	TROUT RIVER FOOD 10203 LEM TURNER JACKSONVILLE, FL 3	MART	R	Rev: D/Status: 0 D/Status: 0	01/26/2021 OPEN	
SOURCE:	FL Department of Env	ironmental Protection				
	icator: TANK tion: UNDERGROUNE)				
Address: City: JAC Zip: 32213 Tank Id: 3 Status: Ro Status Dat Install Date Substance Content D Gallons: 1 Vessel Ind	emoved e: 04/01/2006 e: 2/1/1984 e: Unleaded gas escription: Unleaded G 2000 licator: TANK tion: UNDERGROUNE	RD as				
Address: City: JAC Zip: 32213 Tank Id: 4 Status: Ro Status Dat Install Date Substance Content D Gallons: 1 Vessel Ind	emoved e: 04/01/2006 e: 2/1/1984 e: Unleaded gas escription: Unleaded G 2000 licator: TANK tion: UNDERGROUNE	RD as				
Address: City: JAC Zip: 3221 Tank Id: 5 Status: In Status Dat Install Date Substance	5	8D				

			UST				
EDR ID:	U001349467	DIST/DIR:	0.002 North	ELEVATION:	9	MAP ID:	3
	TROUT RIVER FOOD 10203 LEM TURNER JACKSONVILLE, FL 3	RD 2218		Rev: ID/Status: (ID/Status: 8		1	
SOURCE:	FL Department of Env	ronmental Protect	ion				
	dicator: TANK ation: UNDERGROUNE)					
		Construction					
	5 ion Category: Primary ion Description: Fiberg						
Tank Id: Constructi Constructi	5 ion Category: Seconda ion Description: Double	ry Containment e wall - tank jacket					
	5 ion Category: Overfill/S ion Description: Flow s						
Tank Id: Constructi Constructi	5 ion Category: Overfill/S ion Description: Spill c	Spill ontainment bucket					
	5 ion Category: Overfill/S ion Description: Tight f						
Tank Id: 5 Constructi Constructi	5 ion Category: Overfill/S ion Description: Level	Spill gauges/alarms					
Monitoring Tank ID: Monitoring	g: 5 g Description: Monitor	dbl wall tank space	9				
Tank ID: Monitoring	5 g Description: Mechani	cal line leak detec	tor				
Tank ID: Monitoring	5 g Description: Automat	c tank gauging - L	JSTs				
Tank ID:	5				- Continued		10

			UST			
EDR ID:	U001349467	DIST/DIR: 0).002 North	ELEVATION:	9	MAP ID: 3
NAME: ADDRESS:	TROUT RIVER FOOD MA 10203 LEM TURNER RD JACKSONVILLE, FL 322			Rev: ID/Status: ID/Status: 8		
SOURCE:	FL Department of Environ	mental Protection	on			
Monitoring Tank ID: 4	Description: Continuous	electronic sensi	ing			
	Description: Visual inspe	ct pipe sumps				
Tank ID: 4 Monitoring	5 J Description: Electronic m	ionitor pipe sum	nps			
Tank ID: 4 Monitoring	5 J Description: Visual inspe	ct dispenser line	ers			
Piping: Tank ID: 4 Piping Cat Piping Des	5 egory: Primary Constructio scription: Fiberglass	on				
	5 egory: Miscellaneous Attri scription: Dispenser liners	butes				
Tank ID: 4 Piping Cat Piping Des	5 egory: Secondary Contain scription: Double wall	ment				
	5 egory: Miscellaneous Attri scription: Pressurized pipir					
	Click here for Flo	rida Oculus:				

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

LUST								
EDR ID: U001349467	DIST/DIR: 0.002 North	ELEVATION:	9	MAP ID: 3				
AME: TROUT RIVER FOOD N DDRESS: 10203 LEM TURNER R JACKSONVILLE, FL 32 OURCE: FL Department of Enviro	D 218	Rev: ID/Status: ID/Status: ID/Status:	8507541	/2021 RCR COMPLETE				
UST: Name: TROUT RIVER FOOD MARAddress: 10203 LEM TURNER RE City,State,Zip: JACKSONVILLE, F Region: STATE Facility Id: 8507541 Facility Status: OPEN Facility Type: A - Retail Station Facility Phone: (904)766-9086 Facility Cleanup Rank: 3961 District: Northeast District .at/Long (dms): 30 25 15.2583 / 8 Section: Not reported Fownship: Not reported Feature: Not reported Feature: Not reported Feature: Not reported Score: 42 Score Effective Date: 2008-10-13 (Score: 42 Score Effective Date: 2008-10-13 (Score When Ranked: 43 Dperator: SALIM ALDIB Name Update: 2011-04-25 00:00: Address Update: 2016-01-15 00:00 Petroleum Cleanup PCT Facility Sc Facility Cleanup Status: CMPL - C Contact: SALIM ALDIB Contact Company: TROUT RIVER Contact Company: TROUT RIVER Contact City/State/Zip: JACKSON Phone: (904)226-4338 Bad Address Ind: N State: FL Zip: 32218, 5073 Score: 42) L 32218 1 41 45.8631 00:00:00 00 0:00 0:00 core: OMPLETED FOOD MART NER RD							

- Continued on next page -

			LUS	Г			
EDR ID:	U001349467	DIST/DIR:	0.002 North	ELEVATION:	9	MAP ID:	3
NAME:	TROUT RIVER FOOD	MART		Rev:	01/25/	/2021	
ADDRESS:	10203 LEM TURNER JACKSONVILLE, FL 3			ID/Status: ID/Status:	8507541		
			ation	ID/Status:	SRCR - SI	RCR COMPLET	E
SOURCE:	FL Department of Env						
PCT Disch Cleanup R Discharge Disch Clea Cleanup W Information Other Sour Eligibility In Site Manag Site Mgr En Tank Office Discharge PCT Disch Cleanup R Discharge Disch Clea Discharge Disch Clea Unformation Other Sour Eligibility In Site Manag Site Mgr En Tank Office	Date: 2/6/1987 arge Combined: Not re equired: R - CLEANUF Cleanup Status: SRCF inup Status Date: 1/23 /ork Status: COMPLET Source: E - EDI rce Description: Not re ndicator: E - ELIGIBLE ger: THOMAS_VL nd Date: 1/26/2017 e: PCLP16 - CITY OF Date: 6/27/1987 arge Combined: Not re equired: R - CLEANUF Cleanup Status: SRCF inup Status Date: 1/23 /ork Status: COMPLET Source: E - EDI rce Description: Not re ndicator: E - ELIGIBLE ger: THOMAS_VL nd Date: 1/26/2017 e: PCLP16 - CITY OF Cleanup Program Eligi	P REQUIRED R - SRCR COMF /2017 FED ported JAX NEIGHBO REQUIRED R - SRCR COMF /2017 FED ported JAX NEIGHBO	RHOODS DEPT EI PLETE				
Facility ID: Discharge Pct Discha Cleanup R Discharge Disch Clea Cleanup W Information Other Sour Application Cleanup P Eligibility S Elig Status	8507541 Date: 2/6/1987 rge Combined With: N equired: R - CLEANUF Cleanup Status: SRCF nup Status Date: 1/23 /ork Status: COMPLET Source: Not reported rce Description: Not re Received Date: Not re rogram: E - EARLY DE tatus: Not reported Date: Not reported	ot reported P REQUIRED R - SRCR COMF /2017 FED ported eported ETECTION INCE					
Redetermin Inspection Site Manag Site Mgr En	ntent Date: Not reported Date: Not reported ger: THOMAS_VL nd Date: 1/26/2017 e: PCLP16 - CITY OF						
	C. I CLI IC-CITI OF		UICODO DEFI EI	WING GOAL DIV			

			LUS	Г		
EDR ID:	U001349467	DIST/DIR:	0.002 North	ELEVATION:	9	MAP ID: 3
AME:	TROUT RIVER FOOD	MART		Rev:	01/25	5/2021
DDRESS:	10203 LEM TURNER	RD		ID/Status:		
	JACKSONVILLE, FL 3			ID/Status:		RCR COMPLETE
				12/010100.		
OURCE:	FL Department of Env	ronmental Prote	ction			
Deductible Co-Pay Ar Co-Pay Pa Cap Amou Facility ID: Discharge Pct Discharge Discharge Disch Clea Discharge Disch Clea Cleanup W nformation Dther Sou Application Cleanup P Eligibility S Elig Status Letter Of II Redetermi nspection Site Mana- Site Mgr E Fank Offic Deductible Co-Pay Ar Co-Pay Pa Cap Amou	8507541 Date: 6/27/1987 urge Combined With: N equired: R - CLEANUF Cleanup Status: SRCF anup Status Date: 1/23, /ork Status: COMPLET in Source: Not reported rep Description: Not re in Received Date: Not re or Received Date: Not re rogram: E - EARLY DE Status: Not reported is Date: Not reported Date: Not reported Date: Not reported Date: Not reported ger: THOMAS_VL nd Date: 1/26/2017 e: PCLP16 - CITY OF Amount: Not reported Paid To Date: Not reported ind To Date: Not reported	orted ed ot reported P REQUIRED R - SRCR COMF (2017 TED ported eported ETECTION INCE d JAX NEIGHBOR orted	NTIVE	NVIRO QUAL DIV		
Discharge Pct Discha Cleanup R Discharge Disch Clea Cleanup V	Date: 2/6/1987 arge Combined With: N equired: R - CLEANUF Cleanup Status: SRCF anup Status Date: 1/23, /ork Status: COMPLET	P REQUIRED R - SRCR COMF /2017	PLETE			
Other Sou Elig Indica	n Source: E - EDI rce Description: Not re tor: E - ELIGIBLE	ported				
Site Mgr E Fank Offic	ger: THOMAS_VL nd Date: 1/26/2017 e: PCLP16 - CITY OF ated Drinking Wells: 0	JAX NEIGHBOR	Ή			
	ated Monitoring Well: Y	es				
					• •	ued on next page -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

	L	UST		
DR ID: U001349467	DIST/DIR: 0.002 North	ELEVATION:	9	MAP ID: 3
AME: TROUT RIVER FOOD DDRESS: 10203 LEM TURNER JACKSONVILLE, FL 3	RD	Rev: ID/Status: ID/Status: ID/Status:	8507541	/2021 RCR COMPLETE
OURCE: FL Department of Env	ironmental Protection			
Contaminated Soil: Yes Contaminated Surface Water: No Contaminated Ground Water: Yes Contaminated Ground Water: Yes Collutant: B - Unleaded Gas Collutant Other Description: Not Callons Discharged: Not reporter Discharge Date: 6/27/1987 Oct Discharge Combined With: No Cleanup Required: R - CLEANU Discharge Cleanup Status: SRC Disch Cleanup Status Date: 1/23 Cleanup Work Status: COMPLE formation Source: E - EDI Other Source Description: Not re Filig Indicator: E - ELIGIBLE Site Manager: THOMAS_VL Site Mgr End Date: 1/26/2017 Cank Office: PCLP16 - CITY OF Contaminated Drinking Wells: No Contaminated Soil: Not reported Contaminated Soil: Not reported Contaminated Surface Water: No Contaminated Ground Water: No Contaminat	reported d lot reported P REQUIRED R - SRCR COMPLETE /2017 TED ported JAX NEIGHBORH of reported lot reported of reported of reported			
ask Information: District: NED facility ID: 8507541 facility Status: OPEN facility Type: A - Retail Station county: DUVAL County ID: 16 Cleanup Eligibility Status: E Source Effective Date: 11-07-20				
Discharge Date: 02-06-1987 Cleanup Required: R - CLEANU Discharge Cleanup Status: SRC Disch Cleanup Status Date: 01-2 SRC Action Type: SRCR - SITE SRC Submit Date: 08-02-2016 SRC Review Date: 08-17-2016	IP REQUIRED R - SRCR COMPLETE 23-2017	ON REPORT		

- Continued on next page -

			LUS	Г		
EDR ID:	U001349467	DIST/DIR:	0.002 North	ELEVATION:	9	MAP ID: 3
NAME:	TROUT RIVER FOOD	MART		Rev:		5/2021
ADDRESS:	10203 LEM TURNER	RD		ID/Status:	-	
	JACKSONVILLE, FL 3	2218		ID/Status: ID/Status:		RCR COMPLETE
				12, 014140.		
SOURCE:	FL Department of Env	ironmental Prote	ection			
Cleanup V Site Mgr: Site Mgr E Tank Offic SR Task I SR Clean SR Fundir SR Actual SR Comp SR Payme SR Oral D SR Writte SR Soil R SR Soil R SR Soil T SR Soil T SR Soil T SR Altern SR Altern SR Altern SA Alter	up Responsible: RP - R ng Eligibility Type: - Cost: Not reported letion Date: 01-04-1993 ent Date: Not reported (ID: 12181 nup Responsible ID: Not ding Eligibility Type: - al Cost: Not reported upletion Date: 12-09-199 nent Date: Not reported Order Approved: 1994- D: 12182 up Responsible: NA - N ng Eligibility Type: - to Complete: 0 I Cost: Not reported IED	Unty ESPONSIBLE apported d to reported ate: Not reported ate: Not reported ate: Not reported ESPONSIBLE I S A - NOT APPLIC A - NOT APPLIC A	ed J PARTY CABLE			
Facility St	: 8507541 atus: OPEN					
County:	/pe: A - Retail Station - DUVAL					
-					- Contin	ued on next page -

LUST										
EDR ID:	U001349467	DIST/DIR:	0.002 North	ELEVATION:	9	MAP ID:	3			
IAME:	TROUT RIVER FOOD	MART		Rev:	01/25	6/2021				
DDRESS:	10203 LEM TURNER	RD		ID/Status:	-					
	JACKSONVILLE, FL 3	2218		ID/Status: ID/Status:		RCR COMPLET	E			
OURCE:	FL Department of Envi	ironmental Prote	ection							
Source Eff Discharge Cleanup R Discharge Disch Clea SRC Action SRC Subm SRC Subm SRC Revie SRC Comp SRC Issue SRC Comp SRC Issue SRC Comp Cleanup V Site Mgr E Tank Office SR Task II SR Cleanun SR Actual SR Comple SR Comple SR Soil Re SR Soil Re SR Soil Tro SR Soil Tro SR Soil Tro SR Soil Tro SR Soil Tro SR Alterna SR Alterna	igibility Status: E ective Date: 11-07-20 Date: 06-27-1987 equired: R - CLEANUI Cleanup Status: SRCI nup Status Date: 01-20 n Type: SRCR - SITE nit Date: 08-02-2016 w Date: 08-02-2016 w Date: 08-17-2016 oletion Status: A - APP Date: 01-23-2017 ment: Not reported Vork Status: COMPLET FHOMAS_VL nd Date: 01-26-2017 e: PCLP16 - Duval Cou D: 95204 p Responsible: - g Eligibility Type: - Cost: Not reported etion Date: 07-06-1994 nt Date: Not reported ate: Not reported Date: Not reported moval: Not reported reduct Removal: Y nnage Removed: Not re eternent: 15 GALL FF te Proc Received Date: te Procedure Status Date te Procedure Status Date te Procedure Status Date	P REQUIRED R - SRCR COM 3-2017 REHABILITATIO PROVED TED unty 4 reported P BAILED : Not reported Not reported ate: Not reported ts: Not reported	ON COMPLETION	REPORT						

			LUS	T		
EDR ID:	U001349467	DIST/DIR:	0.002 North	ELEVATION:	9	MAP ID: 3
NAME:	TROUT RIVER FOOI	D MART		Rev:	01/25/2021	
ADDRESS:	10203 LEM TURNER JACKSONVILLE, FL			ID/Status: ID/Status: ID/Status:		COMPLETE
SOURCE:	FL Department of Env	vironmental Prote	ction			
RAP Last RA Task I RA Cleanu RA Fundir RA Years	nent Date: Not reporte Order Approved: Not i D: 76924 ip Responsible: - g Eligibility Type: - to Complete: 0 Cost: Not reported	d reported				
	Click here fo	r Florida Oculus:				

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RC	RA-VSQG				
EDR ID:	1000392116	DIST/DIR:	0.010 North	EI	LEVATION:	9	MAP ID:	4
ADDRESS:	HOLT GENERATOR SI 10244 LEM TURNER R JACKSONVILLE, FL 32 DUVAL	RD 2218			Rev: ID/Status:	12/14/20: FLD06591885	-	
RCRA-VSC Date Form Handler Na Handler Add Handler City EPA ID: Fi Contact Nat Contact Add Contact Tel Contact Tel Contact Tel Contact Tel Contact Tel Contact Titl EPA Regior Land Type: Federal Wa Non-Notifiel Biennial Re Accessibility Active Site State Distric State Distric State Distric Mailing Add Mailing City Owner Nat Operator Na Operator Type Operator Na Operator Type Short-Term Importer Ac Mixed Wast Transporter Transfer Fa Recycler Ad Small Quan Smelting Mi Universal Mi Universal Mi Active Site	Received by Agency: : me: HOLT GENERAT dress: 10244 LEM TU y,State,Zip: JACKSON LD065918856 me: RAYMOND HOLT dress: LEM TURNER y,State,Zip: JACKSON ephone: 904-764-095- k: Not reported aail: Not reported aail: Not reported e: Not reported aail: Not reported aail: Not reported bort Cycle: Not reported port Cycle: Not reported port Cycle: Not reported ndicator: Handler Action ct Owner: FL ct: NE Irress: LEM TURNER F ,State,Zip: JACKSONV he: RAYMOND HOLT a: Private ame: RAYMOND HOL pe: Private Generator Activity: Not	2011-04-13 00: OR SHOP RNER RD VILLE, FL 3221 F RD VILLE, FL 3221 4 ion: Conditiona ed ivities RD /ILLE, FL 3221 T T D mption: No hace Exemption o ty: No prage and Dispo orage and Dispo	8-5047 8-5047 ally Exempt S 8-5047 :: No :: No osal Facility: osal Facility:	Not reported Not reported	l	- Continued	on next pag	ge -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

JOB: LEM TURNER RD OVER TROUT RIVER

			RCRA-VS	QG			
EDR ID:	1000392116	DIST/DIR:	0.010 North	ELEVATION:	9	MAP ID:	4
NAME: ADDRESS:	HOLT GENERATOR 10244 LEM TURNER JACKSONVILLE, FL 3 DUVAL	RD		Rev: ID/Status:	12/14/2020 FLD065918856		
SOURCE:	US Environmental Pro	otection Agency					
Federal Fa Hazardou: Sub-Part I Commerci Treatment 2018 GPF 2018 GPF Permit Re Permit Re Permit Pro Post-Clos Closure W 202 GPR/ Corrective Subject to Non-TSDF Po TSDFs Or Corrective Environme Institution Human Eb Groundwa Operating Full Enfort Significan Unaddresse Addressed Significan Financial J Handler D Recognize Recognize Sub-Part I	e State-Reg Handler: - acility Indicator: Not re s Secondary Material In (Indicator: Not reporte al TSD Indicator: No Storage and Disposal A Permit Baseline: No A Renewals Baseline: newals Workload Universe: Not al Universe: Not r press Universe: Not r ure Workload Universe: Not A Corrective Action Bas Action Workload Universe: (orkload Universe: Not A Corrective Action Bas Action Workload Universe: Swhere RCRA CA ha tentially Subject to CA aly Subject to CA under Action Priority Ranking ental Control Indicator: al Control Indicator: No cosure Controls Indicator: TSDF Universe: Not to Non-Complier Univers sed Significant Non-Comp t Non-Complier Univers sed Significant Non-Comp t Non-Complier With a C Assurance Required: Na te of Last Change: 2 ad Trader-Importer: No of Spent Lead Acid Batte of Spent Lead Acid Batte of Spent Lead Acid Batte Activity Without Storage Broker: Not reported P Indicator: Not reported	aported ndicator: NN ed Type: Not reported to on the Baselin Not on the Baselin Not on the Baselin Not on the Baselin reported eported eported eine: No erse: No erse: No erse: No s Been Imposed Under 3004 (u)/(Discretionary Au g: No NCAPS ra No o tor: N/A N/A reported reported reported se: No mpliar Universe: N Compliance Sche Not reported 016-12-14 18:29 o eries: No eries: No eries: No eries: No	e eline ed Universe: No v) Universe: No uth Universe: No anking No lo edule Universe: No				
Waste Co	s Waste Summary: de: D001 scription: IGNITABLE	WASTE					

- Continued on next page -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

IL

			RCRA	-VSQG			
EDR ID:	1000392116	DIST/DIR:	0.010 North	ELEVATION:	9	MAP ID:	4
	HOLT GENERATOR 10244 LEM TURNER JACKSONVILLE, FL 3 DUVAL US Environmental Pro	RD 32218		Rev: ID/Status: I	12/14/2020 FLD065918856		
Owner/Op Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op	Owner Operator: berator Indicator: Operator berator Name: RAYMC tus: Private ame Current: 1996-10- ed Current: Not reporte berator Address: 10244 berator City,State,Zip: J berator Telephone: 904 berator Telephone Ext: berator Telephone Ext: berator Fax: Not report berator Email: Not report	OND HOLT 18 00:00:00. ed 4 LEM TURNER ACKSONVILLE, 1-764-0954 Not reported ed					
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	berator Indicator: Operator Name: RAYMC tus: Private ame Current: 1996-10- ed Current: Not reporte berator Address: 1024- berator City,State,Zip: J berator Telephone: 90- berator Telephone Ext: berator Fax: Not report berator Email: Not report	OND HOLT 18 00:00:00. ed 4 LEM TURNER ACKSONVILLE, 4-764-0954 Not reported ed					
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	berator Indicator: Owner berator Name: RAYMC tus: Private ame Current: 1996-10- ed Current: Not reporte berator Address: 10244 berator City,State,Zip: J berator Telephone: Not berator Telephone Ext: berator Fax: Not report berator Email: Not report	OND HOLT 18 00:00:00. ed 4 LEM TURNER ACKSONVILLE, t reported Not reported ed					
Owner/Op Legal Sta Date Beca Date End Owner/Op	berator Indicator: Owne berator Name: RAYMC tus: Private ame Current: 1996-10- ed Current: Not reporte berator Address: 10244 berator City,State,Zip: J	ND HOLT 18 00:00:00. ed 4 LEM TURNER			- Continued or	n next pac	1e -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

	RCRA-VSQG									
EDR ID:	1000392116	DIST/DIR:	0.010 North	ELEVATION:	9	MAP ID: 4				
NAME: ADDRESS:	HOLT GENERATOR 3 10244 LEM TURNER JACKSONVILLE, FL 3 DUVAL	RD		Rev: ID/Status:	12/14/2020 FLD065918856					
SOURCE:	US Environmental Pro	tection Agency								
Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	perator Telephone: Not perator Telephone Ext: perator Fax: Not report perator Email: Not report perator Indicator: Owne perator Name: HOLT G tus: Private	Not reported ed orted er	C							
Date Beca Date Ende Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	ame Current: 1996-10- ed Current: 1996-10-19 perator Address: 10244 perator City, State, Zip: J perator Telephone: Not perator Telephone Ext: perator Fax: Not report perator Email: Not report	9 00:00:00. LEM TURNER ACKSONVILLE, reported Not reported ed								
Owner/Op Legal Stat Date Beca Date Ende Owner/Op Owner/Op Owner/Op Owner/Op	perator Indicator: Owner perator Name: HOLT G tus: Private ame Current: 1996-10- de Current: 1996-10-19 perator Address: 10244 perator City,State,Zip: J perator Telephone: Not perator Telephone Ext: perator Telephone Ext: perator Fax: Not report perator Email: Not report	ENERATOR IN(18 00:00:00. 00:00:00. LEM TURNER ACKSONVILLE, reported Not reported ed	RD							
Handler N Federal W State Dist Large Qua Recognize Spent Lea Spent Lea Current R Non Stora	enerators: Date: 2011-04-13 00:00 Jame: HOLT GENERA Jaste Generator Descrip rict Owner: FL antity Handler of Univers ed Trader Importer: Not d Acid Battery Importer d Acid Battery Exporter ecord: Yes Ige Recycler Activity: N Manifest Broker: Not I	TOR SHOP otion: Condition sal Waste: No No No	ally Exempt Small	Quantity Generator						
Receive D	Date: 1988-07-08 00:00):00.0			- Continued o	n next page -				

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA-V	/SQG			
EDR ID:	1000392116	DIST/DIR:	0.010 North	ELEVATION:	9	MAP ID:	4
NAME: ADDRESS:	HOLT GENERATOR S 10244 LEM TURNER JACKSONVILLE, FL 3 DUVAL	RD		Rev: ID/Status: I	12/14/2020 FLD065918856		
SOURCE:	US Environmental Pro	tection Agency					
Handler N Federal W State Distr Large Qua Recognize Spent Lea Spent Lea Current Re Non Stora Electronic List of NAI NAICS Co NAICS De Facility Ha Found Vio Agency W Violation S Date Viola Actual Ret Return to 0 Violation F Schedulec Enforceme Date of Er	US Environmental Pro ame: HOLT GENERA' aste Generator Descrip ict Owner: FL intity Handler of Univers id Trader Importer: No id Trader Exporter: No d Acid Battery Importer d Acid Battery Exporter ecord: No ge Recycler Activity: N Manifest Broker: Not r CS Codes and Descrip de: 335312 scription: MOTOR AN de: 811198 scription: ALL OTHER is Received Notices of N lation: No hich Determined Violati Short Description: Not i tion was Determined: urn to Compliance Date Compliance Qualifier: I Responsible Agency: N I Compliance Date: No ent Identifier: Not repoi	TOR SHOP tion: Small Qua sal Waste: No : No : No lot reported eported tions: D GENERATOR AUTOMOTIVE /iolation: on: Not reported Not reported Not reported s: Not reported hot reported treported treported reported treported	MANUFACTURIN REPAIR AND MA				
Enforceme Enforceme Corrective	ent Docket Number: No ent Attorney: Not repor Action Component: N	ot reported ted ot reported					
Appeal Re Disposition Disposition	tiated Date: Not report solution Date: Not rep Status Date: Not rep Status: Not reported Status Description: N	orted orted					
Consent/F Consent/F Consent/F Enforceme	inal Order Sequence N inal Order Respondent inal Order Lead Agency ent Type: Not reported	umber: Not rep Name: Not rep v: Not reported					
Enlorceme	ent Responsible Person				- Continued or	n next pag	e -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

IL

			RCRA	-VSQG		
EDR ID:	1000392116	DIST/DIR:	0.010 North	ELEVATION:	9	MAP ID: 4
NAME: ADDRESS:	HOLT GENERATOR S 10244 LEM TURNER JACKSONVILLE, FL 3 DUVAL	RD		Rev: ID/Status: F	12/14/2020 FLD065918856	
SOURCE:	US Environmental Pro	tection Agency				
SEP Sequ SEP Sche SEP Actua SEP Actua SEP Defa SEP Type Proposed Final Mon Paid Amo Final Court Final Amo Found Vice Agency W Violation S Date Viola Actual Re Return to Violation F Scheduled Enforceme Enforceme Corrective Appeal Ini Appeal Re Dispositio Dispositio Dispositio Dispositio Dispositio Consent/F	ent Responsible Sub-Or ience Number: Not rep inditure Amount: Not rep inditure Amount: Not rep inditure Amount: Not reported al Date: Not reported inter Date: Not reported interported interported interported int: Not reported int: Not reported int dentifier: Not report int dentifier: Not report int attorney: Not report int Attorney: Not reported in Status Date: Not reported in Status Date: Not reported in Status Date: Not reported int Responsible Person int al Order Lead Agency int Order Lead Agency int Order Lead Agency int or reported int Responsible Sub-Or inal Order Lead Agency int reported int Responsible Sub-Or inter R	orted eported in Not reported ed rted orted orted orted orted orted orted in reported in reported of reported of reported of reported of reported of reported of reported of reported ed orted o	d orted orted			
SEP Type	: Not reported				- Continued of	n next page -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA-	VSQG				
EDR ID:	1000392116	DIST/DIR:	0.010 North	ELEVATION:	9	MAP ID:	4	
	HOLT GENERATOR 10244 LEM TURNEF JACKSONVILLE, FL DUVAL US Environmental Pr	R RD 32218		Rev: ID/Status: F	12/14/2020 FLD065918856			
Proposed Final Mon Paid Amon Final Cour Final Cour Final Cour Final Amon Evaluation Eval	Description: Not rep Amount: Not reported etary Amount: Not rep unt: Not reported unt: Not reported unt: Not reported a Action Summary: Date: 1994-09-28 00 Responsible Agency: lation: No Type Description: C Responsible Person Responsible Person Responsible Sub-Org turn to Compliance Date: Not equest: Not reported bonse Received: Not agency: Not reported tation: No Type Description: C Responsible Agency: lation: No Type Description: C Responsible Agency: lation: No Type Description: C Responsible Person Responsible Person Responsible Person Responsible Person Responsible Person Responsible Person Responsible Sub-Org turn to Compliance Date: No equest: Not reported bonse Received: Not agency: Not reported tation: Not reported tation: Not reported tation: Not reported	d ported 0:00:00.0 State OMPLIANCE EVA Identifier: D S ganization: NE te: Not reported Identifier: DP ganization: NE te: Not reported Identifier: JDP ganization: NE te: Not reported Identifier: NE						

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

IL

			RCF	RA-VSQG				
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVA	ATION:	14	MAP ID:	5
	ALLIED AUTO & TRU 9834 LEM TURNER F JACKSONVILLE, FL DUVAL	RD 32208		Rev ID/S		12/14/2020 FLD981865264		
SOURCE:	US Environmental Pro	otection Agency						
Handler N Handler A Handler C EPA ID: I Contact N Contact A Contact C Contact T Contact T Contact T Contact T Contact T EPA Regio Land Type Federal W Non-Notifil Biennial R Accessibili Active Site State Distr Mailing A Mailing C Mailing	a Received by Agency: ame: ALLIED AUTO ddress: 9834 LEM TU ity,State,Zip: JACKSO FLD981865264 ame: DONALD JONE ddress: LEM TURNEH ity,State,Zip: JACKSO elephone: 904-764-78 ax: Not reported mail: Not reported tle: Not reported taste Generator Descrip er: Not reported eport Cycle: Not reported eport Cycle: Not reported endicator: Handler Ad- rict Owner: FL	& TRUCK REPAIL JRNER RD DNVILLE, FL 3220 SR RD DNVILLE, FL 3220 359 ption: Conditional orted ctivities R RD NVILLE, FL 3220 No No No No No Storage and Dispo storage and Dispo	R INC 18 18-1566 ally Exempt Si 3-1566 3-1566 : No isal Facility: osal Facility:	Not reported Not reported	enerator			
						 Continued or 	n next pac	ae -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

JOB: LEM TURNER RD OVER TROUT RIVER

			RCRA	-VSQG			
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVATION:	14	MAP ID:	5
	ALLIED AUTO & TRUC 9834 LEM TURNER R JACKSONVILLE, FL 3 DUVAL	D 2208		Rev: ID/Status:	12/14/2020 FLD981865264		
Active Situ Federal F Hazardou Sub-Part I Commerc Treatmen 2018 GPF 2018 GPF Permit Re Permit Re Permit Wo Permit Pro Post-Clos Closure W 202 GPR/ Corrective Subject to Non-TSDI TSDFs Po TSDFs Of Corrective Environme Institution Human Ez Groundwa Operating Full Enfor Significan Unaddresse Significan Financial Handler D Recognize Recognize Manifest F	US Environmental Prot e State-Reg Handler: acility Indicator: Not rep s Secondary Material Ind K Indicator: Not reporte ial TSD Indicator: No t Storage and Disposal T A Permit Baseline: No t Storage and Disposal T A Permit Baseline: No t A Renewals Baseline: newals Workload Universe: Not re orkload Universe: Not re orective Action Base e Action Workload Universe s Where RCRA CA has other and Control Indicator: a Corrective Action Universe s Action Priority Ranking: ental Control Indicator: No kposure Controls Indicator: TSDF Universe: Not re t Non-Complier Universe sed Significant Non-Complier t Non-Complier Universe sed Significant Non-Complier t Non-Complier With a C Assurance Required: No adter of Last Change: 20 ed Trader-Importer: No of Spent Lead Acid Batte of Spent Lead Acid Batte	- borted dicator: NN d ype: Not report t on the Baseline Not on the Baseline Not on the Baseline Not reported eported wine: No rse: No Been Imposed Juder 3004 (u)/(1) Discretionary Au No NCAPS ra No or: N/A N/A eported eported eported eported eported eported eported eported eported eported eported eported eported eported ier Universe: No ompliance Sche ot reported 12-05-14 16:25:	e eline ed Universe: No v) Universe: No rth Universe: No nking No o edule Universe:	0			
Waste Co	s Waste Summary: de: D001 scription: IGNITABLE V	VASTE					

- Continued on next page -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA-	VSQG			
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVATION:	14	MAP ID:	5
	ALLIED AUTO & TRU 9834 LEM TURNER F JACKSONVILLE, FL DUVAL US Environmental Pro	RD 32208		Rev: ID/Status: F	12/14/2020 FLD981865264		
Owner/Op Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op	Owner Operator: berator Indicator: Owner berator Name: DONAL tus: Private ame Current: 1996-10- ed Current: Not report berator Address: 9834 berator City,State,Zip: berator Telephone: 90- berator Telephone Ext: berator Telephone Ext: berator Fax: Not report berator Email: Not report	D JONES -18 00:00:00. ed LEM TURNER R IACKSONVILLE, 4-764-1859 Not reported ed					
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	berator Indicator: Own berator Name: DONAL tus: Private ame Current: 1996-10- ed Current: Not report berator Address: 9834 berator City,State,Zip: berator Telephone: 90- berator Telephone Ext: berator Fax: Not report berator Email: Not report	D JONES -18 00:00:00. ed LEM TURNER R IACKSONVILLE, 4-764-1859 Not reported ed					
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	berator Indicator: Own- berator Name: DONAL tus: Private ame Current: 1996-10- ed Current: Not report berator Address: 9834 berator City,State,Zip: berator Telephone: 90- berator Telephone Ext: berator Fax: Not report berator Fax: Not report	D JONES -18 00:00:00. ed LEM TURNER R IACKSONVILLE, 4-764-1859 Not reported ed					
Owner/Op Legal Sta Date Beca Date End Owner/Op	berator Indicator: Own- berator Name: JONES tus: Private ame Current: 1996-10- ed Current: Not report berator Address: 9834 berator City,State,Zip: C	DONALD 18 00:00:00. ed LEM TURNER R			- Continued o	n next pag	1e -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCR/	A-VSQG			
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVATION:	14	MAP ID:	5
	ALLIED AUTO & TRU 9834 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental Pr	RD 32208		Rev: ID/Status: F	12/14/2020 ELD981865264		
Owner/Op Owner/Op	perator Telephone: No perator Telephone Ext: perator Fax: Not repor perator Email: Not rep	Not reported ted					
Receive E Handler N Federal W State Dist Large Qua Recognize Spent Lea Spent Lea Current R Non Stora Electronic	enerators: Date: 2011-07-29 00:0 lame: ALLIED AUTO /aste Generator Descri rict Owner: FL antity Handler of Unive ed Trader Importer: N ad Acid Battery Importe ad Acid Battery Importe ecord: No ige Recycler Activity: Manifest Broker: Not Date: 2011-12-01 00:0	& TRUCK REPAI ption: Conditiona rsal Waste: No o o r: No er: No Not reported reported		all Quantity Generator			
Handler N Federal W State Dist Large Qua Recognize Spent Lea Spent Lea Current R Non Stora	lame: ALLIED AUTO /aste Generator Descri rict Owner: FL antity Handler of Univer ed Trader Importer: N ed Trader Exporter: N ad Acid Battery Importe ad Acid Battery Exporte ecord: Yes ige Recycler Activity: Manifest Broker: Not	& TRUCK REPAI ption: Conditiona rsal Waste: No o o o r: No er: No Not reported		all Quantity Generator			
Handler N Federal W State Dist Large Qua Recognize Spent Lea Spent Lea Current R Non Stora	Date: 1990-07-09 00:0 lame: ALLIED AUTO /aste Generator Descri rict Owner: FL antity Handler of Univer ed Trader Importer: N ed Trader Exporter: N ad Acid Battery Importe ad Acid Battery Exporte ecord: No ige Recycler Activity: Manifest Broker: Not	& TRUCK REPAI ption: Small Qua rsal Waste: No o o o r: No er: No Not reported					
					- Continued or	n next pag	je -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA	A-VSQG			
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVATION:	14	MAP ID:	5
NAME: ADDRESS: SOURCE:	ALLIED AUTO & TRI 9834 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental Pr	RD 32208	;	Rev: ID/Status: F	12/14/2020 FLD981865264		
NAICS Co	ICS Codes and Descri ode: 811111 escription: GENERAL		EPAIR				
Found Vic Agency W Violation S Date Viola Actual Re Return to Violation I Scheduled Enforcem Enforcem Enforcem Corrective Appeal Ini Appeal Re Dispositio Dispositio Dispositio Consent/F Consent/F Consent/F Enforcem Enforcem Enforcem Enforcem SEP Sequ SEP Sche SEP Actu SEP Defa SEP Type SEP Type Proposed Final Mon Paid Amo Final Cou	as Received Notices of olation: No /hich Determined Viola Short Description: No ation was Determined: turn to Compliance Da Compliance Qualifier: Responsible Agency: d Compliance Date: N ent Identifier: Not rep nforcement Action: Not ent Responsible Agency ent Docket Number: I ent Attorney: Not repor- e Action Component: itiated Date: Not repo- esolution Date: Not repo- solution Date: Not reported n Status Description: Final Order Responder Final Order Responder Final Order Responder Final Order Lead Agen- ent Responsible Perso ent Responsible Perso ent Responsible Perso ent Responsible Perso ent Responsible Perso ent Responsible Sub-Cuence Number: Not reported ulted Date: Not reported ulted Date: Not reported a Description: Not reported inter Amount: Not reported a Description: Not reported and the ported ount: Not reported nt: Not reported	tion: Not reported Not reported Not reported Not reported Not reported Not reported orted orted orted treported cy: Not reported Not reported reported ported d Not reported Not reported Not reported Not reported number: Not rep cy: Not reported d Not reported e: Not reported to reported d n: Not reported cy: Not cy: N	orted orted				
Found Vic	plation: No				- Continued or	n next pag	ge -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

IL

			RCRA-V	′SQG			
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVATION:	14	MAP ID:	5
NAME: ADDRESS:	ALLIED AUTO & TRU 9834 LEM TURNER F JACKSONVILLE, FL 3 DUVAL	RD		Rev: ID/Status: I	12/14/2020 FLD981865264		
SOURCE:	US Environmental Pro	tection Agency					
Violation S Date Viola Actual Re Return to Violation F Scheduled Enforcem Enforcem Enforcem Corrective Appeal Ini Appeal Re Dispositio Dispositio Dispositio Dispositio Consent/F Consent/F Consent/F Consent/F Consent/F Enforcem SEP Sequ SEP Actua SEP Actua SEP Defa SEP Actua SEP Type SEP Type Type SEP Type SEP Type Type SEP Type Type Type Type Type Type Type Type	which Determined Violati Short Description: Not ation was Determined: turn to Compliance Date Compliance Qualifier: Responsible Agency: Not ent Identifier: Not repo- forcement Action: Not ent Responsible Agency: ent Docket Number: Not ent Attorney: Not repor- ent Status Date: Not rep- n Status Date: Not repor- ent Responsible Persor- ent Responsible Persor- ent Responsible Persor- ent Responsible Sub-O- uence Number: Not re- enditure Amount: Not re- endition: No Amount: Not re- ended Completion Date attorn was Determined Violati Short Description: Not attorn was Determined: turn to Compliance Qualifier:	reported Not reported Not reported Not reported Not reported Not reported red t reported t reported t reported tred Not reported ted Not reported umber: Not reported umber: Not reported t not reported	orted orted				
	Responsible Agency: N d Compliance Date: No				- Continued o	n next pad	je -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCR	A-VSQG				
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVATION:	14	MAP ID:	5	
	ALLIED AUTO & TRI 9834 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental Pr	RD 32208		Rev: ID/Status:	12/14/2020 FLD981865264			
Enforcem Date of Er Enforcem Enforcem Corrective Appeal Ini Appeal Re Dispositio Dispositio Consent/F Consent/F Consent/F Enforcem Enforcem SEP Sequ SEP Sche SEP Actu SEP Defa SEP Type SEP Type Proposed Final Mon Final Cou Final Amo	ent Identifier: Not reponsorement Action: Not ent Responsible Agence ent Docket Number: Not ent Attorney: Not repo- e Action Component: I itiated Date: Not repo- esolution Date: Not repo- esolution Date: Not reported in Status Description: Final Order Sequence N Final Order Responden Final Order Lead Agence ent Type: Not reported ent Responsible Perso ent Responsible Sub-Co- uence Number: Not reported al Date: Not reported ulted Date: Not reported ulted Date: Not reported e Description: Not reported e Description: Not reported int: Not reported punt: Not reported	orted bt reported by: Not reported Not reported not reported rted ported ported by Not reported Number: Not reported d Number: Not reported d n: Not reported reported e: Not reported ted borted bt ted	orted					
Evaluation Evaluation Found Vic Evaluation Evaluation Evaluation Actual Re Scheduled Date of Ro Date Resp Request A	n Action Summary: n Date: 2011-12-01 00 n Responsible Agency: olation: No n Type Description: C n Responsible Person I n Responsible Sub-Org turn to Compliance Date: N equest: Not reported bonse Received: Not Agency: Not reported itation: Not reported	State OMPLIANCE EVA Identifier: HMH ganization: NE te: Not reported lot reported	ALUATION INS	PECTION ON-SITE				
					- Continued o	n next pag	ge -	

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA	A-VSQG			
EDR ID:	1000334774	DIST/DIR:	0.015 SSE	ELEVATION:	14	MAP ID:	5
	ALLIED AUTO & TR 9834 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental P	RD 32208		Rev: ID/Status:	12/14/202 FLD98186526		
Evaluation Found Vio Evaluation Evaluation Actual Ref Scheduled Date of Re Date Resp Request A Former Ci Evaluation Evalu	Date: 1990-06-13 0 Responsible Agency lation: No Type Description: O Responsible Person Responsible Sub-Or urn to Compliance Date: I equest: Not reported toonse Received: Not gency: Not reported tation: Not reported tation: Not reported Responsible Agency lation: No Type Description: O Responsible Person Responsible Person Responsible Sub-Or urn to Compliance Date: I equest: Not reported toonse Received: Not gency: Not reported toonse Received: Not gency: Not reported	 State COMPLIANCE EVA Identifier: TBD ganization: NE ate: Not reported Not reported reported reported 00:00:00.0 r: State COMPLIANCE ASS Identifier: TAA ganization: NE ate: Not reported Not reported Not reported Not reported 					

			US	Т			
EDR ID:	U004310993	DIST/DIR:	0.045 NNE	ELEVATION:	9	MAP ID:	6
NAME:	STALVEY FUEL OIL S 2945 BROWARD RD JACKSONVILLE, FL 32	ERVICE		Rev: ID/Status: ID/Status:	01/26/2021 CLOSED		
SOURCE:	FL Department of Envir	onmental Prote	ction				
Facility St Type Des Facility Pl Region: S Positionin	: 8629668 atus: CLOSED cription: Bulk Storage Fa hone: 9047646970 STATE Ig Method: AGPS (dms): 30 25 14 / 81 41 4						
Owner Ac Owner Ac Owner Ci Owner Co	6406 ame: ED STALVEY FUE Idress: 2945 BROWARD Idress 2: Not reported ty,St,Zip: JACKSONVILL Dontact: LARRY STALVEN none: 9047646970	RD .E, FL 32218					
Address: City: JAC Zip: 3221 Tank Id: Status: R Status Da Install Da Substanc Content D Gallons: Vessel Ind	TALVEY FUEL OIL SER 2945 BROWARD RD CKSONVILLE 8 1 eemoved ate: 07/01/2003 te: 6/1/1975 e: Fuel oil-distribution Description: Fuel Oil - Dis 10000 dicator: TANK ation: UNDERGROUND						
Address: City: JAC Zip: 3221 Tank Id: Status: R Status Da Install Da Substanc	2				- Continued or		

[
			U	ST			
EDR ID:	U004310993	DIST/DIR:	0.045 NNE	ELEVATION:	9	MAP ID:	6
NAME: ADDRESS:	STALVEY FUEL OIL SE 2945 BROWARD RD JACKSONVILLE, FL 32			Rev: ID/Status: ID/Status:			
SOURCE:	FL Department of Enviro	onmental Prote	ction				
Tank Loca DEP Contri Name: ST Address: 3 City: JACI Zip: 32218 Tank Id: 3 Status: Re Status Dat Install Date Substance Content Du Gallons: 1 Vessel Ind Tank Loca DEP Contri Name: ST Address: 3 City: JACI Zip: 32218 Tank Id: 4 Status: Re Status Dat Install Date Status Dat Install Date Substance Content Du Gallons: 1 Vessel Ind	icator: TANK tion: UNDERGROUND ractor: P ALVEY FUEL OIL SERV 2945 BROWARD RD (SONVILLE a emoved e: 07/01/2003 e: 6/1/1975 : Fuel oil-distribution escription: Fuel Oil - Dist 0000 icator: TANK tion: UNDERGROUND ractor: P ALVEY FUEL OIL SERV 2945 BROWARD RD (SONVILLE a emoved e: 07/01/2003 e: 6/1/1975 : Fuel oil-distribution escription: Fuel Oil - Dist 0000 icator: TANK tion: UNDERGROUND	ribution					

			U	ST			
EDR ID:	U001350788	DIST/DIR:	0.087 SE	ELEVATION:	37	MAP ID:	7
NAME: ADDRESS:	S & W MUFFLER SHOP 9650 LEM TURNER RD JACKSONVILLE, FL 3220	8		Rev: ID/Status: ID/Status:			
SOURCE:	FL Department of Environr	mental Prote	ction				
Type Desc Facility Ph Region: S Positioning Lat/Long (d Owner: Owner Id: Owner Nat Owner Add Owner Add Owner Add Owner City Owner Coi	ntus: CLOSED rription: Fuel user/Non-reta one: 9047685144 TATE Method: UNVR dms): 30 25 21 / 81 41 48						
Address: 9 City: JACI Zip: 32208 Tank Id: 1 Status: Re Status Date Substance Content Do Gallons: 8 Vessel Ind	emoved e: 02/28/1991 e: Not reported : Leaded gas escription: Leaded Gas 88 icator: TANK tion: UNDERGROUND						
	Click here for Flor	ida Oculus:					

LUST										
EDR ID: U001350788	DIST/DIR: 0.087 SE	ELEVATION:	37	MAP ID: 7						
NAME: S & W MUFFLER SH ADDRESS: 9650 LEM TURNER F JACKSONVILLE, FL 3 SOURCE: FL Department of Env	RD 32208	Rev: ID/Status: ID/Status: ID/Status:	9100914	2021 COMPLETE						
LUST: Name: S & W MUFFLER SHOP Address: 9650 LEM TURNER R City,State,Zip: JACKSONVILLE, Region: STATE Facility Id: 9100914 Facility Status: CLOSED Facility Type: C - Fuel user/Non- Facility Phone: (904)768-5144 Facility Cleanup Rank: Not report District: Northeast District Lat/Long (dms): 30 24 49.2436 / Section: Not reported Township: Not reported Township: Not reported Range: Not reported Feature: Not reported Feature: Not reported Method: UNVR Datum: 0 Score: 6 Score Effective Date: 1997-11-0 Score When Ranked: Not reported Operator: PRUETT, PAUL Name Update: Not reported Address Update: Not reported Petroleum Cleanup PCT Facility	FL 32208 retail ted 81 41 34.961 4 00:00:00 ed Score:									
Facility Cleanup Status: CMPL - Contact: PAUL PRUETT Contact Company: PRUETT, PA Contact Address: 5222 JUSTILL Contact City/State/Zip: JACKSO Phone: (904)768-5144 Bad Address Ind: N State: FL Zip: 32208, 1562 Score: 6	UL LN NVILLE, FL 32218									
Score Effective Date: 1997-11-0 Related Party ID: 17597 Primary RP Role: ACCOUNT OV RP Begin Date: 1991-03-14 RP Zip: 1573										
RP Extension: Not reported										

			LUS	ST			
EDR ID:	U001350788	DIST/DIR:	0.087 SE	ELEVATION:	37	MAP ID:	7
IAME:	S & W MUFFLER SHO)P		Rev:	01/25/	2021	
DDRESS:	9650 LEM TURNER R	D		ID/Status: ID/Status:			
	JACKSONVILLE, FL 3	2208				COMPLETE	
OURCE:	FL Department of Env	ronmental Prote	ction				
PCT Disch Cleanup R Discharge Disch Clea Disch Clea Cleanup W nformation Dther Sour Eligibility Ir Site Manag Site Mgr E Fank Office Petroleum Facility ID: Discharge Disch Clea Cleanup R Discharge Disch Clea Cleanup W nformation Dther Sour Application Cleanup P Eligibility S Elig Status Letter Of Ir Redetermi nspection Site Manag	Date: 2/28/1991 arge Combined: Not re equired: R - CLEANUF Cleanup Status: NFA nup Status Date: 3/24 Vork Status: COMPLET Source: A - ABANDO ree Description: Not re ndicator: E - ELIGIBLE ger: Not reported nd Date: Not reported md Date: Not reported e: - Cleanup Program Eligi 9100914 Date: 2/28/1991 rge Combined With: N equired: R - CLEANUF Cleanup Status: NFA nup Status Date: 3/24 Vork Status: COMPLET no Source: Not reported ree Description: Not re no Source: Not reported tatus: Not reported Date: Not reported Date: Not reported Date: Not reported ned: Not reported Date: Not reported	o REQUIRED NFA COMPLE (1995 ED NED TANK RES ported bility: ot reported REQUIRED NFA COMPLE (1995 ED ported ported ED TANK RES	STORATION	GRAM			
Fank Öffic Deductible	e: - Amount: Not reported						
	Paid To Date: Not rep nount: Not reported	orted					
	id To Date: Not report	ed					
Task Inforr District: N Facility ID: Facility Sta	nation:	retail -					
County: D	OUVAL						
County ID:	16						

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			LUST			
EDR ID:	U001350788	DIST/DIR: 0.087 SE	ELEVATION:	37	MAP ID: 7	
NAME:	S & W MUFFLER SHO	OP	Rev:	01/25/2	021	
ADDRESS:	9650 LEM TURNER F	۲D	ID/Status: ID/Status:			
	JACKSONVILLE, FL 3	32208			COMPLETE	
SOURCE:	FL Department of Env	vironmental Protection				
Cleanup Eli	gibility Status: E					
	ctive Date: 03-24-19	195				
	Date: 02-28-1991 equired: R - CLEANU					
Discharge (Cleanup Status: NFA					
Disch Clear	nup Status Date: 03-2	24-1995				
	Type: NFA - NO FU	RTHER ACTION				
	it Date: 03-02-1995 w Date: 03-24-1995					
	letion Status: A - APF	PROVED				
SRC Issue	Date: 03-24-1995					
	nent: FROM CAR					
	ork Status: COMPLE ⁻ lot reported	IED				
	d Date: Not reported					
Tank Office	: -					
SR Task ID						
	CRESPONSIBLE: RP - F	RESPONSIBLE PARTY				
SR Actual (Cost: Not reported					
SR Comple	tion Date: Not reporte	эd				
	nt Date: Not reported					
	te: Not reported					
	Date: Not reported moval: Not reported					
	oduct Removal: Not r	eported				
	nage Removed: Not					
	atment: Not reported					
	reatment: Not reporte e Proc Received Date					
	e Procedure Status: 1					
SR Alternat	e Procedure Status D	ate: Not reported				
	e Procedure Commer	ts: Not reported				
SA Task ID						
	Eligibility Type: -	RESPONSIBLE PARTY				
	Cost: Not reported					
on notual C	tion Date: 03-24-1995	5				
SA Comple	t Date: Not reported					
SA Comple [.] SA Paymer						
SA Comple SA Paymer RAP Task I						
SA Comple SA Paymer RAP Task I RAP Clean	up Responsible ID: R	P - RESPONSIBLE PARTY				
SA Comple SA Paymer RAP Task I RAP Clean RAP Fundir RAP Fundir RAP Actual	up Responsible ID: R ng Eligibility Type: - Cost: Not reported					
SA Comple SA Paymen RAP Task I RAP Cleant RAP Fundir RAP Actual RAP Compl	up Responsible ID: R ng Eligibility Type: -	rted				

6470938.2s Site Details Page - 45

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			LU	ST			
EDR ID:	U001350788	DIST/DIR:	0.087 SE	ELEVATION:	37	MAP ID:	7
NAME: ADDRESS:	S & W MUFFLER SHOP 9650 LEM TURNER RD JACKSONVILLE, FL 3220	8		Rev: ID/Status: (ID/Status: \$ ID/Status: \$		<i>I</i> PLETE	
SOURCE:	FL Department of Environ	mental Prote	ction				
RA Task I RA Clean RA Fundir RA Years	Order Approved: Not repor D: 10793 up Responsible: RP - RESI ng Eligibility Type: - to Complete: Not reported Cost: Not reported	PONSIBLE F	PARTY				
	Click here for Flo	rida Oculus:					

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			S	SWF/LF			
EDR ID:	S113899009	DIST/DIR:	0.130 SE	ELEVATION:	44	MAP ID:	8
	MARSHALL PYKE JR 9600 LEM TURNER RD JACKSONVILLE, FL 32 DUVAL	208	-11-12	Rev: ID/Status: ID/Status:	01/12/2021 96160 INACTIVE (I)		
SWF/LF: Name: M Address: City,State Facility ID District: N Lat/Long: Class Typ Class Star Section: I Township Range: N Responsil Responsil Responsil Responsil Responsil Responsil Responsil Site Supe Site Supe Site Supe Site Supe Land Owr Land Owr	IED :: / ::	L 32208 ECTOR reported ot reported Not reported reported d reported oted	ction				

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			LUS	Т		
EDR ID:	S123347232	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID: B9
NAME: ADDRESS: SOURCE:	KERR MCGEE #3078 10420 LEM TURNER JACKSONVILLE, FL 3 DUVAL FL Department of Env	32218	ection	Rev: ID/Status: ID/Status: ID/Status:	8507366	/2021 RCR COMPLETE
Address: City,State, Region: S Facility Id: Facility Sta Facility Ty Facility Ph Facility Cle District: N Lat/Long (Section: 1 Township: Range: 26 Feature: N Method: U Datum: 0 Score Effe Score Who Operator: Name Upo Address U Petroleum Facility Cle Contact C Contact C Score Effe Related Pa Primary R	8507366 atus: CLOSED pe: A - Retail Station one: Not reported eanup Rank: 3987 ortheast District dms): 30 25 27.3504 / 0 01S SE Not reported JNVR ective Date: 2011-09-26 en Ranked: 41 ADAM ABDALLA date: Not reported lpdate: 2018-12-12 00: Cleanup PCT Facility S eanup Status: CMPL - PENELOPE CHEATHA ompany: TRIPLE S RE ddress: PO BOX 26885 ity/State/Zip: OKLAHO 05)775-6531 ess Ind: N 8, 5051 ective Date: 2011-09-26 arty ID: 65992 P Role: ACCOUNT OV Date: 2010-04-30	FL 32218 81 41 45.0984 8 00:00:00 00:00 Score: COMPLETED M FINING CORP 59 MA CITY, OK 73 8 00:00:00	1126			
	sion: Not reported Cleanup Summary:					
Discriarge	Geanup Summary.				- Continu	ued on next page -

			LUS	I						
EDR ID:	S123347232	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID: B9				
	ME: KERR MCGEE #3078 Rev: 01/25/2021 DRESS: 10420 LEM TURNER RD ID/Status: CLOSED JACKSONVILLE, FL 32218 ID/Status: SRCR - SRCR COMPLETE DUVAL ID/Status: SRCR - SRCR COMPLETE									
PCT Disch Cleanup R Discharge Disch Clea Cleanup W Information Other Sou Eligibility In Site Mana Site Mgr E Tank Offic Petroleum Facility ID: Discharge Disch Clea Cleanup R Discharge Disch Clea Cleanup W Information Other Sou Application Cleanup P Eligibility S Elig Status Letter Of In Redetermi Inspection Site Mana Site Mgr E Tank Offic Deductible Co-Pay Ar Co-Pay Pa Cap Amou Contamina	Date: 12/10/1993 harge Combined: Not re Required: R - CLEANUF Cleanup Status: Date: 8/25/ Vork Status: COMPLET in Source: D - DISCHAF rce Description: Not re indicator: E - ELIGIBLE ger: MICHELS_C ind Date: 11/12/2020 e: PCLP16 - CITY OF Cleanup Program Eligit : 8507366 Date: 12/10/1993 arge Combined With: Ne Required: R - CLEANUF Cleanup Status: SRCF anup Status Date: 8/25/ Vork Status: COMPLET in Source: Not reported rce Description: Not reported rce Description: Not reported s Date: Not reported s Date: Not reported s Date: Not reported intent Date: Not reported s Amount: Not reported s Amount: Not reported s Amount: Not reported s Date: Not reported s Amount: Not reported s Amount S Not reported s Amount S Not reported s Amount S Not s S	A REQUIRED R EQUIRED 2020 ED RGE NOTIFICAT ported JAX NEIGHBOF pointed REQUIRED REQUIRED C SRCR COMF 2020 ED ported ported JAX NEIGHBOF orted JAX NEIGHBOF ported	FION RHOODS DEPT EN PLETE	N INSURANCE PI	ROGRAM					
Discharge Pct Discha Cleanup R Discharge	Date: 12/10/1993 arge Combined With: Ne Required: R - CLEANUF Cleanup Status: SRCF anup Status Date: 8/25/	PREQUIRED R - SRCR COMF	PLETE							

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			LUS	Г			
EDR ID:	S123347232	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID: B	9
NAME:	KERR MCGEE #3078			Rev:	01/25	5/2021	
ADDRESS:	10420 LEM TURNER	RD		ID/Status:			
	JACKSONVILLE, FL 3	2218		ID/Status:		RCR COMPLETE	
	DUVAL			ID/Status.			
SOURCE:	FL Department of Envi	ironmental Prote	ection				
Other Sou Elig Indica Site Mana Site Mgr E Tank Offic Contamina Contamina Contamina Contamina Contamina Pollutant: Pollutant: Pollutant (Gallons D Discharge Pct Discha Cleanup F Disch Clea: Cleanup V Informatio Other Sou Elig Indica Site Mana Site Mgr E Tank Offic Contamina	IED : 8507366 atus: CLOSED pe: A - Retail Station - DUVAL	ported JAX NEIGHBOF es s reported d ot reported P REQUIRED R SRCR COMI /2020 FED RGE NOTIFICA ported JAX NEIGHBOF es s reported	RH PLETE TION				

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			LUS	Т			
EDR ID:	S123347232	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID:	В9
NAME:	KERR MCGEE #3078			Rev:	01/25	/2021	
ADDRESS:	10420 LEM TURNER F	RD		ID/Status:			
	JACKSONVILLE, FL 32	2218		ID/Status:		RCR COMPLET	Ē
	DUVAL			ID/Status.	SKCK - S		L
SOURCE:	FL Department of Envir	onmental Prote	ection				
Discharge Disch Clea SRC Actio SRC Subn SRC Subn SRC Revie SRC Comp SRC Issue SRC Comp SRC Issue SRC Comp SR Mgr E SR Task II SR Cleanu SR Cleanu SR Actual SR Actual SR Actual SR Actual SR Actual SR Soil Re SR Soil Re SR Soil To SR Soil To SR Alterna SR	hit Date: Not reported aw Date: Not reported poletion Status: - a Date: Not reported ment: Not reported /ork Status: INACTIVE MICHELS_C nd Date: Not reported e: PCLP16 - Duval Cou D: 10282 up Responsible: RP - RE g Eligibility Type: - Cost: Not reported etion Date: 08-08-1994 ent Date: Not reported ate: Not reported ate: Not reported n Date: 10-11-1994 emoval: Y roduct Removal: Not re onnage Removed: 386 eatment: Y Treatment: 9 UST'S RE ate Procedure Status: Na te Procedure Status: Na te Procedure Status Date Procedure Status Date p Responsible: RP - RE g Eligibility Type: - Cost: Not reported polate: Not reported etion Date: Not reported to Date: Not reported ID: Not reported ID: Not reported ID: Not reported D: Not reporte	A ONGOING -2007 nty ESPONSIBLE I ported MOVED Not reported te: Not reported te: Not reported te: Not reported te: SPONSIBLE I	d 1				
RAP Last (RA Task II	Order Approved: Not rep D: 76651	ported					
						ued on next pag	

			LUS	Т		
EDR ID:	S123347232	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID: B9
NAME:	KERR MCGEE #3078			Rev:	01/25/2021	I
ADDRESS:	10420 LEM TURNER R JACKSONVILLE, FL 32 DUVAL			ID/Status: ID/Status: ID/Status:	SRCR - SRCR	COMPLETE
SOURCE:	FL Department of Envir	onmental Prote	ction			
RA Fundin RA Years RA Actual	g Eligibility Type: - to Complete: Not reporte Cost: Not reported	ed				
	Click here for F	lorida Oculus:				

			UST	-			
EDR ID:	U001349376	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID:	B10
NAME:	KERR MCGEE #3078			Rev:	01/26/2021		
ADDRESS	: 10420 LEM TURNER JACKSONVILLE, FL 3			ID/Status: ID/Status:			
SOURCE:	FL Department of Env	ironmental Prote	ction				
Facility St Type Des Facility Pl Region: S Positionin	: 8507366 tatus: CLOSED cription: Retail Station hone: Not reported STATE ng Method: UNVR (dms): 30 26 5 / 81 38 3	39					
Owner Ac Owner Ac Owner Ci Owner Co	: 65992 ame: TRIPLE S REFINI ddress: PO BOX 268859 ddress 2: ATTN: PENEL ty,St,Zip: OKLAHOMA (ontact: PENELOPE CHI none: 4057756531) .OPE CHEATHA CITY, OK 73126	Μ				
Address: City: JAC Zip: 3221 Tank Id: Status: R Status Da Install Da Substanc Content D Gallons: Vessel In Tank Loc	ERR MCGEE #3078 10420 LEM TURNER R CKSONVILLE 18 1 Removed ate: 07/31/1989 te: Not reported e: Vehicular diesel Description: Vehicular D	iesel					
Address: City: JAC Zip: 3221 Tank Id: Status: C Status Da Install Da Substanc							
					- Continued o	n next pag	je -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			UST				
EDR ID:	U001349376	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID:	B10
NAME: ADDRESS:	KERR MCGEE #3078 10420 LEM TURNER RD JACKSONVILLE, FL 3221	8		Rev: ID/Status: (ID/Status: {			
SOURCE:	FL Department of Environr	mental Prote	ction				
Tank Loca DEP Contri Name: KE Address: City: JACI Zip: 32210 Tank Id: 3 Status: CI Status Dati Install Dati Substance Content D Gallons: 4	icator: TANK tion: UNDERGROUND factor: P RR MCGEE #3078 10420 LEM TURNER RD (SONVILLE 3 osed in place e: 07/31/1989 e: Not reported : Unleaded gas escription: Unleaded Gas 000 icator: TANK tion: UNDERGROUND						
Address: City: JACI Zip: 32212 Tank Id: 4 Status: CI Status Date Substance Content D Gallons: 4	osed in place e: 07/31/1989 e: Not reported : Unleaded gas escription: Unleaded Gas 000 icator: TANK tion: UNDERGROUND						
Address: City: JACI Zip: 32210 Tank Id: 5 Status: CI Status Date Install Date Substance					- Continued or	n next pag	16 -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			UST				
EDR ID:	U001349376	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID:	B10
NAME: ADDRESS:	KERR MCGEE #3078 10420 LEM TURNER RD JACKSONVILLE, FL 3221	8		Rev: ID/Status: (ID/Status: (
SOURCE:	FL Department of Environr	mental Prote	ction				
Tank Loca DEP Contri Name: KE Address: City: JACI Zip: 32210 Tank Id: 6 Status: CI Status Date Install Date Substance Content D Gallons: 4	licator: TANK tion: UNDERGROUND ractor: P ERR MCGEE #3078 10420 LEM TURNER RD KSONVILLE 6 osed in place re: 07/31/1989 e: Not reported e: Leaded gas escription: Leaded Gas 1000 licator: TANK tion: UNDERGROUND						
Address: City: JACI Zip: 32212 Tank Id: N Status: Re Status Date Substance Content D Gallons: 1 Vessel Ind	Not reported emoved e: 08/01/1994 e: 7/1/1989 e: Unleaded gas escription: Unleaded Gas 0000 licator: TANK tion: UNDERGROUND						
Address: City: JACI Zip: 32212 Tank Id: N Status: Re Status Date Install Date Substance	lot reported				- Continued or	n next pag	je -

			UST	г			
EDR ID:	U001349376	DIST/DIR:	0.142 North	ELEVATION:	9	MAP ID:	B10
NAME: ADDRESS:	KERR MCGEE #3078 10420 LEM TURNER RD JACKSONVILLE, FL 322			Rev: ID/Status: (ID/Status: {			
SOURCE:	FL Department of Environ	mental Prote	ction				
Gallons: 6 Vessel Inc Tank Loca DEP Cont	licator: TANK tion: UNDERGROUND						
	Click here for Flo	rida Oculus:					

				AST				
EDR ID:	U001545601	DIST/DIR:	0.173 SE		ELEVATION:	3	MAP ID:	11
NAME: ADDRESS:	JEA WATER ST PUMP # : 11 E WATER ST JACKSONVILLE, FL 322				Rev: ID/Status: ID/Status: ID/Status:	9100459		
SOURCE:	FL Department of Enviror	nmental Prote	ection					
Address: Facility ID Facility St Type Des Facility Pt DEP Cont Region: S Positionin Lat/Long of Owner: Owner Id: Owner Na Owner Ac Owner Ac Owner Cit	g Method: Not reported (dms): Not reported	RONMENTAI E TANK REG						
Tank Id: 3 Status: R Status Da Install Dat Substance Content D Gallons:	temoved ate: 07/01/1999 te: 4/1/1998 e: Diesel-emergen generat Description: Emerg Genera	or tor Diesel						
	Click here for Flo	orida Oculus:						

				UST				
EDR ID:	U001545601	DIST/DIR:	0.173 SE		ELEVATION:	3	MAP ID:	11
NAME: ADDRESS:	JEA WATER ST PUMP # 11 E WATER ST JACKSONVILLE, FL 3220				Rev: ID/Status: ID/Status:			
SOURCE:	FL Department of Environ	mental Prote	ction					
Facility St Type Des Facility Pf Region: S Positionin Lat/Long (Owner: Owner Id: Owner Na Owner Ad Owner Ad Owner Cit Owner Co	g Method: Not reported (dms): Not reported	ONMENTAL						
Address: City: JAC Zip: 3220 Tank Id: Status: R Status Da Install Dat Substance Content D Gallons: Vessel Inc	EA WATER ST PUMP #1 11 E WATER ST KSONVILLE 8 1 emoved te: 04/01/1998 te: 7/1/1980 te: Diesel-emergen generate Description: Emerg Generate 1000 dicator: TANK ation: UNDERGROUND	or or Diesel						
	Click here for Flo	rida Oculus:						

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

LUST										
DR ID: U001545601 DIST/DIR:	0.173 SE	ELEVATION:	3	MAP ID: 11						
AME: JEA WATER ST PUMP #1 DDRESS: 11 E WATER ST JACKSONVILLE, FL 32208	Rev: 01/25/2021 ID/Status: CLOSED ID/Status: 9100459 ID/Status: NREQ - CLEANUP NOT REQUIRE									
DURCE: FL Department of Environmental Prot	tection									
UST: ame: JEA WATER ST PUMP #1 ddress: 11 E WATER ST ity,State,Zip: JACKSONVILLE, FL 32208 egion: STATE acility Id: 9100459 acility Status: CLOSED acility Type: H - Local Government acility Phone: (904)630-0577 acility Cleanup Rank: 6077 istrict: Northeast District at/Long (dms): 30 19 29.5716 / 81 39 27.3816 ection: Not reported ownship: Not reported auge: Not reported eature: Not reported lethod: Not reported lethod: Not reported core Effective Date: 2008-09-23 00:00:00 core When Ranked: 29 perator: L R COYNER ame Update: 2000-08-29 00:00:00 ddress Update: 1998-07-13 00:00:00 etroleum Cleanup PCT Facility Score: acility Cleanup Status: NREQ - NOT REQUIRE ontact Company: JEA TOWER 8 ENVIRONME ontact Address: 21 W CHURCH ST ontact City/State/Zip: JACKSONVILLE, FL 322 hone: (904)665-5501 ad Address Ind: N tate: FL ip: 32208 core: Not reported core Effective Date: 2008-09-23 00:00:00 elated Party ID: 11000 rimary RP Role: ACCOUNT OWNER P Begin Date: 2000-08-29 P Zip: 3158 P Extension: Not reported	ENTAL SRVCS									

- Continued on next page -

			LU	ST			
EDR ID:	U001545601	DIST/DIR:	0.173 SE	ELEVATION:	3	MAP ID: 11	
NAME: ADDRESS:	JEA WATER ST PUM 11 E WATER ST JACKSONVILLE, FL 3			Rev: ID/Status: ID/Status: ID/Status:	9100459	/2021 LEANUP NOT REQUIRED)
SOURCE:	FL Department of Env	ironmental Prote	ection				
PCT Disch Cleanup R Discharge Disch Clea Cleanup W Information Other Sour Eligibility Ir Site Manag Site Mgr E Tank Office Petroleum Facility ID: Discharge Disch Clea Cleanup R Discharge Disch Clea Cleanup W Information Other Sour Application Cleanup P Eligibility S Elig Status Letter Of Ir Redetermi Inspection Site Manag Site Mgr E Tank Office Deductible Deductible Co-Pay Pa Cap Amou	Date: 1/31/1997 rge Combined With: N equired: N - NO CLEA Cleanup Status: NREG nup Status Date: 6/22 /ork Status: COMPLE n Source: Not reported n Received Date: Not re n Received Date: Not reported nate: Not reported Date: Not reported Date: Not reported Date: Not reported ger: PAUL_JB nd Date: 7/31/2009 e: PCLP16 - CITY OF Amount: Not reported Paid To Date: Not reported nd To Date: Not reported Not reported Not reported Not reported Not reported	NUP REQUIRE Q - CLEANUP N /2009 TED RGE NOTIFICA eported E JAX NEIGHBOI ibility: Iot reported NUP REQUIRE Q - CLEANUP N /2009 TED I ported eported eported eported	OT REQUIRED TION RHOODS DEPT I				
Discharge Pct Discha Cleanup R Discharge Disch Clea	Date: 1/31/1997 rge Combined With: N equired: N - NO CLEA Cleanup Status: NRE4 nup Status Date: 6/22 /ork Status: COMPLE	NUP REQUIRE Q - CLEANUP N //2009					
-					- Contin	ued on next page -	

			LUS	ST		
EDR ID:	U001545601	DIST/DIR:	0.173 SE	ELEVATION:	3	MAP ID: 11
NAME: ADDRESS:	JEA WATER ST PUM 11 E WATER ST JACKSONVILLE, FL 3			Rev: ID/Status: ID/Status: ID/Status:	9100459	/2021 LEANUP NOT REQUIRED
SOURCE:	FL Department of Env	ironmental Prote	ction			
Other Sou Elig Indica Site Mana Site Mgr E Tank Offic Contamina Contamina Contamina Contamina Pollutant: Pollutant	n Source: D - DISCHA rce Description: Not re tor: I - INELIGIBLE ger: PAUL_JB and Date: 7/31/2009 te: PCLP16 - CITY OF ated Drinking Wells: 0 ated Monitoring Well: N ated Soil: Yes ated Surface Water: Not ated Ground Water: Not M - Fuel Oil - Onsite He Dther Description: Not i ischarged: 300	ported JAX NEIGHBOF o eat				
Facility St. Facility Ty County: I County ID Cleanup E Source Ef Discharge Cleanup F Discharge Disch Cleanup K SRC Actic SRC Com SRC Com Cleanup V Site Mgr E Stank Offic SR Cask I SR Cleanu SR Cleanu	IED : 9100459 atus: CLOSED pe: H - Local Governm DUVAL : 16 : ligibility Status: I fective Date: Not report Date: 01-31-1997 Required: N - NO CLE/ Cleanup Status Date: 06-2 on Type: - nit Date: Not reported e Date: Not reported pletion Status: - e Date: Not reported ment: Not reported ment: Not reported Vork Status: COMPLET PAUL_JB ind Date: 07-31-2009 ie: PCLP16 - Duval Co D: Not reported up Responsible: - ng Eligibility Type: - Cost: Not reported letion Date: Not reported ent Date: Not reported	ted NUP REQUIRE Q - CLEANUP N 2-2009				
SK Urai D	ate: Not reported				Continu	ued on next page -

			LU	ST		
EDR ID:	U001545601	DIST/DIR:	0.173 SE	ELEVATION:	3	MAP ID: 11
NAME: ADDRESS	JEA WATER ST PUM 11 E WATER ST JACKSONVILLE, FL 3			Rev: ID/Status: ID/Status: ID/Status:	9100459	1 NUP NOT REQUIREE
SOURCE:	FL Department of Env	ironmental Prote	ection			
SR Soil R SR Free F SR Soil T SR Soil T SR Other SR Altern SR Altern SR Altern SR Altern SR Altern SA Clean SA Clean SA Clean SA Caym RAP Task RAP Clea RAP Fund RAP Actu RAP Clea RAP Actu RAP Clea RAP Last RAP Clean RAP Last RAP Clean RAP Last RAT Clean RAP Last RAT Clean RAP Last RAT Clean RAP Com	n Date: Not reported emoval: Not reported Product Removal: Not r onnage Removed: Not reatment: Not reported Treatment: Not reported ate Proc Received Date ate Procedure Status: I ate Procedure Status D ate Procedure Commer D: 66209 up Responsible: - ng Eligibility Type: - I Cost: Not reported letion Date: Not reported (ID: Not reported nup Responsible ID: - ding Eligibility Type: - al Cost: Not reported up Responsible ID: - ding Eligibility Type: - al Cost: Not reported up Responsible: Not reported cost: Not reported pletion Date: Not reported corder Approved: Not re D: Not reported up Responsible: - ng Eligibility Type: - to Complete: Not reported I Cost: Not reported Click here for	reported d : Not reported Not reported ate: Not reported its: Not reported d	1			

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

	AST										
EDR ID:	U003110013	DIST/DIR:	0.177 SE	ELEVATION:	39	MAP ID:	C12				
NAME: ADDRESS:	HILL TOP MOTOR CO 9557 LEM TURNER RD JACKSONVILLE, FL 3220	08		Rev: ID/Status: ID/Status: ID/Status:	9102986						
SOURCE:	FL Department of Environ	mental Prote	ction								
Address: Facility ID: Facility Sta Type Desc Facility Ph DEP Cont Region: S Positioning Lat/Long (Owner: Owner Id: Owner Na Owner Ad Owner Ad Owner Co Owner Co Owner Ph Tank Id: 1 Status: En Status Dat Install Dat Substance Content D Gallons: 5	Name: HILL TOP MOTOR CO Address: 9557 LEM TURNER RD Facility ID: 9102986 Facility Status: CLOSED Type Description: Retail Station Facility Phone: 9047689961 DEP Contractor Own: P Region: STATE Positioning Method: UNVR Lat/Long (dms): 30 20 11 / 81 24 26										
	Click here for Flo	rida Oculus:									

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

	RCRA-VSQG										
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13				
NAME: ADDRESS: SOURCE:	LEM TURNER BODY 9545 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental Pr	RD 32208		Rev: ID/Status: I	12/14/2020 FLD984209288						
RCRA-VS Date Form Handler A Handler A Handler A Handler C EPA ID: Contact A Contact A Contact A Contact F Contact T Contact T EPA Regid Land Type Federal W Non-Notifi Biennial R Accessibil Active Site State Distr Mailing Ac Mailing Cit Owner Na Owner Typ Operator 1 Short-Terr Importer A Mixed Wa Transporte Transfer F Recycler A Small Qua Smelting N Universal Universal Ederal U Active Site	QG: a Received by Agency: ame: LEM TURNER ddress: 9545 LEM TU ity,State,Zip: JACKSC FLD984209288 ame: DWAYNE THO ddress: LEM TURNE ity,State,Zip: JACKSC elephone: Not reported mail: Not reported mail: Not reported te: OWNER on: 04 c: Private vaste Generator Descri er: Not reported eport Cycle: Not reported eport Cycle: Not reported e Indicator: Handler A rict Owner: FL	2013-01-02 00: BODY SHOP JRNER RD DNVILLE, FL 3220 MPSON R RD DNVILLE, FL 3220 MPSON R RD DNVILLE, FL 3220 MPSON No No No No No No No Storage and Dispositor Storage Storage and Dispositor Storage St	08-1570 08-1570 ally Exempt S 8-1570 8-1570 n: No osal Facility: osal Facility:	Not reported							
					- Continued or	n next pag	je -				

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

JOB: LEM TURNER RD OVER TROUT RIVER

RCRA-VSQG											
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13				
	LEM TURNER BODY SH 9545 LEM TURNER RD JACKSONVILLE, FL 322 DUVAL US Environmental Prote	208		Rev: ID/Status: I	12/14/2020 FLD984209288						
Federal F Hazardou Sub-Part Commerce Treatmen 2018 GPF 2018 GPF Permit Re Permit Wa Permit Pro Post-Closs Closure W 202 GPR/ Corrective Subject to Non-TSDI TSDFs Of Corrective Environm Institution Human E: Groundwa Operating Full Enfor Significan Unaddress Addresse Significan Financial Handler D Recognize Recognize Manifest F Sub-Part	e State-Reg Handler: acility Indicator: Not reported is Secondary Material Indic K Indicator: Not reported ial TSD Indicator: No t Storage and Disposal Ty R Permit Baseline: Not of R Renewals Baseline: Not of R Renewals Baseline: Not of Sorkload Universe: Not rep ure Workload Universe: Not rep ure Workload Universe: Not rep ure Workload Universe: Not rep ogress Universe: Not rep vorkload Universe: Not rep of Corrective Action Baselin A Corrective Action Baselin A Corrective Action Universe S Where RCRA CA has E to corrective Action Universe S Where RCRA CA has E to tentially Subject to CA Universe S Where RCRA CA has E to corrective Action Indicator: No Action Priority Ranking: ental Control Indicator: No treposure Controls Indicator: No treposure Cont	cator: NN pe: Not report on the Baselin lot on the Baselin orted Not reported me: No e: No Been Imposed der 3004 (u)/(iscretionary Au No NCAPS rationary Au No NCAPS rationary No NCAPS	e eline ed 'Universe: No uth Universe: No uth Universe: No anking No lo edule Universe: I								
Waste Co	s Waste Summary: de: D001 scription: IGNITABLE W	ASTE									

- Continued on next page -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

RCRA-VSQG											
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID: C13					
	LEM TURNER BODY 9545 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental Pr	RD 32208		Rev: ID/Status:	12/14/202 FLD984209288						
Waste De ACETA ALCOH MIXTUI NONHA CONTA SOLVE MORE BOTTO	Waste Code: F003 Waste Description: THE FOLLOWING SPENT NONHALOGENATED SOLVENTS: XYLENE, ACETONE, ETHYL ACETATE, ETHYL BENZENE, ETHYL ETHER, METHYL ISOBUTYL KETONE, N-BUTYL ALCOHOL, CYCLOHEXANONE, AND METHANOL; ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONLY THE ABOVE SPENT NONHALOGENATED SOLVENTS; AND ALL SPENT SOLVENT MIXTURES/BLENDS CONTAINING, BEFORE USE, ONE OR MORE OF THE ABOVE NONHALOGENATED SOLVENTS, AND A TOTAL OF TEN PERCENT OR MORE (BY VOLUME) OF ONE OR MORE OF THOSE SOLVENTS LISTED IN F001, F002, F004, AND F005; AND STILL BOTTOMS FROM THE RECOVERY OF THESE SPENT SOLVENTS AND SPENT SOLVENT MIXTURES. Waste Code: F005										
Waste De KETON 2-ETHO CONTA ONE O LISTED	ode: F005 escription: THE FOLL IE, CARBON DISULFIE DXYETHANOL, AND 2- AINING, BEFORE USE, R MORE OF THE ABO D IN F001, F002, OR FO SPENT SOLVENTS A	DE, ISOBUTANOI NITROPROPANI A TOTAL OF TE VE NONHALOGI 004; AND STILL E	_, PYRIDINE, BE E; ALL SPENT S IN PERCENT OF ENATED SOLVE BOTTOMS FROM	ENZENE, OLVENT MIXTURES R MORE (BY VOLUM ENTS OR THOSE SO I THE RECOVERY C	/BLENDS E) OF LVENTS	HYL ETHYL					
Owner/O Owner/O Legal Sta Date Bec Date End Owner/O Owner/O Owner/O Owner/O	Owner Operator: perator Indicator: Own perator Name: DWAY ttus: Private ame Current: 1996-10 led Current: Not report perator Address: 9545 perator City,State,Zip: perator Telephone: Not perator Telephone Ext: perator Fax: Not report perator Email: Not report	NE THOMPSON ted i LEM TURNER F JACKSONVILLE, ot reported Not reported ted									
Owner/O Legal Sta Date Bec Date End Owner/O Owner/O Owner/O Owner/O	perator Indicator: Own perator Name: DWAY ttus: Private ame Current: 1996-10 led Current: Not report perator Address: 9545 perator City,State,Zip: perator Telephone: Not perator Telephone Ext: perator Fax: Not report	NE THOMPSON ted LEM TURNER F JACKSONVILLE, ot reported Not reported			- Continued	on next page -					

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

	RCRA-VSQG										
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13				
	LEM TURNER BODY S 9545 LEM TURNER RI JACKSONVILLE, FL 3 DUVAL US Environmental Prot	D 2208		Rev: ID/Status: I	12/14/2020 FLD984209288						
	perator Email: Not repor										
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	berator Name: DWAYNI tus: Private ame Current: 1996-10-1 ed Current: Not reported berator Address: 9545 L berator City,State,Zip: JA berator Telephone: Not berator Telephone Ext: 1 berator Telephone Ext: 1 berator Fax: Not reported berator Email: Not reported	E THOMPSON 18 00:00:00. d .EM TURNER R ACKSONVILLE, reported Not reported ed									
Owner/Op Legal Sta Date Beca Date End Owner/Op Owner/Op Owner/Op Owner/Op Owner/Op	perator Indicator: Owner perator Name: DWAYNI tus: Private ame Current: 1996-10-1 ed Current: Not reporter perator Address: 9545 L perator City,State,Zip: JA perator Telephone: Not perator Telephone Ext: I perator Fax: Not reporter perator Email: Not reporter	E THOMPSON 18 00:00:00. d .EM TURNER R ACKSONVILLE, reported Not reported ed									
Receive I Handler N Federal W State Dist Large Qua Recognize Spent Lea Spent Lea Current R Non Stora	enerators: Date: 2004-09-23 00:00: lame: LEM TURNER By /aste Generator Descript rict Owner: FL antity Handler of Univers ed Trader Importer: No ad Acid Battery Importer: ad Acid Battery Importer: ecord: No age Recycler Activity: No Manifest Broker: Not re	ODY SHOP tion: Condition al Waste: No No No ot reported	ally Exempt Small	Quantity Generator							
Handler N Federal W	Date: 2012-05-10 00:00: lame: LEM TURNER Bi /aste Generator Descript rict Owner: FL	ODY SHOP	ally Exempt Small	Quantity Generator	- Continued o	n next pao	ge -				

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

RCRA-VSQG										
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13			
	LEM TURNER BODY 9545 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental Pr	RD 32208		Rev: ID/Status: F	12/14/2020 FLD984209288					
Recognize Recognize Spent Lea Spent Lea Current R Non Stora Electronice Handler N Federal W State Dist Large Qua Recognize Recognize Spent Lea Spent Lea Current R Non Stora	antity Handler of Unive ed Trader Importer: N ed Trader Exporter: N ad Acid Battery Importe ad Acid Battery Exporte ecord: No age Recycler Activity: Manifest Broker: Not Date: 2013-01-02 00:0 Iame: LEM TURNER Vaste Generator Descri rict Owner: FL antity Handler of Unive ed Trader Importer: N ed Trader Exporter: N ad Acid Battery Importe ad Acid Battery Exporte ecord: Yes age Recycler Activity: Manifest Broker: Not	o o Not reported reported 0:00.0 BODY SHOP ption: Conditiona rsal Waste: No o o o r: No er: No Not reported	ally Exempt Small	Quantity Generator						
Handler N Federal W State Dist Large Qua Recognize Spent Lea Spent Lea Current R Non Stora Electronice List of NA	Date: 1991-08-27 00:0 lame: LEM TURNER Vaste Generator Descri rict Owner: FL antity Handler of Unive ed Trader Importer: N ed Trader Exporter: N ad Acid Battery Importe ad Acid Battery Exporte ecord: No age Recycler Activity: Manifest Broker: Not	BODY SHOP ption: Conditions o o r: No r: No Not reported reported	ally Exempt Small	Quantity Generator						
NAICS De Facility Ha Found Vic Agency W Violation S	ode: 811121 escription: AUTOMOT as Received Notices of plation: Yes /hich Determined Viola Short Description: Ge ation was Determined:	Violation: tion: State nerators - Genera	1	R REPAIR AND MAI	NTENANCE	n next nac	ne -			

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

		RCRA-VSQG											
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13						
NAME: ADDRESS	LEM TURNER BODY 3 9545 LEM TURNER R JACKSONVILLE, FL 3 DUVAL	D		Rev: ID/Status: F	12/14/2020 FLD984209288								
SOURCE:	US Environmental Prot	tection Agency											
Return to Violation Schedule Enforcem Enforcem Enforcem Corrective Appeal In Appeal R Dispositio Dispositio Dispositio Consent/I Consent/I Consent/I Consent/I Enforcem Enforcem SEP Seq SEP Sche SEP Actu SEP Actu SEP Type SEP Typ	eturn to Compliance Date Compliance Qualifier: I Responsible Agency: S d Compliance Date: No ent Identifier: 123 nforcement Action: 201 ent Responsible Agency ent Docket Number: No ent Attorney: Not report e Action Component: No itiated Date: Not report e Action Component: No ent Attorney: Not report e Action Date: Not report e Action Date: Not report on Status Date: Not report on Status Description: N Final Order Sequence Nu Final Order Lead Agency ent Type: DEP NON-Co ent Responsible Person: ent Responsible Sub-Org uence Number: Not report eduled Completion Date: al Date: Not reported auted Not reported auted Not reported auter Not reported nt: Not reported pount: Not reported aute: Not reported	Jnverifiable tate t reported 2-07-05 00:00:0 : State ot reported ted orted orted orted orted orted orted orted inter: Not rep Name: Not rep Name: Not reported OMPLIANCE LE : HMH ganization: NE orted orted Not reported Not reported Not reported d ted	orted orted eTTER										
Agency W Violation Date Viola Actual Re Return to Violation Schedule Enforcem Date of E	olation: Yes /hich Determined Violation Short Description: Usec ation was Determined: 2 aturn to Compliance Date Compliance Qualifier: I Responsible Agency: S d Compliance Date: No ent Identifier: Not repor nforcement Action: Not ent Responsible Agency	d Oil - Generator 2012-05-08 00:0 2012-05-08 0 Unverifiable tate t reported ted reported	0.00:00		- Continued o	n next pag	ge -						

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA-V	SQG			
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13
	LEM TURNER BODY S 9545 LEM TURNER RI JACKSONVILLE, FL 32 DUVAL US Environmental Prot	D 2208		Rev: ID/Status: I	12/14/2020 FLD984209288		
Enforcem Corrective Appeal In Appeal Re Dispositio Dispositio Consent/F Consent/F Consent/F Consent/F Enforcem Enforcem SEP Sequ SEP Sche SEP Actu SEP Defa SEP Type SEP Type SEP Type SEP Type SEP Type SEP Type SEP Type SEP Type SEP Type SEP Charlow	ent Docket Number: No ent Attorney: Not report Action Component: No itiated Date: Not report esolution Date: Not report on Status Date: Not report n Status Date: Not report n Status Description: No Final Order Sequence Nu Final Order Respondent N Final Order Lead Agency ent Type: Not reported ent Responsible Person: ent Responsible Sub-Org uence Number: Not report anditure Amount: Not report called Completion Date: al Date: Not report with a Date: Not report anditure Amount: Not report and completion: Not report and the port called Date: Not report Amount: Not report Amount: Not report nt: Not report ount: Not report called Not report	ed of reported orted orted orted of reported imber: Not rep Not reported of reported orted ported Not reported of reported of reported	ported				
Agency W Violation S Date Viola Actual Re Return to Violation I Schedule Enforcem Date of En Enforcem Enforcem Corrective Appeal In Appeal Re Dispositio	blation: Yes /hich Determined Violatic Short Description: State ation was Determined: 2 turn to Compliance Date Compliance Qualifier: L Responsible Agency: St d Compliance Date: Not ent Identifier: 123 nforcement Action: 2012 ent Responsible Agency: ent Docket Number: Not ent Attorney: Not report e Action Component: Not itiated Date: Not report esolution Date: Not report on Status Date: Not reported	Statute or Reg 2012-05-08 00:0 2013-01-02 0 Inverifiable ate t reported 2-07-05 00:00:0 State t reported ed of ed orted	00:00.0 00:00:00.0		- Continued o	n next paç	Je -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA	-VSQG			
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13
NAME: ADDRESS: SOURCE:	LEM TURNER BOD 9545 LEM TURNER JACKSONVILLE, FI DUVAL US Environmental F	R RD L 32208		Rev: ID/Status: F	12/14/2020 FLD984209288		
Consent/F Consent/F Consent/F Enforceme Enforceme SEP Sequ SEP Sche SEP Actua SEP Defai SEP Type SEP Type SEP Type Proposed Final Mone Final Cour Final Amo		Number: Not rep ont Name: Not rep ncy: Not reported -COMPLIANCE LE on: HMH Organization: NE reported t reported tte: Not reported d orted ported ed eported	orted				
Found Violation: Yes Agency Which Determined Violation: State Violation Short Description: Listing - General Date Violation was Determined: 2012-05-08 00:00:00.0 Actual Return to Compliance Date: 2013-01-02 00:00:00.0 Return to Compliance Qualifier: Unverifiable Violation Responsible Agency: State Scheduled Compliance Date: Not reported Enforcement Identifier: 123 Date of Enforcement Action: 2012-07-05 00:00:00.0 Enforcement Responsible Agency: State Enforcement Attorney: Not reported Enforcement Attorney: Not reported Corrective Action Component: No Appeal Initiated Date: Not reported Disposition Status Date: Not reported Disposition Status Date: Not reported Consent/Final Order Sequence Number: Not reported Consent/Final Order Sequence Number: Not reported Consent/Final Order Lead Agency: Not reported Enforcement Type: DEP NON-COMPLIANCE LETTER Enforcement Responsible Parson: HMH Enforcement Responsible Sub-Organization: NE							
LINOICEIL		organization. NE			- Continued or	n next pa	ge -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCI	RA-VSQG				
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATIO	N:	23	MAP ID:	C13
NAME: ADDRESS:	LEM TURNER BOD 9545 LEM TURNER JACKSONVILLE, FL DUVAL	RD		Rev: ID/Stati	us: I	12/14/2020 FLD984209288		
SOURCE:	US Environmental P	rotection Agency						
SEP Expe SEP Sche SEP Actua SEP Defau SEP Type Proposed Final Mone Paid Amou Final Cour Final Cour Final Cour Final Amou Found Vio Agency W Violation S Date Viola Actual Ret Return to 0 Violation F Scheduled Enforceme Enforceme Corrective Appeal Init Appeal Re Dispositior Dispositior Dispositior Consent/F	ence Number: Not re nditure Amount: Not duled Completion Dat al Date: Not reported Description: Not reported Description: Not reported etary Amount: Not reported to the Not reported unt: Not reported to the Determined Viola the Determined Viola	reported e: Not reported ted orted d ported ation: Not reported t reported Not reported Not reported Not reported Not reported orted orted orted orted orted orted orted orted not reported orted orted Not reported orted Not reported ceported not reported Not Not Not Not Not Not Not Not Not Not	orted					
SEP Type	Description: Not rep	orted				- Continued or	n next pag	ge -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

JOB: LEM TURNER RD OVER TROUT RIVER

RCRA-VSQG								
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13	
NAME: ADDRESS:	LEM TURNER BODY S 9545 LEM TURNER RE JACKSONVILLE, FL 32 DUVAL)		Rev: ID/Status: F	12/14/2020 FLD984209288			
SOURCE:	US Environmental Prote	ection Agency						
Proposed Final Mon Paid Amo Final Cour Final Amo Found Vic Agency W Violation S Date Viola Actual Re Return to Violation F Scheduled Enforcem Enforcem Enforcem Corrective Appeal Re Dispositio Dispositio Dispositio Dispositio Consent/F C	Amount: Not reported etary Amount: Not reported int: Not reported ount: Not reported the Description: Not re- ation was Determined: Not turn to Compliance Date: Compliance Qualifier: Not responsible Agency: Not ent Identifier: Not reported of Compliance Date: Not reported ent Identifier: Not reported ent Responsible Agency: ent Docket Number: Not reported Date: Not reported exotion Component: Not itiated Date: Not reported esolution Date: Not reported in Status Description: Not final Order Respondent N final Order Lead Agency: ent Type: Not reported ent Responsible Person: ent Responsible Person: ent Responsible Sub-Org uence Number: Not reported ent Completion Date: al Date: Not reported ulted Date: Not reported	n: Not reported ported ot reported ot reported ot reported treported ed eported Not reported ed treported d treported d treported mber: Not rep lame: Not rep Not reported not reported mber: Not rep Not reported Not reported	orted orted					
SEP Type Proposed Final Mon Paid Amo Final Cou	e: Not reported Description: Not reported Amount: Not reported etary Amount: Not reported unt: Not reported nt: Not reported punt: Not reported							

- Continued on next page -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA-V	/SQG			
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13
	LEM TURNER BODY S 9545 LEM TURNER RI JACKSONVILLE, FL 32 DUVAL	D 2208		Rev: ID/Status: F	12/14/2020 FLD984209288		
SOURCE:	US Environmental Prot	ection Agency					
Evaluation Evaluation Found Vio Evaluation Evaluation Actual Ref Scheduled Date of Re Date Resp Request A Former Ci Evaluation Evaluation Evaluation Evaluation Evaluation Actual Ref Scheduled Date of Re	Action Summary: Date: 2012-05-08 00:0 Responsible Agency: Dation: Yes Type Description: COI Responsible Person Ide Responsible Sub-Organ turn to Compliance Date: Not request: Not reported bonse Received: Not re Agency: Not reported tation: Not reported tation: Not reported tation: Yes Type Description: COI n Responsible Agency: Date: 2012-05-08 00:0 n Responsible Agency: Date: Yes Type Description: COI n Responsible Person Ide n Responsible Person Ide n Responsible Sub-Organ turn to Compliance Date: Not request: Not reported bonse Received: Not re	State MPLIANCE EV/ entifier: HMH nization: NE : 2013-01-02 (t reported ported 00:00.0 State MPLIANCE EV/ entifier: HMH nization: NE : 2012-05-08 (t reported	00:00:00.0 ALUATION INSPE				
Request A	Agency: Not reported tation: Not reported	pontou					
Evaluation Found Vio Evaluation Evaluation Evaluation Actual Ref Scheduled Date of Re Date Resp Request A Former Ci	a Date: 2012-05-08 00:0 a Responsible Agency: blation: Yes a Type Description: COI a Responsible Person Ide a Responsible Sub-Organ turn to Compliance Date: d Compliance Date: Not request: Not reported bonse Received: Not reported tation: Not reported	State MPLIANCE EV/ entifier: HMH nization: NE : 2013-01-02 (t reported ported		CTION ON-SITE			
Evaluatior Found Vio	n Date: 2012-05-08 00:0 n Responsible Agency: plation: Yes n Type Description: COI	State	ALUATION INSPE	CTION ON-SITE			
					 Continued or 	n next pag	je -

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

			RCRA-\	/SQG			
EDR ID:	1004683441	DIST/DIR:	0.201 SE	ELEVATION:	23	MAP ID:	C13
	LEM TURNER BOD' 9545 LEM TURNER JACKSONVILLE, FL DUVAL US Environmental Pl	RD . 32208		Rev: ID/Status: F	12/14/2020 FLD984209288		
Evaluation Actual Ret Scheduled Date of Re Date Resp Request A Former Ci Evaluation Evaluation Evaluation Evaluation Actual Ret Date Resp Request A Former Ci Evaluation Evaluat	Responsible Person Responsible Sub-Org urn to Compliance Date: Ne equest: Not reported bonse Received: Not gency: Not reported tation: Not reported tation: Not reported a Date: 2013-01-02 0 Responsible Agency lation: No Type Description: C Responsible Person Responsible Sub-Org urn to Compliance Date: Ne gency: Not reported bonse Received: Not gency: Not reported tation: Not reported tation: Not reported a Date: 2004-09-23 0 Responsible Agency lation: No Responsible Person Responsible Agency lation: No Responsible Agency lation: No Responsible Person Responsible Person Responsible Person Responsible Person Responsible Person Responsible Person Responsible Sub-Org urn to Compliance Date: Ne quest: Not reported compliance Date: Not gency: Not reported tonse Received: Not gency: Not reported tonse Received: Not gency: Not reported tonse Received: Not	ganization: NE ate: 2013-01-02 0 Not reported reported 0:00:00.0 : State COMPLIANCE EV/ Identifier: HMH ganization: NE ate: Not reported Not reported 0:00:00.0 : State COMPLIANCE ASS Identifier: PED ganization: NE ate: Not reported Not reported	ALUATION INSPE	ECTION ON-SITE			

Target Property: LEM TURNER ROAD JACKSONVILLE, FL 32218

SWF/LF									
EDR ID:	S111750417	DIST/DIR:	0.284 SE	ELEVATION:	38	MAP ID: 14			
NAME: ADDRESS:	LIPMAN SAMUEL D 1 0 5TH AVENUE JACKSONVILLE, FL 3 DUVAL			Rev: ID/Status: ID/Status:		/2021 FURTHER ACTION (F)			
SOURCE:	FL Department of Env	rironmental Prote	ection						
Address: City,State Facility ID District: N Lat/Long: Class Typ Classificat Class Stat Section: I Township Range: N Responsit Responsit Responsit Responsit EMail Add Site Supe Site Supe Site Supe Site Supe Land Owr Land Owr	IED 30:24:39.4452 / 81:41: e: 595 tion: UNAUTHORIZED tus: NFA,NO FURTHEN Not reported : Not reported ot reported ble Authority Name: Not ble Authority Address: I ble Authority City,St,Zip ble Authority Phone: Not Iress1: Not reported Iress2: Not reported Iress2: Not reported Iress2: Not reported Iress2: Not reported Iress7: Not reported Iress7: Not reported Iress7: Not reported Iress7: Not reported Iress7: Not reported Iress8: Not reported Iress8: Not reported Iress8: Not reported Iress8: Not reported Ires Address: Not reported Ires Address: Not reported Ires City/State/Zip: N	FL 32208 26.8335 DISPOSAL/PRO R ACTION (F) treported Not reported treported ted ot reported ted ot reported eported eported	DCESSING-COM	PLAINT					

Database Descriptions

NPL: NPL National Priorities List (Superfund). The NPL is a subset of CERCLIS and identifies over 1,200 sites for priority cleanup under the Superfund Program. NPL sites may encompass relatively large areas. As such, EDR provides polygon coverage for over 1,000 NPL site boundaries produced by EPA's Environmental Photographic Interpretation Center (EPIC) and regional EPA offices. NPL - National Priority List Proposed NPL - Proposed National Priority List Sites.

NPL Delisted: Delisted NPL The National Oil and Hazardous Substances Pollution Contingency Plan (NCP) establishes the criteria that the EPA uses to delete sites from the NPL. In accordance with 40 CFR 300.425.(e), sites may be deleted from the NPL where no further response is appropriate. Delisted NPL - National Priority List Deletions

CERCLIS: SEMS SEMS (Superfund Enterprise Management System) tracks hazardous waste sites, potentially hazardous waste sites, and remedial activities performed in support of EPA's Superfund Program across the United States. The list was formerly know as CERCLIS, renamed to SEMS by the EPA in 2015. The list contains data on potentially hazardous waste sites that have been reported to the USEPA by states, municipalities, private companies and private persons, pursuant to Section 103 of the Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA). This dataset also contains sites which are either proposed to or on the National Priorities List (NPL) and the sites which are in the screening and assessment phase for possible inclusion on the NPL. SEMS - Superfund Enterprise Management System

NFRAP: SEMS-ARCHIVE SEMS-ARCHIVE (Superfund Enterprise Management System Archive) tracks sites that have no further interest under the Federal Superfund Program based on available information. The list was formerly known as the CERCLIS-NFRAP, renamed to SEMS ARCHIVE by the EPA in 2015. EPA may perform a minimal level of assessment work at a site while it is archived if site conditions change and/or new information becomes available. Archived sites have been removed and archived from the inventory of SEMS sites. Archived status indicates that, to the best of EPA's knowledge, assessment at a site has been completed and that EPA has determined no further steps will be taken to list the site on the National Priorities List (NPL), unless information indicates this decision was not appropriate or other considerations require a recommendation for listing at a later time. The decision does not necessarily mean that there is no hazard associated with a given site; it only means that. based upon available information, the location is not judged to be potential NPL site. SEMS-ARCHIVE - Superfund Enterprise Management System Archive

RCRA COR ACT: CORRACTS CORRACTS identifies hazardous waste handlers with RCRA corrective action activity. CORRACTS - Corrective Action Report

RCRA TSD: RCRA-TSDF RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Transporters are individuals or entities that move hazardous waste from the generator offsite to a facility that can recycle, treat, store, or dispose of the waste. TSDFs treat, store, or dispose of the waste. RCRA-TSDF - RCRA - Treatment, Storage and Disposal

RCRA GEN: RCRA-LQG RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Large quantity generators (LQGs) generate over 1,000 kilograms (kg) of hazardous waste, or over 1 kg of acutely hazardous waste per month. RCRA-LQG - RCRA - Large Quantity Generators RCRA-SQG - RCRA - Small Quantity Generators. RCRA-VSQG - RCRA - Very Small Quantity Generators (Formerly Conditionally Exempt Small Quantity Generators).

Federal IC / EC: US ENG CONTROLS A listing of sites with engineering controls in place. Engineering controls include various forms of caps, building foundations, liners, and treatment methods to create pathway elimination for regulated substances to enter environmental media or effect human health. US ENG CONTROLS - Engineering Controls Sites List US INST CONTROLS - Institutional Controls Sites List.

Database Descriptions

ERNS: ERNS Emergency Response Notification System. ERNS records and stores information on reported releases of oil and hazardous substances. ERNS - Emergency Response Notification System

State/Tribal CERCLIS: SHWS State Hazardous Waste Sites. State hazardous waste site records are the states' equivalent to CERCLIS. These sites may or may not already be listed on the federal CERCLIS list. Priority sites planned for cleanup using state funds (state equivalent of Superfund) are identified along with sites where cleanup will be paid for by potentially responsible parties. Available information varies by state. SHWS - Florida's State-Funded Action Sites

State/Tribal SWL: SWF/LF Solid Waste Facilities/Landfill Sites. SWF/LF type records typically contain an inventory of solid waste disposal facilities or landfills in a particular state. Depending on the state, these may be active or inactive facilities or open dumps that failed to meet RCRA Subtitle D Section 4004 criteria for solid waste landfills or disposal sites. SWF/LF - Solid Waste Facility Database

State/Tribal LTANKS: LAST LUST - Petroleum Contamination Detail Report. Leaking Underground Storage Tank Incident Reports. LUST records contain an inventory of reported leaking underground storage tank incidents. Not all states maintain these records, and the information stored varies by state. LUST - Petroleum Contamination Detail Report INDIAN LUST R6 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R5 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R10 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R9 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R7 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R8 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R4 - Leaking Underground Storage Tanks on Indian Land. INDIAN LUST R1 - Leaking Underground Storage Tanks on Indian Land.

State/Tribal Tanks: UST Registered Underground Storage Tanks. UST's are regulated under Subtitle I of the Resource Conservation and Recovery Act (RCRA) and must be registered with the state department responsible for administering the UST program. Available information varies by state program. UST - Storage Tank Facility Information AST -Storage Tank Facility Information. BROWARD CO AST - Aboveground Storage Tanks. INDIAN UST R9 - Underground Storage Tanks on Indian Land. INDIAN UST R1 - Underground Storage Tanks on Indian Land. INDIAN UST R10 - Underground Storage Tanks on Indian Land. INDIAN UST R4 - Underground Storage Tanks on Indian Land. INDIAN UST R5 - Underground Storage Tanks on Indian Land. INDIAN UST R7 - Underground Storage Tanks on Indian Land. INDIAN UST R6 - Underground Storage Tanks on Indian Land. INDIAN UST R8 - Underground Storage Tanks on Indian Land. INDIAN UST R6 - Underground Storage Tanks on Indian Land. INDIAN UST R8 - Underground Storage Tanks on Indian Land.

State/Tribal IC / EC: ENG CONTROLS The registry is a database of all contaminated sites in the state of Florida which are subject to engineering controls. Engineering Controls encompass a variety of engineered remedies to contain and/or reduce contamination, and/or physical barriers intended to limit access to property. ECs include fences, signs, guards, landfill caps, provision of potable water, slurry walls, sheet pile (vertical caps), pumping and treatment of groundwater, monitoring wells, and vapor extraction systems. ENG CONTROLS - Institutional Controls Registry Inst Control - Institutional Controls Registry.

State/Tribal VCP: VCP Listing of closed and active voluntary cleanup sites. VCP - Voluntary Cleanup Sites

ST/Tribal Brownfields: BROWNFIELDS BSRA - Brownfield Site Rehabilitation Agreements Listing. BROWNFIELDS AREAS - Brownfields Areas Database. A "brownfield area" means a contiguous area of one or more brownfield sites, some of which may not be contaminated, that has been designated as such by a local government resolution. Such areas may include all or portions of community redevelopment areas, enterprise zones, empowerment zones, other such designated economically deprived communities and areas, and Environmental Protection Agency (EPA) designated brownfield pilot projects. This layer provides a polygon representation of the boundaries of these designated Brownfield Areas in Florida. BROWNFIELDS AREAS - Brownfields Areas Database

US Brownfields: US BROWNFIELDS Brownfields are real property, the expansion, redevelopment, or reuse of which may be complicated by the presence or potential presence of a hazardous substance, pollutant, or contaminant. Cleaning up and reinvesting in these properties takes development pressures off of undeveloped, open land, and both improves and protects the environment. Assessment, Cleanup and Redevelopment Exchange System (ACRES) stores information reported by EPA Brownfields grant recipients on brownfields properties assessed or cleaned up with grant funding as well as information on Targeted Brownfields Assessments performed by EPA Regions. A listing of ACRES Brownfield sites is obtained from Cleanups in My Community. Cleanups in My Community provides information on Brownfields properties for which information is reported back to EPA, as well as areas served by Brownfields grant programs. US BROWNFIELDS - A Listing of Brownfields Sites

Other SWF: LF HILLSBOROUGH LF PALM BEACH - Palm Beach County LF. Palm Beach County Inventory of Solid Waste Sites. LF PALM BEACH - Palm Beach County LF

Other Haz Sites: PRIORITYCLEANERS The Florida Legislature has established a state-funded program to cleanup properties that are contaminated as a result of the operations of a drycleaning facility. PRIORITYCLEANERS - Priority Ranking List FL SITES - Sites List. US CDL - Clandestine Drug Labs. PFAS - PFOS and PFOA stand for perfluorooctane sulfonate and perfluorooctanoic acid.

Other Tanks: Broward Co. UST All known regulated storage tanks within Broward County, including those tanks that have been closed Broward Co. UST - Underground Storage Tanks Miami-Dade Co. Tanks - Storage Tanks.

Spills: HMIRS Hazardous Materials Incident Report System. HMIRS contains hazardous material spill incidents reported to DOT. HMIRS - Hazardous Materials Information Reporting System SPILLS - Oil and Hazardous Materials Incidents. Miami-Dade Co. SPILL - Fuel Spills Cases. SPILLS 90 - SPILLS90 data from FirstSearch. SPILLS 80 - SPILLS80 data from FirstSearch.

Other: RCRA NonGen / NLR RCRAInfo is EPA's comprehensive information system, providing access to data supporting the Resource Conservation and Recovery Act (RCRA) of 1976 and the Hazardous and Solid Waste Amendments (HSWA) of 1984. The database includes selective information on sites which generate, transport, store, treat and/or dispose of hazardous waste as defined by the Resource Conservation and Recovery Act (RCRA). Non-Generators do not presently generate hazardous waste. RCRA NonGen / NLR - RCRA - Non Generators / No Longer Regulated FEDLAND - Federal and Indian Lands. TSCA - Toxic Substances Control Act. TRIS - Toxic Chemical Release Inventory System. SSTS - Section 7 Tracking Systems. RAATS - RCRA Administrative Action Tracking System. PRP - Potentially Responsible Parties. PADS - PCB Activity Database System. ICIS - Integrated Compliance Information System. FTTS - FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act). FTTS INSP - FIFRA/ TSCA Tracking System - FIFRA (Federal Insecticide, Fungicide, & Rodenticide Act)/TSCA (Toxic Substances Control Act). MLTS - Material Licensing Tracking System. RADINFO - Radiation Information Database. BRS - Biennial Reporting System, INDIAN RESERV - Indian Reservations, US AIRS (AFS) - Aerometric Information Retrieval System Facility Subsystem (AFS). US AIRS MINOR - Air Facility System Data. FINDS - Facility Index System/Facility Registry System. DRYCLEANERS - Drycleaning Facilities. Enforcement Miami-Dade - Enforcement Case Tracking System Sites. FL Cattle Dip. Vats - Cattle Dipping Vats. DADE CO AW - Agricultural Waste Listing. MINES MRDS - Mineral Resources Data System. PCS - Permit Compliance System. PCS ENF - Enforcement data. PCS INACTIVE - Listing of Inactive PCS Permits.

Database Sources

NPL: EPA	
	Updated Quarterly
NPL Delisted: EPA	
NPL Delisted. EPA	Updated Quarterly
	opullou Quanony
CERCLIS: EPA	
	Updated Quarterly
NFRAP: EPA	
	Updated Quarterly
RCRA COR ACT: EPA	
	Updated Quarterly
RCRA TSD: Environmer	ntal Protection Agency
	Updated Quarterly
RCRA GEN: Environme	ntal Protection Agency
	Updated Quarterly
Federal IC / EC: Environ	mental Protection Agency
	Varies
ERNS: National Respon	se Center, United States Coast Guard
	Updated Quarterly
State/Tribal CERCLIS: D	Department of Environmental Protection
	Updated Semi-Annually
State/Tribal SWL: Depar	tment of Environmental Protection
	Updated Quarterly
State/Tribal LTANKS: De	epartment of Environmental Protection
	Updated Quarterly
State/Tribal Tapka: Dan	artment of Environmental Distoction

State/Tribal Tanks: Department of Environmental Protection

Updated Quarterly

Database Sources

State/Tribal IC / EC: Department of Environmental Protection

Updated Semi-Annually

State/Tribal VCP: Department of Environmental Protection

Varies

ST/Tribal Brownfields: Department of Environmental Protection

Updated Quarterly

US Brownfields: Environmental Protection Agency

Updated Semi-Annually

Other SWF: Hillsborough County Environmental Protection Commission

Varies

Other Haz Sites: Department of Environmental Protection

Varies

Other Tanks: Broward County Environmental Protection Department

Varies

Spills: U.S. Department of Transportation

Updated Quarterly

Other: Environmental Protection Agency

Updated Quarterly

Street Name Report for Streets near the Target Property

Target Property:	LE
i al gott report).	


LEM TURNER ROAD JACKSONVILLE, FL 32218

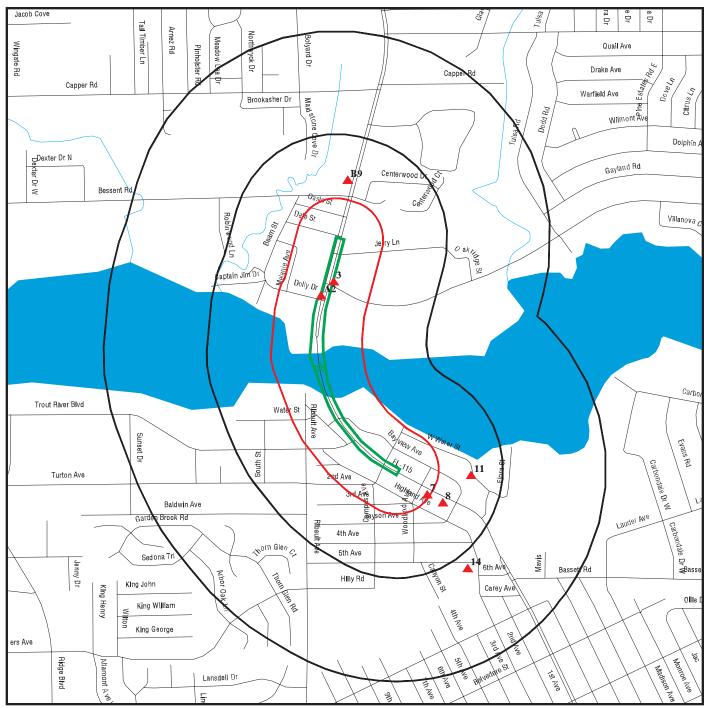
Street Name	Dist/Dir	Street Name	Dist/Dir
1st Ave	0.23 South		
Bayview Ave	0.13 SSE		
Broward Rd	0.19 NNE		
Campus Ave	0.25 SE		
Captain Jim Dr	0.22 NW		
Dolly Dr	0.16 North		
FL-115	0.00		
Highland Ave	0.20 South		
Melanie Ave	0.20 NNW		
Old Lem Turner Rd	0.09 SSW		
Ribault Ave	0.07 SSW		
South St	0.18 SW		
Trout River Blvd	0.19 SSE		
Water St	0.11 South		

Environmental FirstSearch 0.500 Mile Radius ASTM MAP: NPL, RCRACOR, STATES Sites

LEM TURNER ROAD JACKSONVILLE, FL 32218

Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius

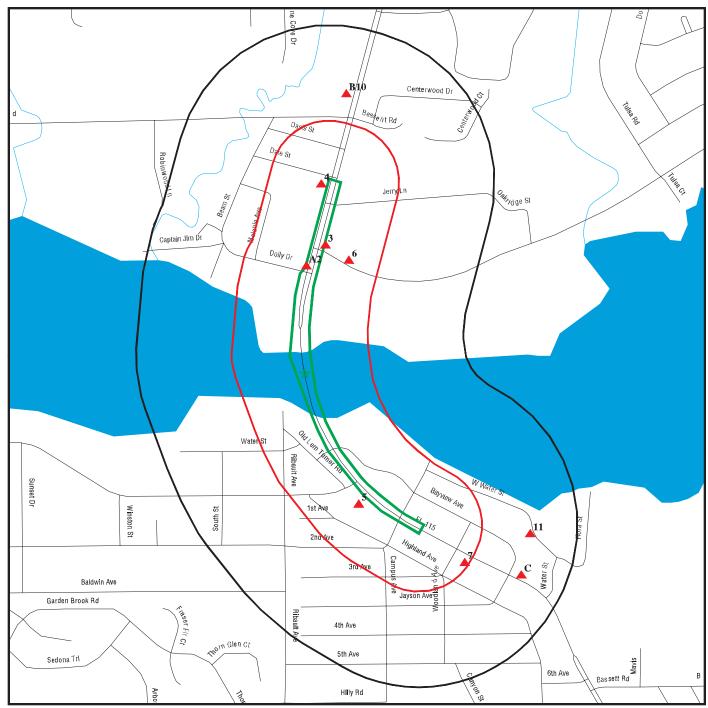
- * Target Property (Latitude: 30.417976 Longitude: 81.696778)
- Identified Sites ۸ -1-


Indian Reservations BIA **FL** Brownfield

National Priority List Sites

ASTM MAP: CERCLIS, RCRATSD, LUST, SWL

LEM TURNER ROAD JACKSONVILLE, FL 32218

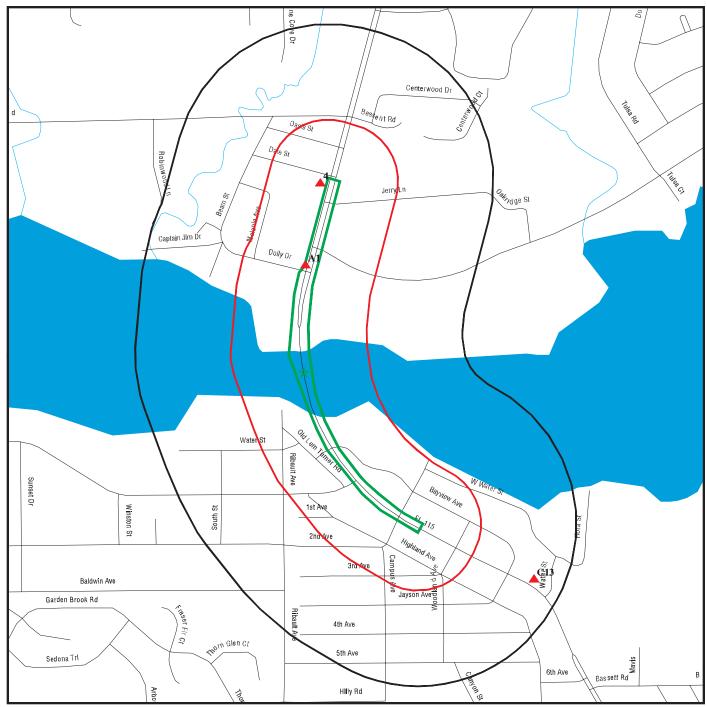


Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius

- Target Property (Latitude: 30.417976 Longitude: 81.696778) *
- **Identified Sites** Indian Reservations BIA FL Brownfield ۸ - 1 -
- **National Priority List Sites**

LEM TURNER ROAD JACKSONVILLE, FL 32218

Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius


- Target Property (Latitude: 30.417976 Longitude: 81.696778) *
- **Identified Sites** Indian Reservations BIA FL Brownfield ۸ - 1 -
- - **National Priority List Sites**

Environmental FirstSearch 0.25 Mile Radius

0.25 Mile Radius Non ASTM Map, Spills, FINDS

LEM TURNER ROAD JACKSONVILLE, FL 32218

Indian Reservations BIA FL Brownfield

Black Rings Represent Qtr. Mile Radius; Red Ring Represents 500 ft. Radius

- 12-

- ★ Target Property (Latitude: 30.417976 Longitude: 81.696778)
- Identified Sites
- Sensitive Receptors
- National Priority List Sites

LEM TURNER ROAD JACKSONVILLE, FL 32218

Map Image Position: TP Map Reference Code & Name: 5656169 Trout River Map State(s): FL Version Date: 2012

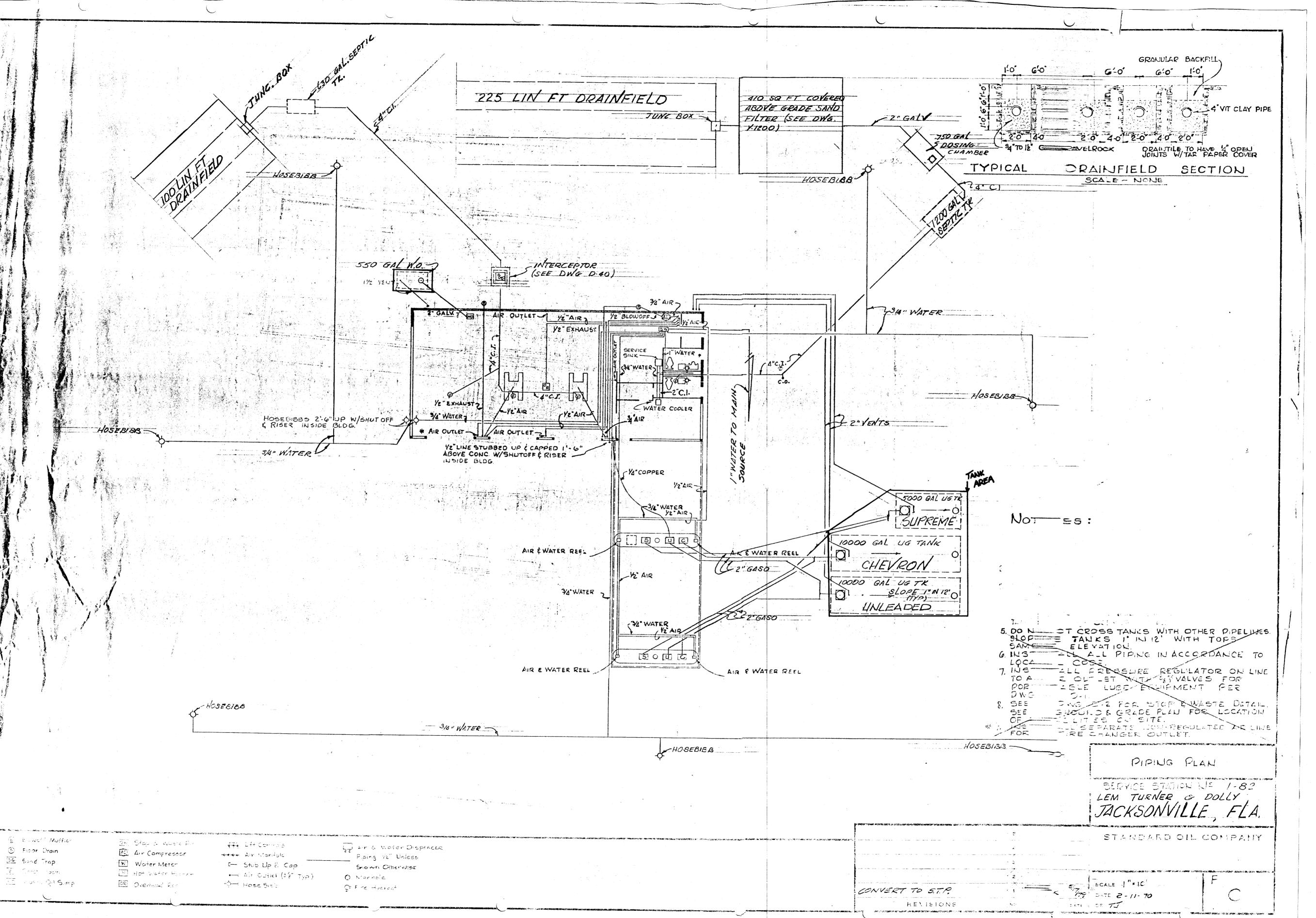
APPENDIX D

REGULATORY INFORMATION

SITE ID	SITE NAME	FACILITY ID(s)	DOCUMENT(S)
1	Don's Fuel Oil Service/Hunt's Motors	NA	No assessment information available.
3	Chevron #46863-George's	110002550953, FLD981859135, and 16/8506977	Piping Plan, dated January 1982 CAR, dated December 13, 1993, and a UST Closure Assessment Report, dated July 9, 1993 (text, figures, tables, and laboratory analytical data) NFA Request and 1995 Annual Status Report, dated August 30, 1995 (text, figures, tables, and laboratory analytical data) SRCO, dated January 5, 1996
4	Trout River Food Mart	16/8507541	CAR, dated August 1993 (text, figures, tables, and laboratory analytical data) Remedial Action Interim Report, dated March 21, 2016 (text, figures, tables, and laboratory analytical data) SRCO, dated January 23, 2017
5	Alpha & Omega Dry Cleaners/Ed Stalvey's Fuel Oil Service	16/8629668	Tank Closure Assessment report, dated August 8, 2003 (text, figures, tables, and laboratory analytical data) City of Jacksonville Air and Water Quality Division letter, dated November 5, 2003
8	Franko's Upholstery	NA	No assessment information available.
9	Allied Auto & Truck Repair, Inc.	FLD981865264 and SQG_27312	No assessment information available.

SITE 1 – Don's Fuel Oil Service/Hunt's Motors

No assessment information available


SITE 3 – Chevron #46863-George's

Piping Plan, dated January 1982 – 1 Page

CAR, dated December 13, 1993, and a UST Closure Assessment Report, dated July 9, 1993 (text, figures, tables, and laboratory analytical data) – 298 Pages

NFA Request and 1995 Annual Status Report, dated August 30, 1995 (text, figures, tables, and laboratory analytical data) – 67 Pages

SRCO, dated January 5, 1996 – 3 Pages

CONTAMINATION ASSESSMENT REPORT

CHEVRON STATION NO. 46863 10162 LEM TURNER ROAD JACKSONVILLE, FLORIDA FDER FACILITY ID NO. 168506788

December 13, 1993

Prepared for

Chevron U.S.A., Inc. 2300 Windy Ridge Parkway, Suite 800 Marietta, Georgia

Prepared by

Environmental Geoscience & Engineering, Inc. 1750 Rogero Road Jacksonville, Florida 32211 (904) 743-7732

Europe of Waste Cleanup

MAR 1 & 1994

Rakolowy Change Gooting

Contents

<u>etion</u>	Page
PROFESSIONAL REVIEW	. iii
1.0 INTRODUCTION	1
1.1 Site Location	
1.2 Site Description	
1.3 Site History	
1.4 Adjacent Property Use	
1.5 Objectives of the Current Investigation	
2.0 ENVIRONMENTAL SETTING	4
2.1 Physiography and Topography	
2.2 Regional Geology	
2.3 Regional Hydrogeology	
2.4 Climate	
3.0 METHODOLOGY	7
3.1 Records Search and Well Inventory	7
3.2 Soil Borings and Headspace Analysis	7
3.3 Monitoring Well Installation	8
3.4 Hydrogeological Characterization	8
3.5 Groundwater Quality Sampling and Analysis	9
4.0 INVESTIGATIVE RESULTS	10
4.1 Well Inventory	10
4.2 Soil Boring Results	10
4.3 Monitoring Well Installation Results	11
4.4 Site Geology	12
4.5 Site Hydrogeology	12
4.5.1 Groundwater Elevations and Flow	12
4.5.2 Hydraulic Gradient	12
4.5.3 Hydraulic Conductivity	13
4.5.4 Groundwater Flow Calculation	13
4.6 Groundwater Analytical Results	14
5.0 CONCLUSIONS	15
6.0 RECOMMENDATIONS	16

q:\a04302\reports\lemturn.car

Environmental Geoscience & Engineering, Inc.

i

List of Tables

<u>Table</u>

- 1. Well Inventory Results
- 2. Soil Headspace Analysis Results
- 3. Well Construction Summary
- 4. Water Level Measurements, November 17, 1993
- 5. Results of Hydraulic Conductivity Testing
- 6. Groundwater Analytical Results, November and December, 1993

List of Figures

Figure

- 1. Site Location Map
- 2. Surrounding Land Use Map
- 3. Site Map
- 4. Potable Well Survey
- 5. Soil Boring and Monitoring Well Locations
- 6. Potentiometric Map Surficial Aquifer, November 17, 1993

List of Appendices

Appendix

- A. Geraghty & Miller OEA
- B. Industrial Septic Tank Closure
- C. Monitoring Well Boring Logs/Well Construction Diagrams
- **D.** Laboratory Analytical Results

CONTAMINATION ASSESSMENT REPORT

CHEVRON STATION NO. 46863 10162 LEM TURNER ROAD JACKSONVILLE, FLORIDA FDER FACILITY NO. 168506788

PROFESSIONAL REVIEW

The Contamination Assessment Report for Chevron Facility No. 46863 located at 10162 Lem Turner Road, Jacksonville, Florida has been personally completed under the direct supervision of James O. Smith, Jr. (Florida P.E. No. 45048). The CAR is dated December 13, 1993. The FDER Facility No. for this site is 168506788.

I hereby certify that, in my professional judgement, the components of this CAR satisfy the requirements set forth in Chapter 17-770, F.A.C..

Jun o And 12/21/93

1.0 INTRODUCTION

1.1 Site Location

The Chevron Facility No. 46863 site is located in Township 1, Range 26, Section 16, Duval County, Florida (Figure 1). The site is located at 10162 Lem Turner Road, Jacksonville, Florida.

1.2 Site Description

The Chevron Facility No. 46863 is located in a populated area of Jacksonville consisting of commercial and residential property (Figure 2). Commercial properties border the subject site. Residential property predominates along the side streets in the area.

The site is located at an elevation of approximately 5 feet National Geodetic Vertical Datum. The area has a gradual slope to the south toward the Trout River. The Trout River is the nearest large surface water body and is located approximately 750 feet south of the assessment site. Regional surface water runoff is expected to flow to the south toward the Trout River. The property is currently vacant but was used as a service station until recently when the station was demolished (Figure 3).

1.3 Site History

A review of the site history for the Chevron Facility No. 46863 is listed below chronologically. The information was obtained from the files of Chevron U.S.A., Inc.

In June 1970, Chevron constructed the original facility. Reportedly, four USTs were installed including one 550 gallon used oil UST. The locations of the previous USTs are shown on Figure 3.

In May 1988, petroleum hydrocarbon contamination was discovered. Chevron applied for, and was subsequently accepted into, the Early Detection Incentive

Program (EDI). After being approved for the EDI program, the site was turned over to the state for remediation. In 1989, Chevron closed the facility including removal of buildings and gasoline and used oil USTs.

In 1989, Chevron retained Geraghty & Miller, Inc. to conduct an initial audit to determine the magnitude of hydrocarbon impacts at the site. The Onsite Environmental Audit (OEA) is included as Appendix A. The scope of the OEA included tasks such as monitoring well installation and sampling, soil screening, slug testing, and geologic publication research. Following completion of the OEA the monitoring wells were abandoned.

An industrial septic tank had been installed during construction of the facility to receive waste water from the service bays prior to final disposal. Chevron retained Environmental Geoscience & Engineering, Inc. to oversee the closure of the septic tank. In April, 1993 H & H Mechanical, Inc. closed a single concrete 1,000 gallon septic tank for Chevron. EGE conducted closure groundwater sampling and soil assessment on May 12, 1993. The closure assessment was conducted to comply with FAC 17-761 and FAC 17-770, and the closure report is presented in Appendix B.

1.4 Adjacent Property Use

Chevron Facility No. 46863 is located in an area of commercial development. An office complex is situated to the north; a vacant parcel of wetlands is located to the South (across Dolly Drive); a small business complex is located to the west; and an Island Foods Convenience Store and Fueling station is located to the northeast.

1.5 Objectives of the Current Investigation

The objectives of the assessment investigation conducted at the Chevron Facility No. 46863 were to meet the criteria of Chapter 17-770.600 F.A.C. Specifically, the objectives of the investigation included the following:

- 1. Verification that the source of the petroleum discharge at the site has been abated and no current release of petroleum product is occurring;
- Determination of the lateral and vertical extent, if present, of elevated petroleum constituent concentrations in groundwater and/or soil;
- 3. Identification of potential receptors that might be affected by elevated petroleum constituent concentrations in groundwater or soil, if these conditions are present at the site; and,
- Accumulate all new and existing site data into a Contamination Assessment Report.

2.0 ENVIRONMENTAL SETTING

2.1 Physiography and Topography

Chevron Facility No. 46863 is located in the Coastal Plain Physiographic Province. Land surface topography in this area and for all of northeast Florida is dominated by ancient marine terraces. These terraces were created during the Pleistocene Epoch (10,000-2,000,000 years ago) as a result of changes in sea level. As sea level dropped, a new, relatively level terrace was exposed. The landward extent of each terrace is marked by a low scarp which is remnant of the ancient shoreline. A total of seven marine terraces have been identified in northeast Florida. They are, in descending elevation, the Coharie, Sunderland, Wicomico, Penholoway, Talbot, Pamlico, and Silver Bluff. All of the terraces have been dissected by stream erosion. Only small remnants of the older terraces exist. The site is situated on the Silver Bluff Terrace (0 to 10 ft) above msl (Leve 1966).

2.2 Regional Geology

Chevron Facility No. 46863 is underlain by unconsolidated sediments of Holocene to Pleistocene age consisting of fine- to medium-grain sand, silt, and clay. This unit is underlain by undifferentiated Pliocene and Upper Miocene deposits of interbedded sand, shell, and calcareous silty clay. These two upper units, which extend to a depth of approximately 55 ft below land surface (bls), are underlain by the Miocene age Hawthorn Group (Fairfield 1972 and Scott 1988).

The most predominant lithologies in the Hawthorn Group are dolomitic clayey sands and clayey, sandy dolomites. Phosphatic pebbles also occur throughout the approximately 450 ft thick unit. The Hawthorn Group is underlain by the late Eocene limestones of the Ocala Limestone, which are underlain by the mid- to late-Eocene Avon Park Formation.

2.3 Regional Hydrogeology

Three distinct hydrogeologic units can be defined within the stratigraphic units underlying the site, including the surficial aquifer, the secondary artisan aquifer, and the Floridan aquifer. The surficial aquifer consists of the Holocene and Pleistocene sediments, as well as the more permeable units of the undifferentiated Pliocene and Upper Miocene deposits. This aquifer reportedly extends from the water table to a depth of approximately 55 ft bls, where it becomes finer grained with decreased permeability. The basal Pliocene and Upper Miocene deposits function as the upper sequence of the principal aquiclude.

The secondary artisan aquifer consists of discontinuous lenses of sand and shell that occur in the lowermost Pliocene and Upper Miocene deposits and the Miocene Hawthorn Group. The low permeability marl, clay, and dolomitic beds in the Pliocene and Upper Miocene deposits and the Miocene Hawthorn Group serve as the principal aquiclude underlying the site, restricting the vertical movement of water between the surficial and secondary artisan aquifers and the Floridan aquifer.

The Floridan aquifer is artisan in the vicinity of the site and consists of the Ocala Limestone and the Avon Park Formation of Eocene age, as well as permeable beds of the lower Hawthorn Group that are in hydrologic contact with the rest of the aquifer. This hydrogeologic unit is the major source of water for irrigation, public supply, and industry in northeast Florida. The depth to the Floridan aquifer in the vicinity of the site is approximately 505 ft bls (Scott 1988).

The secondary artisan aquifer is recharged from the overlying surficial aquifer and the underlying Floridan aquifer. The Floridan aquifer is recharged in areas where the water table is above the potentiometric surface of the Floridan aquifer. Recharge of the Floridan aquifer reportedly occurs in portions of western Baker County where the overlying aquiclude is either thin or absent.

5

2.4 Climate

The climate of the area is classified as humid subtropical. Characteristics of this type of climate include high annual rainfall, moderate annual temperatures with low diurnal and seasonal extremes, and high humidity. According to records of the National Weather Service in Jacksonville, Florida, the mean temperature was 67.9°F during the years 1957 through 1986. Recharge to the surficial aquifer is principally through rainfall. The average annual rainfall in the area of the site, according to the National Weather Service in Jacksonville, is approximately 51.5 inches per year. Rainfall is unevenly distributed throughout the year. The wettest and driest months are typically August and November, with mean monthly precipitation totals of 7.1 and 1.5 inches, respectively.

3.0 METHODOLOGY

3.1 Records Search and Well Inventory

Prior to initiation of the field investigation, a records search was conducted to develop a database of available references in the vicinity of the Chevron Facility No. 46863. Geological and hydrogeological references were obtained from the USGS, Florida Bureau of Geology (FBG), U.S. Soil Conservation Service (SCS), and St. John's River Water Management District (SJRWMD) to develop the regional geological setting for the area. The Industrial Septic Tank Closure Assessment Report (Appendix B) was reviewed to compile a well inventory of public and private wells in the area of the site. In accordance with Chapter 17-770 F.A.C. criteria, all permitted private water supply wells within a ¼-mile radius and all public wells within a ¼-mile radius of the site were identified. Additionally, well depths, construction details, and well uses were ascertained when available. The OEA was reviewed to compile historic groundwater quality data and surficial aquifer characteristics.

3.2 Soil Borings and Headspace Analysis

On October 29, 1993, 13 soil borings were installed in accordance with FAC Chapter 17-770 and FDER's "Guidelines for the Assessment and Remediation of Petroleum Contaminated Soils", dated May, 1992. Soil samples were collected with a stainless steel hand auger. Soil vapors were screened for petroleum hydrocarbon vapors using a Foxboro Model 128 organic vapor analyzer with a flameionization detector calibrated to manufacturers specifications. The hand augers and any other soil sampling equipment were decontaminated with a Liquinox soap solution wash followed by a distilled water rinse or high pressure steam cleaning. Soil boring locations were plotted and screening samples were collected; boring advancement was stopped at the water table. Soil samples were screened for methane by using a charcoal probe and a regular probe and subtracting the difference.

3.3 Monitoring Well Installation

On October 29, 1993 five wells were installed by Groundwater Protection, Inc. of Orlando, Florida. The aforementioned OEA wells were abandoned and could not be used. The monitoring wells were installed using a Mobile B-57 truck mounted drill rig. Prior to the initiation of drilling, the drill rig, hollow-stem augers, drill rod, wrenches, and other miscellaneous equipment used in the performance of drilling activities were decontaminated by pressurized steam cleaning. Additionally, all well casing and screen materials used to construct the monitoring wells were decontaminated by steam cleaning immediately prior to installation into the borehole.

Shallow monitoring wells were constructed of 2-inch diameter, Schedule 40 polyvinyl chloride (PVC) casing with threaded joints and a 10-ft section of 0.010-inch slot size screen. The annular space surrounding the screen was backfilled with clean, inert 20/30 silica sand to a depth approximately 1.0 feet above the screened interval. Due to the shallow water table underlying the site, the top of the screened interval was set at 3.0 ft bls which is slightly below the water table. A bentonite seal was placed above the sand pack, and the remaining annular space was backfilled with portland cement grout.

All monitoring wells were completed subgrade with a concrete 2-ft by 2-ft antipercolation pad, an 8-inch manhole casing and cover, and a locking, water-tight cap. The elevations of monitoring wells at the site were surveyed to 0.01-ft accuracy relative to an arbitrary, reproducible datum established at the site.

3.4 Hydrogeological Characterization

Slug tests were conducted during the original OEA. A description of the test procedures is included in Appendix A.

EGE conducted two complete rounds of water level measurements in the new monitoring wells and three temporary piezometers to define the direction of groundwater flow and horizontal hydraulic gradient in the surficial aquifer. The water

8

level surveys were scheduled at least one month apart in accordance with Chapter 17-770 F.A.C. criteria to define temporal variations in the potentiometric surface and hydraulic gradient of the surficial aquifer.

Hydraulic conductivity and hydraulic gradient data were used in conjunction with aquifer lithology characteristics and estimated porosity to estimate groundwater flow velocity in the surficial aquifer underlying the site.

3.5 Groundwater Quality Sampling and Analysis

November 15, 1993 and December 2, 1993, groundwater samples were collected from five monitoring wells in accordance with the FAC Chapter 17-770 and EGE's Comprehensive Quality Assurance Plan (CompQAP) on file with FDER in Tallahassee, Florida.

During the sampling effort, five well volumes were purged from the well casing preceding sample collection. Purging was performed with a diaphragm pump and precleaned teflon tubing. All sampling was conducted using a dedicated teflon disposable bailer, monofilament line, and latex gloves. During purging of each well, field measurements were obtained for temperature, pH, and conductivity using a YSI 3500 pDS meter calibrated in accordance with manufacturers specifications. The sample containers were labeled for identification and preserved when required. Groundwater samples were transferred into laboratory provided sample bottles and placed in a cooler on ice for delivery to Analytical Technologies Laboratory located in Pensacola, Florida.

All nondedicated sampling equipment was decontaminated prior to introduction into monitoring wells, and sampling procedures were performed in accordance with the EGE CompQAP. During sample collection, a duplicate sample and equipment blank were collected and analyzed in accordance with the CompQAP.

4.0 INVESTIGATIVE RESULTS

4.1 Well Inventory

During the industrial septic tank closure, and in accordance with Chapter 17-770 F.A.C. criteria, EGE identified permitted private water supply wells within a 1/4-mile radius of the site and public wells within a 1/2-mile radius of the site. Additionally, well depths, construction details, and well uses were ascertained when available. Six supply wells were identified within a one-half mile radius of the site. No public supply wells were found within a 1/2-mile radius of the site. Well inventory data are listed in Table 1 and water well locations are presented on Figure 4.

4.2 Soil Boring Results

Results of the soil survey are summarized in Table 2. Soil boring locations are shown on Figure 5. Soil samples were typically collected at one foot intervals to approximately 1 ft below the water table in order to perform the following:

- 1) Delineate hydrocarbon impact in the unsaturated zone above the water table; and,
- Preliminary assessment of hydrocarbon impact in the surficial groundwater (prior to well installation).

Soil headspace concentrations in the vadose zone were below detection limits; soil samples collected in the saturated zone (2-3' bls) ranged from below instrument detection limits to >650 parts per million (ppm) in the soil borings.

Excessively contaminated soils or contaminated soils (as defined in FAC 17-770 and FDER's, "Guidelines of Assessment and Remediation of Petroleum Contaminated Soils, May 1992,") were not present at the site. The average water table

at the site is approximately 2' bls. The source of the elevated readings in the saturated zone appears to be the historic operations.

4.3 Monitoring Well Installation Results

On October 29, 1993 five shallow monitoring wells were installed by Groundwater Protection, Inc. of Orlando, Florida. A summary of the construction details of each well is provided in Table 3. Monitoring well boring logs/well construction diagrams for each well are shown in Appendix C. Monitoring well locations are shown on Figure 5. EGE personnel supervised the installation of each of the new monitoring wells.

The location of each of the initial five monitoring wells was chosen following installation and survey of three temporary 2" PVC piezometers. On October 27, 1993, the piezometers were installed using a stainless steel hand auger. On October 29, 1993 prior to well installation the piezometers were surveyed and depth to water measurements were collected. The preliminary groundwater flow direction was to the east towards Lem Turner Road. The specific location of the monitoring wells installed at the site was chosen as follows:

- 1) MW-1 was located in the former gasoline UST tank farm.
- 2) MW-2 was located immediately downgradient of the former pump islands.
- 3) MW-3 was located at the former used oil UST.
- 4) MW-4 was located in the northwest corner of the property for upgradient background monitoring.
- 5) MW-5 was located immediately downgradient of the former industrial septic tank.

Following the installation of each well, groundwater was surged with a teflon and stainless steel surge block, and then purged for approximately 30 to 40 minutes using a diaphragm or centrifugal pump. The groundwater was purged until it was

relatively clear with little silt. Approximately 1.5 to 2 gallons per minute of groundwater was purged from each monitoring well.

4.4 Site Geology

During the construction of each monitoring well, soil samples were collected and described for the sediment content. A brown, slightly silty to silty sand was observed within the top 5 feet bls. The silty sand was underlain by a gray to brown sandy clay which extended to at least 13.0 ft-bls.

4.5 Site Hydrogeology

4.5.1 Groundwater Elevations and Flow

Two sets of groundwater level measurements were obtained during the Contamination Assessment investigation. Groundwater level measurements were conducted during the OEA and on November 17, 1993. Groundwater level measurements and groundwater elevations observed during the OEA are included in Appendix A. Groundwater level measurements and groundwater elevations observed during the November 17, 1993 survey event are presented in Table 4

A potentiometric map of the surficial aquifer for November 17, 1993 groundwater level survey event is presented in Figure 6. The hydrogeologic conditions exhibited in the upper surficial aquifer were similar during both the current and the past survey events, with very little discernable relief in the water table surface. In general, groundwater flow was directed toward the east and to the south (depending on location on the site) in each water level survey event.

4.5.2 Hydraulic Gradient

The hydraulic gradient was determined based on water level measurements taken on November 17, 1993. The hydraulic gradient based on water level measurements taken on November 17, 1993, was calculated to be 0.014 ft/ft.

4.5.3 Hydraulic Conductivity

During the OEA, Geraghty & Miller conducted single well aquifer tests (slug tests) on the abandoned, shallow monitoring wells MW-1 through MW-5, which were screened within the uppermost surficial aquifer and intersected the water table in the screened interval. The results of the slug tests with calculated hydraulic conductivity values are presented in Table 5. Slug test data is included in Appendix A.

The hydraulic conductivity of the surficial aquifer in the 3 to 13 ft bls interval ranged from 6.83 feet per day (ft/day) to 19.09 ft/day. The average hydraulic conductivity value for the water table interval of the surficial aquifer was calculated by averaging the slug test results from OEA wells MW-1 through MW-5. The average hydraulic conductivity value for the upper surficial aquifer was 12.8 ft/day.

4.5.4 Groundwater Flow Calculation

The average linear flow velocity of shallow groundwater underlying the site was calculated using the hydraulic gradient and average hydraulic conductivity values determined for the water table zone of the surficial aquifer. A porosity of 30 percent was assumed for the upper surficial aquifer underlying the site, based on the characteristics of the predominantly silty sand aquifer. The horizontal groundwater flow velocity was calculated using the following formula:

 $\mathbf{v} = \mathbf{K} \times \mathbf{i}/\mathbf{n}$

where: v = horizontal groundwater flow velocity,

- K = horizontal hydraulic conductivity,
- i = hydraulic gradient, and
- n = estimated porosity.

The average linear flow velocity of shallow groundwater underlying the site was approximately 218 feet per year (ft/yr). This calculation is based on a hydraulic gradient of 0.014 ft/ft, a hydraulic conductivity of 12.81 ft/day, and an assumed porosity of 30 percent.

4.6 Groundwater Analytical Results

On November 17 and December 2, 1993 groundwater samples were collected from the five monitoring wells at the Chevron Facility No. 46863. Groundwater analytical results are summarized in Table 6. Copies of the original laboratory analytical Reports are included in Appendix D. Groundwater samples collected from MW-1, MW-2, and MW-4 were analyzed for volatile organic aromatics by EPA Method 602, and polynuclear aromatic hydrocarbons by EPA method 610. Groundwater samples collected from MW-3 and MW-5 were analyzed for the Waste Oil Analytical Group (FAC 17-770).

The laboratory analytical results for the groundwater samples obtained at the site indicated that benzene, ethylbenzene, total xylenes, arsenic, chromium, and lead were detected in MW-3, only lead was detected in MW-5. No other constituents were found in any other well and only the benzene found in MW-3 at 15 ug/l, exceeded it's regulatory guidance criteria of 1 ug/l. This data shows a significant reduction from the OEA groundwater analytical data (Appendix A) from samples collected in 1988, when volatile organic compounds were encountered above FDEP Guidance criteria in the UST excavation.

14

5.0 CONCLUSIONS

The Chevron Facility No. 46863 site is located in an area of commercial development. Six permitted supply wells were identified within a 1/2 mile radius of the facility.

The sediments at the site consist of primarily of silty fine-grained sands and sandy clays. The sand and silty sand are representative of the surficial aquifer which has an approximate thickness of 55-ft. The surficial aquifer is underlain by a 450-ft thick confining unit which overlies the Ocala Limestone. The direction of groundwater flow in the surficial aquifer underlying the site is toward the east and south at an average linear groundwater velocity of approximately 218 ft/yr.

Only dissolved benzene is present in the groundwater at the site at levels exceeding FDER action criteria in only one monitoring well. This concentrations appears to result from the historic used oil UST. The concentrations found in 1988 during the OEA have been reduced over time (by naturally occurring biologic processes).

6.0 **RECOMMENDATIONS**

The extent of hydrocarbon impact in the soil and groundwater at Chevron Facility No. 46863 is very limited and has shown a downward trend in constituent levels in the groundwater. EGE recommends that the CAR be approved for No Further Action.

Environmental Geoscience & Engineering, Inc.

. -

- -

- . .

- _
- · ----

- -

. _ .

-

· ____

-

- - - - - - - Environmental Geoscience & Engineering, Inc.

Tables

Table 1 - Well Inventory Results Chevron Facility # 46863, 10162 Lem Turner Road, Jacksonville, Florida

			Well Information			
	Address	Ownership/Use	Well Construction Information	nformation	Installation Date	Well Status
J 6623	9953 Old Lem Turner Road	Private/P & A	Total Depth (fect) Diameter (inches)	550 2	12/1/89	Plugged & Abandoned
J1425	9641 Lem Turner & Woodiand Ave.	Private/Carwash	Total Depth (foct) Diameter (inches)	4 100	8/7/17	Active
J1456	2946 Capper Road	Private/Supply	Total Depth (fect) Diameter (inches)	o 70 0	177.8/8	Active
J2651	3742 Bessent Road	Private/Supply	Total Depth (feet) Diameter (inches)	650 2	00/00/81	Active

Table 2 - Soil Assessment Results Chevron Facility # 46863, 10162 Lem Turner Road, Jacksonville, Florida

· -

_

_ _

			-	OVA-FID Re	OVA-FID Reading Interval (depth bls)	ul (depth bls	(
Boring L.D.		0 to 1-feet			1 to 2-foot			2 to 3-feet	
	Regular Probe	Charcoal Probe	Total	Regular Probe	Regular Probe Charcoal Probe	Total	Regular Probe	Charcoal Probe	Total
SB-1	-	T	0	-	1	0	0	0	0
SB-2	0	0	0	30	30	0	300	300	
SB-3	o	0	0	1	I	0	250	250	0
SB-4	0	0	0	0	0	0	g n i		c
SB-5	0	0	0	0	0	0	40	4	. 0
SB-6	0	0	0	0	0	0	780	780	0
SB-7	0	0	0	0	0	0	0	0	0
SB-\$	0	0	0	0	0	0	0	0	0
SB-9	0	0	0	0	0	0	>1000	350	×650
SB-10	0	0	0	0	0	0	280	280	0
SB-11	0	0	0	80	80	٥	0	0	0
SB-12	0	0	0	0	0	0	0	0	0
SB-13	0	0	0	0	0	0	110	80	102

All samples analyzed with a Foxboro 128 Organic Vapor Analyzer with a

flamionization detector

All depths are foct below land surface (bls).

Table 3 - Well Construction Summary Chevron #46863, 10162 Lem Turner Rd., Jacksonville, Florida

_

Well I.D.	Installation Date	Total Depth (ft.)	Depth to Sand (ft.)	Depth to Top of Bentonite (ft.)	Casıng Diameter (inches)	Screen Length (ft.)
I-WM	October 29, 1993	13.0	2.0	1.5	2	10.0
MW-2	October 29, 1993	13.0	2.0	1.5	7	10.0
MW-3	October 29, 1993	13.0	2.0	1.5	7	10.0
MW-4		13.0	2.0	1.5	2	10.0
MW-5	October 29, 1993	13.0	2.0	1.5	7	10.0

Table 4 - Groundwater Level MeasurementsChevron Facility No. 46863, 10162 Lem Turner Road, Jacksonville, Florida

	Survey	Novembe	г 17, 1993
Well I.D.	Elevation (1) (feet)	Depth to Water (feet)	Water Level Elevation (feet)
MW-1	4.52	1.67	2.85
MW-2	4.63	2.06	2.57
MW-3	5.12	2.13	2.99
MW-4	5.61	2.26	3.35
MW-5	5.07	2.08	2.99
PZ-1	5.45	3.63	1.82
PZ-2	4.06	2.71	1.35
	4.44	1.27	3.17
PZ-2 PZ-3			

Notes:

_

- -

(1) The survey elevation is referenced to an arbitrary benchmark elevation of 5.00' at the top of a fire hydrant on the south side of Dolly Drive.

Chevron Facility # 46863, 10162 Lem Turner Road, Jacksonville, Florida Table 5 - Results of Hydraulic Conductivity Testing

Original OEA	Hydraulic Conductivity of the
Monitoring Well Number	Surficial Aquifer as Determined in OEA
MW-1	6.83 ft/day
MW-2	11.15 ft/day
MW-3	19.09 ft/day
MW-4	12.27 ft/day
MW-5	14.69 ft/day
Average Hydraulic Conductivity	12.81 ft/day

Note: Original OEA wells are not analogous to current wells on site in location or depth, see Appendix A for test details

lts	
Resu	
nalytical R	e. Florida
r Ai	ille,
lwater An	Auo
round	acks
Gro	Road, Ja
93 Ground	Roa
5	ner Ros
mbe	Tur
& December	lo. 46863, 10152 Lem Turne
	52 I
vember 4	101
Nen	863,
ſN	.46
ĥ	No
nma	VLOD
ole 6 - Summ	Chevron No.
-9	Č
able	
L.	

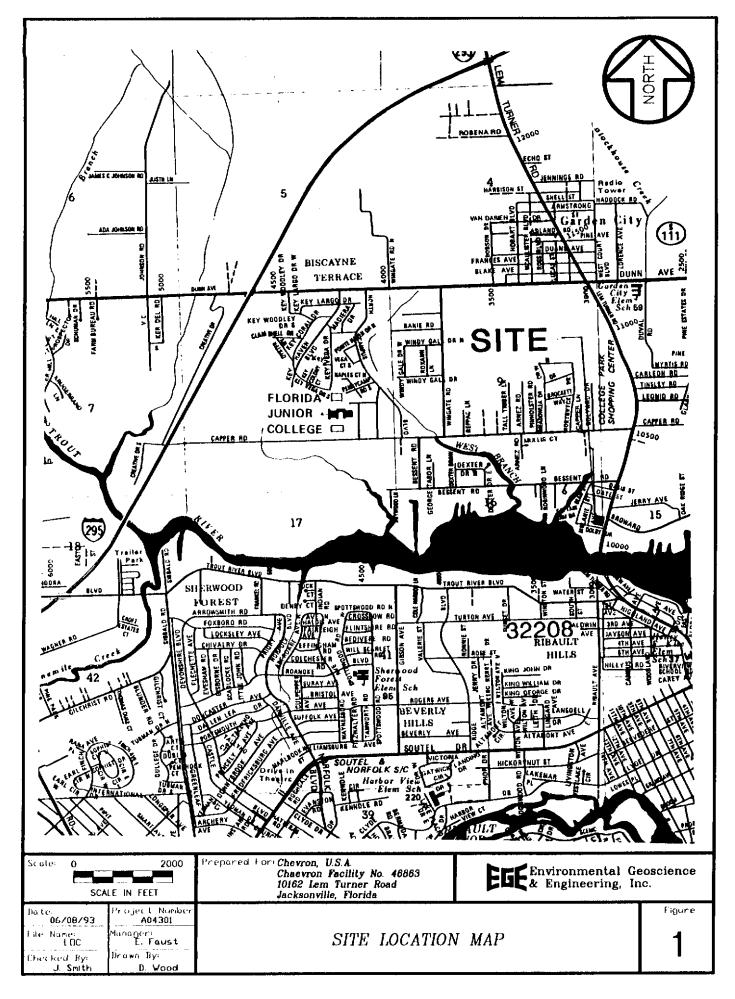
Monitor Well ID:	I-WM	MW-2	MW-3	MW-4	MW-5	APPLICABLE FDER
Collection Date: ***	Nov-15-93	Nov-15-93	Nov-15-93 Nov-15-93 Nov-15-93	Nov-15-93	Nov-15-93	GUIDANCE
Parameter****		Апа	Analvitical Results	ts		CONCENTRATION
Renzene	7	7	16	1	7	-
Deliterio	7	7	U	7	7	*
Ethylbenzene	₹	⊽	8	V	∠	•
Xylene	8	Q	4	4	4	·
Toluene	Ŷ	\$	Ŷ	Ŷ	Ŷ	1
VOA, Total (BTEX,T)	BDL	BDL	27	BDL	BDL	50 *
Arsenic	SN	SN	ŝ	NS	\$	50 **
Cadmium	SN	SN	Ş	SN	\$	10 **
Chromium	NS	SN	20	SN	<10	50 **
Lead	NS	SN	12	NS	4	50 **
Total of Volatile Aromatic TICs		SN	BDL	SN	BDL	•
Total of Semi-Volatile TICs	NS	NS	4	NS	8	•

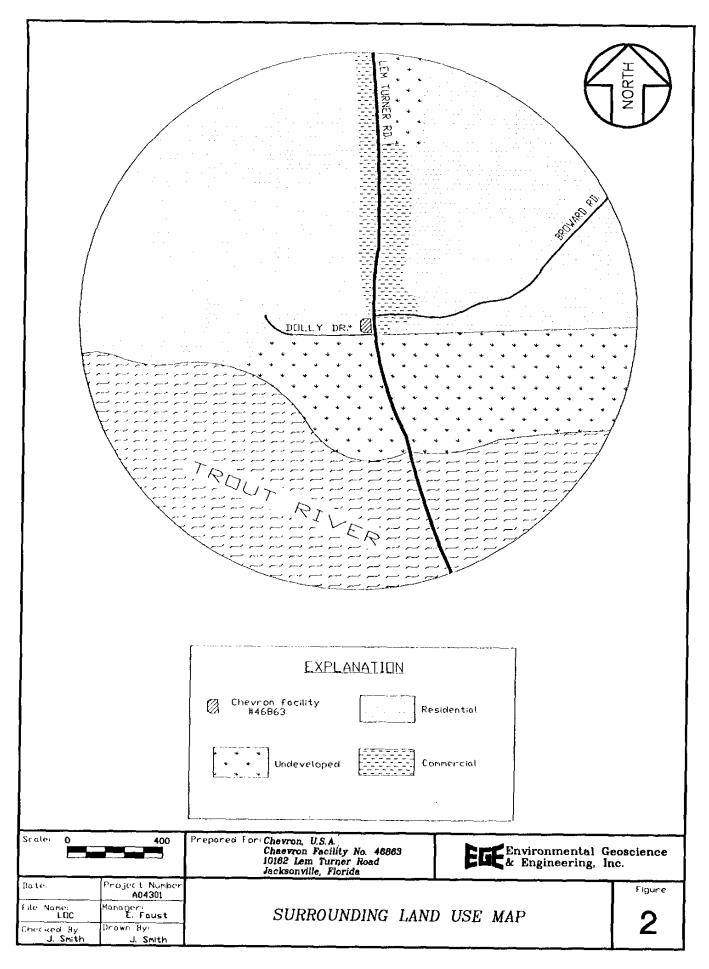
Notes:

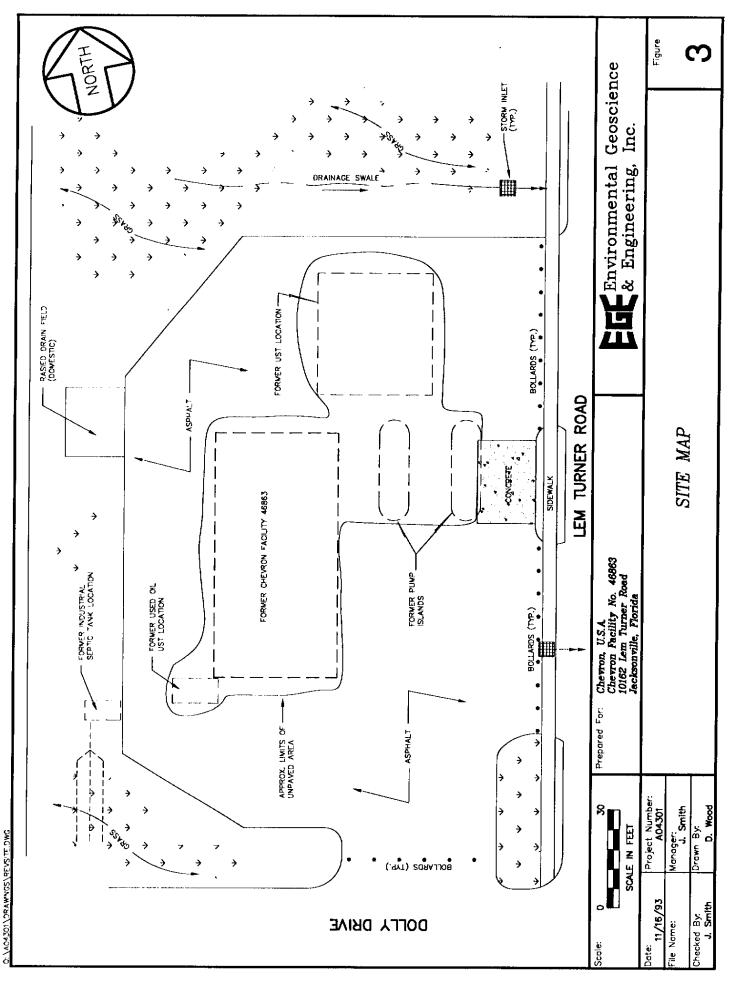
* Chapter 17-770 Florida Administrative Code

** FDER Groundwater Guidance ConcentratioNS, February 1989

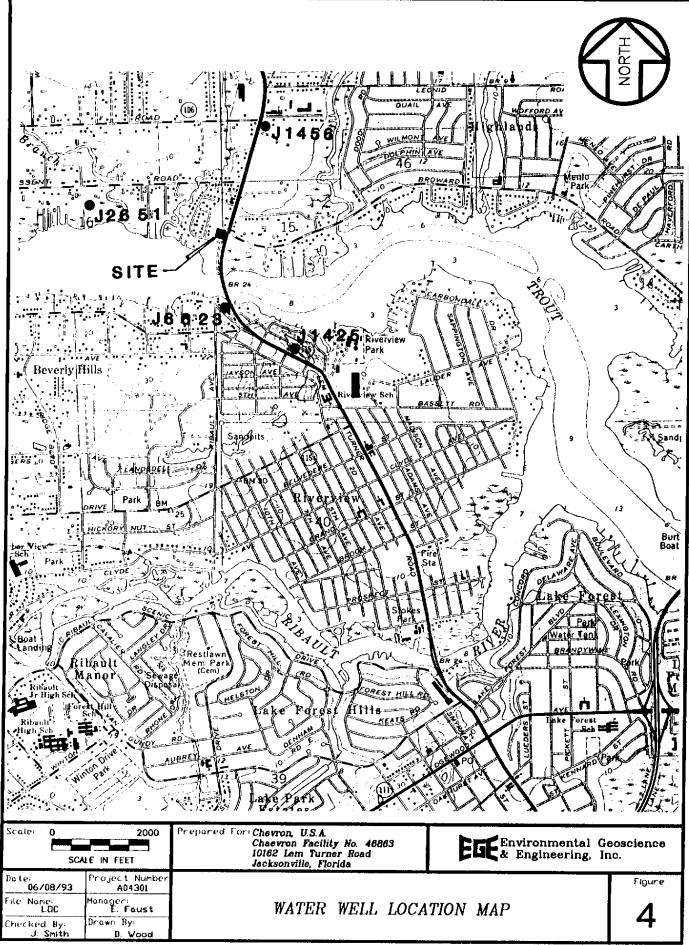
*** Samples collected for metals and semi-volitiles collected on December 2, 1993 **** MW-1, MW-2, and MW-4 were analyzed for EPA methods 602 and 610, MW-3 and MW-5 were analyzed for the Waste Oil Analytical Group (FAC-17-770)

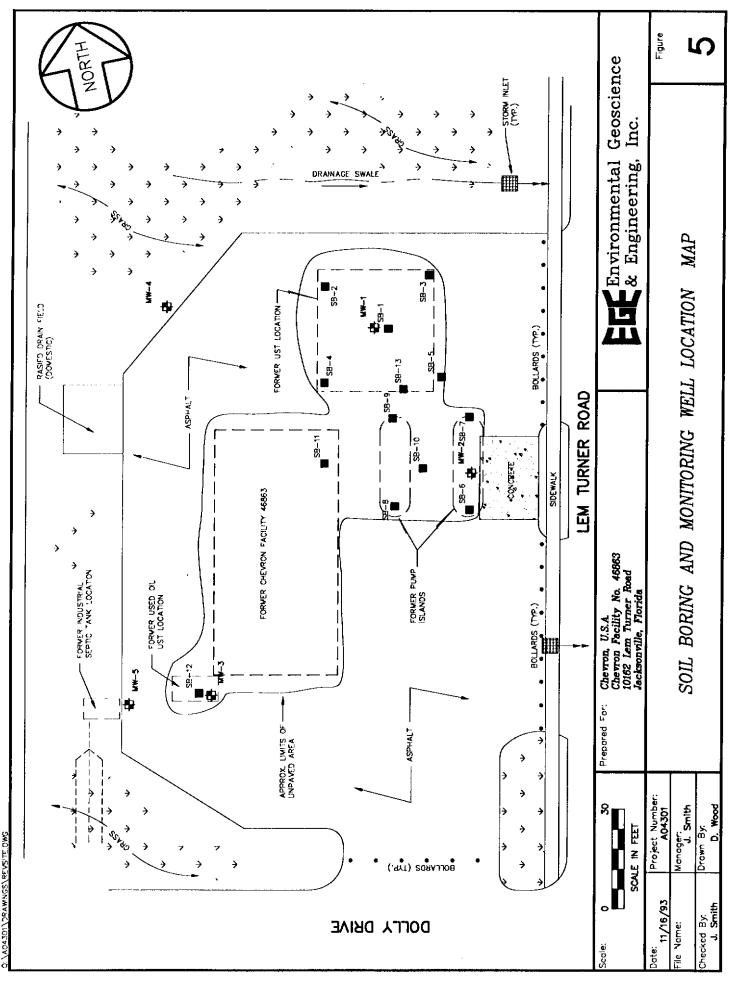

All concentration shown are micrograms per liter. BDL Below Detection Limits

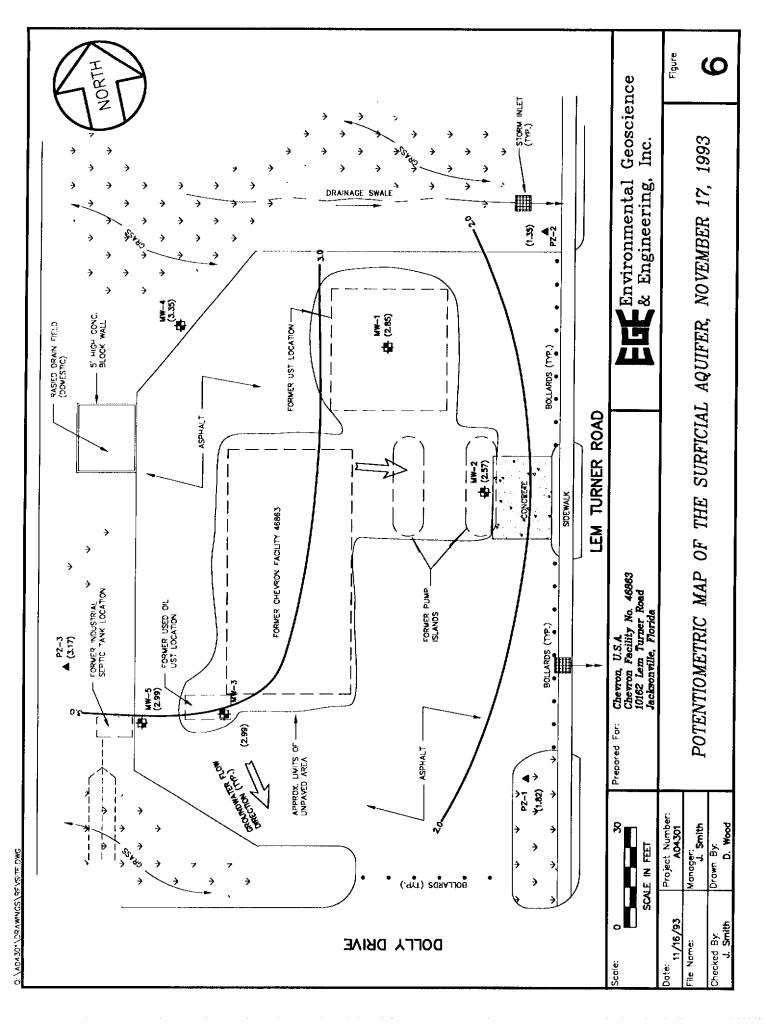

NS Not Sampled


Figures

-


Environmental Geoscience & Engineering, Inc.





.. ..

Appendices

_

-

- -

_----

Environmental Geoscience & Engineering, Inc.

Appendix A

Geraghty & Miller OEA

Environmental Geoscience & Engineering, Inc.

ON-SITE ENVIRONMENTAL AUDIT LEM TURNER ROAD CHEVRON FACILITY #46863

> Prepared for: CHEVRON U.S.A.

August 3, 1989

Prepared by:

GERAGHTY & MILLER, INC. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

GERAGHTY & MILLER, INC.

_ .

TABLE OF CONTENTS

EXECUTIVE SUMMARY	1
INTRODUCTION	2
WORK PERFORMED	4
GENERAL SITE DESCRIPTION	5
Physiographic Features	5
Site Description	5
Land Use and Utilities	6
REGIONAL HYDROGEOLOGY	7
LOCAL HYDROGEOLOGY	9
Hydrogeologic Units	9
Hydraulic Properties	9
Ground-Water Flow	10
SAMPLING AND ANALYSES	11
Soil Analyses	11
Water Analyses	11
SUMMARY	12
REFERENCES	
APPENDICES	
APPENDIX A - Monitor Well Construction Details	
APPENDIX B - Lithologic Logs	
APPENDIX C - Hydraulic Testing	
APPENDIX D - OVA Measurements	
APPENDIX E - Ground-water Analytical Data	

<u>Paqe</u>

T

LIST OF TABLES

TABLE 1.	Summary of Well Construction Details
TABLE 2.	Hydraulic Conductivity Values
TABLE 3.	Monitor Well and Compliance Well Water-level Elevations
TABLE 4.	Estimated Rates of Ground-water Flow
TABLE 5.	Range of Positive OVA Values from Soil Sampling
TABLE 6.	Summary of Ground-water Analytical Results

GERAGHTY & MILLER, INC.

··· ··· [

LIST OF FIGURES

Figure 1.	Regional Area Map
Figure 2.	Site Map
Figure 3.	Monitor Well and Utilities Location Map
Figure 4.	Topographic Site Map
Figure 5.	Land Use Map
Figure 6.	Regional Stratigraphy
Figure 7.	Geologic Cross Section A-A'
Figure 8.	Geologic Cross Section B-B'
Figure 9.	Water Table Contour Map (12-2-88)
Figure 10.	Water Table Contour Map (12-5-88)
Figure 11.	Water Table Contour Map (1-11-89)
Figure 12.	Total VOA Concentration Map
Figure 13.	Benzene Concentration Map

GERAGHTY & MILLER, INC.

· · · · · · · · · · ·

EXECUTIVE SUMMARY

Dissolved hydrocarbon constituents were identified in ground-water samples from two of four previously installed compliance wells sampled at Chevron facility #46863, located at the intersection of Lem Turner Road and Broward Road. Sample analyses on ground water from four of five monitor wells indicates no dissolved hydrocarbon constituents are present. Ground water from the remaining well (MW-1) did contain MTBE, but at a level below the FDER recommended lower limit (50 ug/L). Phase separated hydrocarbon was not present in any of the wells. Excess ground-water hydrocarbon degradation is centered around the facility's underground storage tanks, although the exact source of hydrocarbon degradation has, to date, not been determined. Investigation results indicate a ground-water flow rate average of 0.67 ft/day in a southeasterly direction. The lateral extent of the dissolved hydrocarbon plume apparently does not extend off-site.

Positive organic vapor analyzer readings were recorded when screening soils from well MW-1, located downgradient from the tank pit. The readings were below FDER excess soil hydrocarbon degradation limits but indicate a potential for excess soil hydrocarbon degradation in the immediate tank pit area.

INTRODUCTION

Chevron USA (Chevron) contracted Geraghty & Miller, Inc. (G&M) to assess the potential hydrocarbon degradation at facility #46863. The site is in a residential and light commercial area along Lem Turner Road (State Highway 115) in Jacksonville, Florida (Figures 1 and 2).

The scope of work of this study, as outlined in general in the Chevron Guidance Document, includes the following tasks:

Conduct a preliminary literature search of the geology and hydrology of the area.

Drill and install a few monitoring wells, generally no more than five.

- Construct representative soil profiles from soil samples during drilling, and measure organic vapors of split-spoon soil samples using a Foxboro Century OVA Model 108 (Flame Ionization Detector) calibrated to methane.
 - Survey well elevations and measure static fluid levels in each well, including measuring the thickness of phase separated hydrocarbon, if any, in each well. Establish the hydraulic gradient. Extract water samples from new monitoring wells and analyze. Prepare water-table, benzene, and product thickness maps.

Compile information on nearby structures and underground utilities (gas, electric, water, sewers, etc.)

GERAGHTY & MILLER, INC.

2

Conduct a potable well survey within a one-quarter mile radius of the facility.

Identify possible off-site sources of hydrocarbon degradation.

Results of these tasks, as presented in this report, provide the basis for the Executive Summary and recommendations for future investigations as requested by Chevron.

-

WORK PERFORMED

The following activities were performed to complete the scope of work tasks.

U.S. Geological Survey and Florida Geological Survey publications describing the regional and local hydrogeology were reviewed. Data provided in these reports were synthesized and extrapolated to the site.

Five monitor wells were installed at locations shown in Figure 3. Well construction details are summarized in Table 1 and well installation procedures are described in Appendix A. Evaluation of the site specific geology and hydrogeology was based on interpretation of lithologic logs (Appendix B), and hydraulic test data (Appendix C). The presence and extent of hydrocarbon degradation was evaluated based on organic vapor analyses of soils (Appendix D) and on ground-water analyses (Appendix E).

Before drilling, a survey of underground installations at the facility was conducted. Underground Cable Locators (UNCLE) was contacted to request location of their clients' underground utilities. Owners of underground utilities not contacted by UNCLE were also requested to identify their underground structures or utilities in the area, if any. Additionally, Jacksonville Electric Authority and the City of Jacksonville were requested to identify their underground facilities in the area.

A survey of potable wells and land usage was conducted for a 4-mile radius around the facility. Information was collected from Bio-Environmental Services, City of Jacksonville.

4

GENERAL SITE DESCRIPTION

Physiographic Features

Land surface in the site area is level, with elevations of less than 10 ft mean sea level (msl) (Figure 4). A dendritic drainage system is well developed in the area, dominated by the east flowing Trout River, which includes Blockhouse Creek to the east, West Branch Creek to the west, and a smaller unnamed creek west of the site. The St. Johns River, which the Trout flows into several miles east of Facility 46863, is the major drainage system for northern Florida and flows east into the Atlantic.

Site Description

Facility 46863 is in northeast Florida in central Duval County, five miles northwest of downtown Jacksonville (Figure 1). The facility is located along Lem Turner Blvd (State Highway 115) several hundred yards from the north bank of the Trout River. Two pump islands are in front of the facility building and parallel Lem Turner Blvd, the eastern site boundary (Figure 2). The facility's northern portion includes three underground gasoline storage tanks and is bordered by private residential property. Dolly Drive defines the southern site limit and a 70-yd strip of undeveloped property is adjacent to the western facility boundary. A 500gallon underground waste oil tank is present at the southwest corner of the facility building.

Land Use and Utilities

The area immediately surrounding the site is predominantly sparsely residential or undeveloped (Figure 5). Commercialized land, consisting of small businesses and individual retail shops, extends north and south adjacent to Lem Turner Road. A convenience store-gas station is located on the northeast corner of the Lem Turner and Broward intersection. No water supply wells were listed within a one-quarter mile radius of the site.

An overhead power line is located in the northwest section of the site (Figure 3). An old 24-inch concrete storm sewer line is present along the west side of Lem Turner Road and a new 42-inch concrete storm sewer is located along the east side. A 16-inch water main is placed along the east side of the Lem Turner median. Southern Bell has a buried cable to the southwest of the site.

REGIONAL HYDROGEOLOGY

Two regional aquifer systems are present in northeast Florida, the surficial aquifer system and the Floridan aquifer system (Figure 6). The surficial aquifer is made up principally of Pliocene to Holocene unconsolidated to poorly indurated clastic deposits and may also include well indurated carbonate rocks. It contains the water table and water within it is under mainly unconfined conditions; beds of low permeability may cause semi-confined or locally-confined conditions in its deeper parts (Florida Geological Survey, 1986).

The shallow aquifer system of Duval County is generally separated into two separate aquifers, a surficial sand bed aquifer and a basal limestone, sand, and shell aquifer. In central Duval County, in the vicinity of the site, the entire shallow aquifer system is approximately 40 ft thick and may consist of a series of relatively thin permeable zones separated locally by a number of relatively thin confining beds (Leve, 1966).

Miocene age rocks of the Hawthorn Formation lie between and collectively retard the exchange of water between the overlying surficial aquifer system and the Floridan aquifer system. The Hawthorn Formation is approximately 400 to 500 ft thick in the site area. It is comprised of sandy clays and clayey sands interbedded with phosphatic sandy limestone and dolomite lenses. Although a few thin discontinuous aquifers at the base of the Hawthorn are hydraulically connected to the Floridan, an extensive confining layer in the Hawthorn separates the Floridan and the shallow aquifer system.

The Floridan aquifer system is a thick carbonate sequence which includes all or part of the Paleocene to early Miocene series

GERAGHTY & MILLER, INC.

7

and is the primary ground-water source in northeast Florida. Where overlain by an intermediate confining unit (Hawthorn Formation), the Floridan contains water under confined conditions. Where overlain directly by the surficial aquifer system, the Floridan may or may not contain water under confined conditions depending on the extent of low permeability material in the surficial aquifer system (Florida Geological Survey, 1986).

In the Duval County area, the top of the Eocene Ocala Group represents the top of the Floridan at depths greater than 400 ft (Leve, 1966). Limited data for the area indicates the Floridan is generally around 1500 to 2000 ft thick. Water-bearing zones within the Floridan are comprised of soft, porous limestone and porous dolomite beds. Hard, massive dolomite and limestone beds in the Floridan are relatively impermeable and act as confining beds that restrict vertical movement of water (Leve, 1966).

An extensive confining unit in the Miocene Hawthorn Formation and in the Pliocene or upper Miocene deposits separate the two aquifer systems (Leve, 1966).

GERAGHTY & MILLER, INC.

8

LOCAL HYDROGEOLOGY

Hydrogeologic Units

Shallow subsurface sediments at the site are correlative with the undifferentiated sediments of Pleistocene and Recent age blanketing most of northeast Florida that comprise the uppermost unit of the shallow aquifer system. Pleistocene and Recent deposits average about 20 ft in thickness in central and eastern Duval County and consist primarily of fine to medium grained, poorly to moderately sorted sand and clayey sand.

The sediments penetrated at wells MW-1 through MW-5 are nonhomogeneous ranging from clay, to sandy clay, to clayey sand, to sand. These shallow subsurface sediments may be generally separated into two units: an upper fine to medium grained, moderately sorted sand that ranges from 3.0 to 6.7 ft thick, and a lower sandy clay to clayey sand that may contain thin (≤ 2 ft) interbedded clay layers.

Two geologic cross sections depicting the site's two shallow subsurface hydrogeologic units were constructed using boring data (Figures 7 & 8). These cross sections graphically show the sand unit maintaining a fairly uniform thickness across the site with slight thickening in the central part at well MW-3, and some thinning towards the northeast at MW-1.

Hydraulic Properties

Hydraulic conductivities for wells 1 through 5 are presented in Table 2. These values were calculated from slug test data using the method presented by Bouwer and Rice, 1976. Detailed description of slug testing procedures and hydraulic conductivity calculations are presented in Appendix C. Based on this

methodology, hydraulic conductivities range from 6.83 feet per day (ft/day) to 19.09 ft/day at MW-1 and MW-3, respectively, with an average of 12.80 ft/day. This average is within the expected range of values for the entire vertical section of fine sands and clayey sands penetrated at each borehole.

Ground-Water Flow

Depth to water at the site is approximately 2.5 to 4.0 ft below grade. Fluid levels were measured on December 2 and 5, 1988 and January 11, 1989 and these data are presented in Table 3. The ground-water surface slopes generally towards the Trout River and trends to the southeast (Figures 9 to 11). During well installation the upper sand unit as well as the underlying clayey sand and sandy clay were saturated.

Estimated rates of horizontal ground-water flow based on calculated hydraulic conductivities and gradients measured at the site are presented in Table 4. The hydraulic gradient at the site ranges from .015 ft/ft (feet per foot) in the northern section of the site to .0047 ft/ft in the southern section. Ground-water flow direction is towards the southeast indicating probable discharge into the Trout River. Estimated ground-water velocities at the site average 0.67 ft/day and range from 0.16 ft/day to 1.43 ft/day.

SAMPLING AND ANALYSES

Soil Analyses

Soils from each monitor well-bore were screened with a calibrated Foxboro Century Model 108 Flame Ionization Detector (FID) for organic vapors (Appendix D). Background organic vapor analysis (OVA) values at the time of screening were 3 to 4 parts per million (ppm). Results presented in Table 5 show positive readings were recorded only for soils taken from MW-1, with a maximum recorded value of 25 ppm.

Water Analyses

Analytical results from the sampled ground water (Table 6 and Appendix E) indicate the presence of volatile organic aromatics (VOAs) in excess of FDER limits. MTBE was the most commonly identified constituent, present in the compliance wells (ranging from 23 to 2800 micrograms per liter (ug/L)) and well MW-1 (13 ug/L). Benzene, toluene, ethylbenzene, and total xylenes were identified in two compliance wells but not in the monitor wells.

Total VOA and benzene concentrations are plotted in Figure 12, and the estimated limit of VOA concentrations greater than 50 ug/L is shown. Highest concentrations are found at the compliance wells at the northeast and southwest corners of the tank pit. Benzene concentrations (Figure 13) demonstrate a similar distribution pattern, restricted to the tank pit area only.

SUMMARY

Ground-water samples were taken from four previously installed compliance wells at Chevron facility 46863. Analytical results indicate VOAs are present at levels in excess of FDER limits.

Five additional wells were installed for interpretation of the sites geology and hydrogeology, and for evaluation of the distribution of possible soil or ground-water hydrocarbon degradation.

Organic vapor analyses were performed on soil samples selected at regular intervals during drilling with auger flights of four new wells (one per three ft) and during split-spoon sampling of the remaining well (one per two ft). Screening of the soils for organic vapors with the FID resulted in positive responses only at well MW-1. No FID responses were above FDER excess soil hydrocarbon degradation limits at this downgradient well but the response indicates a potential for excess soil hydrocarbon degradation in the immediate tank pit area.

Analytical results for ground-water samples from the newly installed wells indicate no VOAs were present and that MTBE was present at only one well (MW-1), in an amount below the FDER recommended limit.

Investigation results indicate a ground-water velocity of 0.67 ft/day in a southeasterly direction. Although low amounts of MTBE (13 ug/L) were present downgradient at well MW-1, ground-water degradation is apparently centered around the facility's underground fuel storage tanks.

12

LIST OF REFERENCES

- Bouwer, H. and Rice, R.C. (1976), A Slug Test for Determining Hydraulic Conductivity of Unconfining Aquifers with Completely or Partially Penetrating Wells. Water Resources Research, Vol. 12, No. 3, pp. 423-428.
- Leve, Gilbert W. (1966), Ground Water in Duval and Nassau Counties, Florida. Florida Geological Survey, Report of Investigation No. 43.
- Snell, L. J., and Anderson, W. (1970), Water Resources of Northeast Florida. Department of Natural Resources, Report of Investigation No. 54.
- Southeastern Geological Society Ad Hoc Committee (1986), Hydrogeological Units of Florida. Florida Geological Survey, Special Publication No. 28.

Well Number	Location	Total Depth (ft)	Depth to Base of Screen (ft)	To top of Screen Depth (ft)	Diam,	Top of Casing Elevation (ft)*	Date Completed
KW-1	17 ft south of						
	the concrete				4.00/		
	base of sign post	12.2	11.5	1.5	SCH 40 PVC	19.54	12/1/88
MW-2	57 ft west of				4.00/		
	tank pit center	14.0	13.3	3.3	SCH 40 PVC	20.99	12/1/88
4W-3	7 ft north of						
	NW corner of				4.00/		
	building	14.0	13.3	3.3	SCH 40 PVC	21.26	12/1/88
48-4	22 ft south west						
	of SW corner				4.00/		
	of building	13.2	12.8	2.8	SCH 40 PVC	20.57	12/1/88
14-5	15 ft south east						
	of SE corner				4.00/		
	of building	13.5	13.2	3.2	SCH 40 PVC	20.64	12/1/88

TABLE 1. SUNMARY OF WELL CONSTRUCTION DETAILS

All measurements from surface.

.

-

* Top of Casing Elevation relative to an arbitrary bench mark elevation of + 20* (msl)

	K				
Well	(cm/sec)	(ft/day)	(gal/day/ft ²		
MW-1	2.4 X 10 ⁻³	6,83	51.09		
MW-2	3.9 X 10 ⁻³	11.15	83.40		
MW-3	6.7 X 10 ⁻³	19.09	142.79		
MW4	4.3 X 10 ⁻³	12.27	91.78		
MW-5	5.2 X 10 ⁻³	14.69	109.88		
Average	4.5 X 10 ⁻³	12.80	95.79		

· -

-

GERAGHTY & MILLER, INC.

.

≥11	Water	Level Elevation	(ft)*
ımber	12-2-88	12-5-88	1-11-89
-1	16.91	16.73	16.82
-2	17.82	17.57	17.45
-3	17.63	17.46	17.40
-4	17.11	16.95	16.98
·5	16.76	16.62	16.72
	17.68	17.38	17.21
	17.33	17.06	16.95
	17.43	17.26	17.16
	17.24	17.03	16.94

TABLE 3. Monitor Well and Compliance Well Water Level Elevations

.

* Water level measured from the top of well casing.

_...

_

_

Water level elevation relative to an arbitrary bench mark elevation of + 20" (msl)

GERAGHTY & MILLER, INC.

.

	Range of K (ft/day)	Range of Gradient (ft/day)	Range of Ground-water Flow (ft/day)
Low	6.83	.0047	0.16
High	19.09	.0150	1.43
Average	12.80	.0105	.67

TABLE 4. Estimated Rates of Ground-water Flow

Well	Positive OVA Values
MW-1	10.0 - 25.0 ppm
MM-5	None
MW-3	None
MW-4	None

TABLE 5. Range of Positive OVA Values from Soil Sampling

Well*	Benzene	Toluene	Ethyl Benzene	Total Xylenes	MTBE	Total VOAs
A	<	<	<	<	23	<
в	970	63	18	<10	1000	1100
С	500	48	16	130	2800	690
D	<	<	<	<	673	<
1	<	<	<	<	13	<
2	<	<	<	<	<	<
3	<	<	<	<	<	<
4	<	<	<	<	<	<
5	<	<	<	<	<	<

TABLE 6. Summary of Ground-water Analytical Results

All values in micrograms per liter

< = less than lower limit of detection

* A through D sampled 9/19/88, 1 through 5 sampled 12/5/88

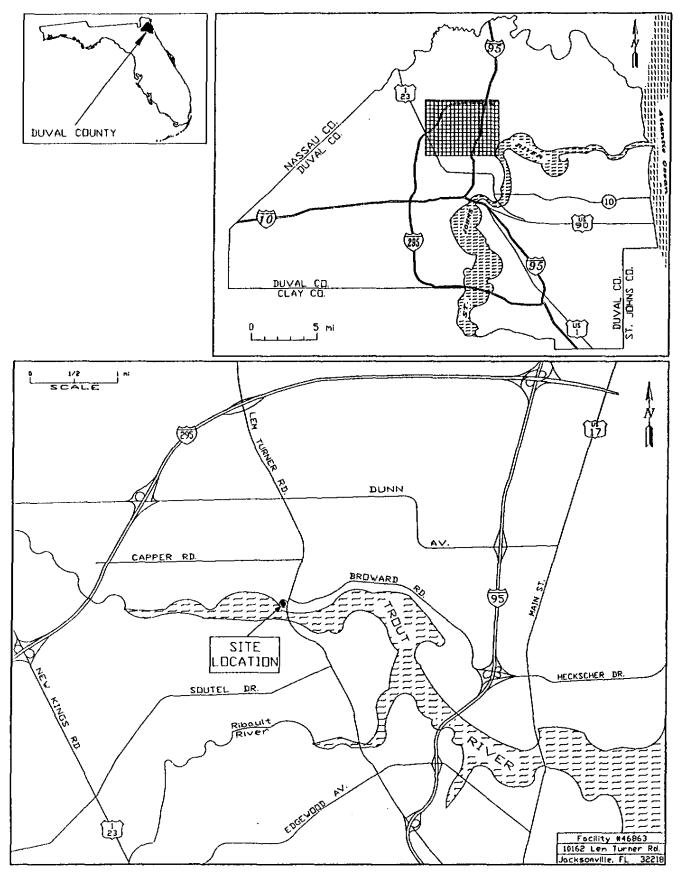
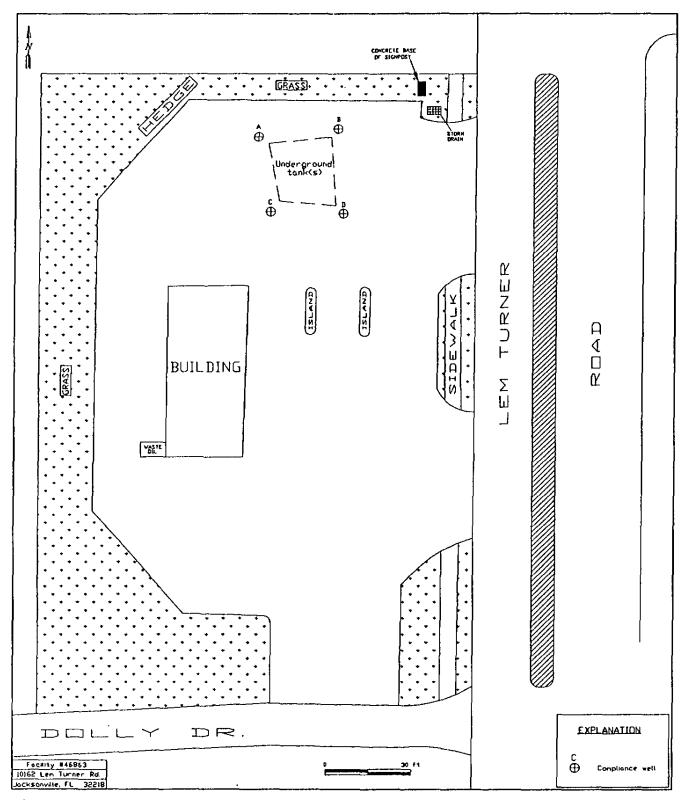



Figure 1. Regional Area Map

GERAGHTY & MILLER, INC.

· [

GERAGHTY & MILLER, INC.

. . .

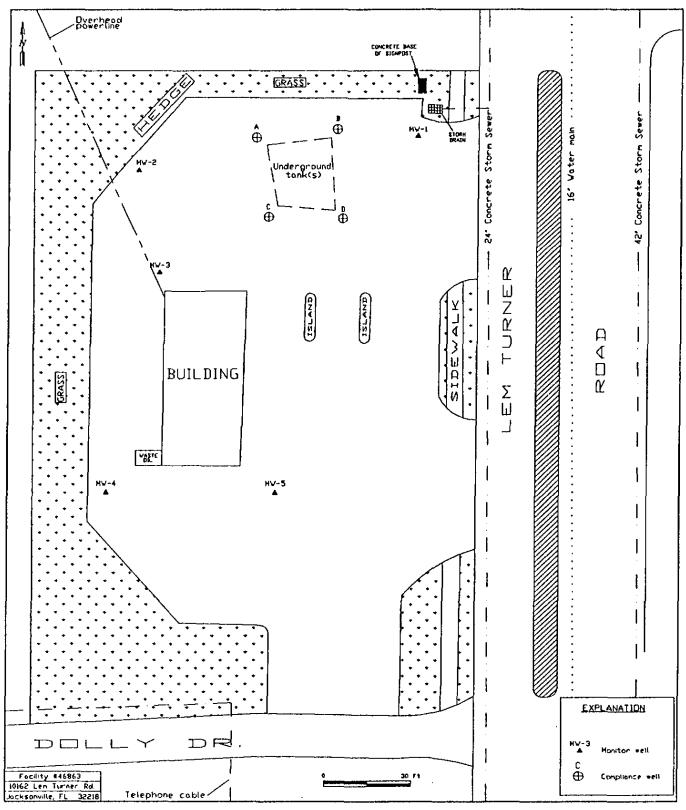


Figure 3. Monitor Well and Utilities Location Map

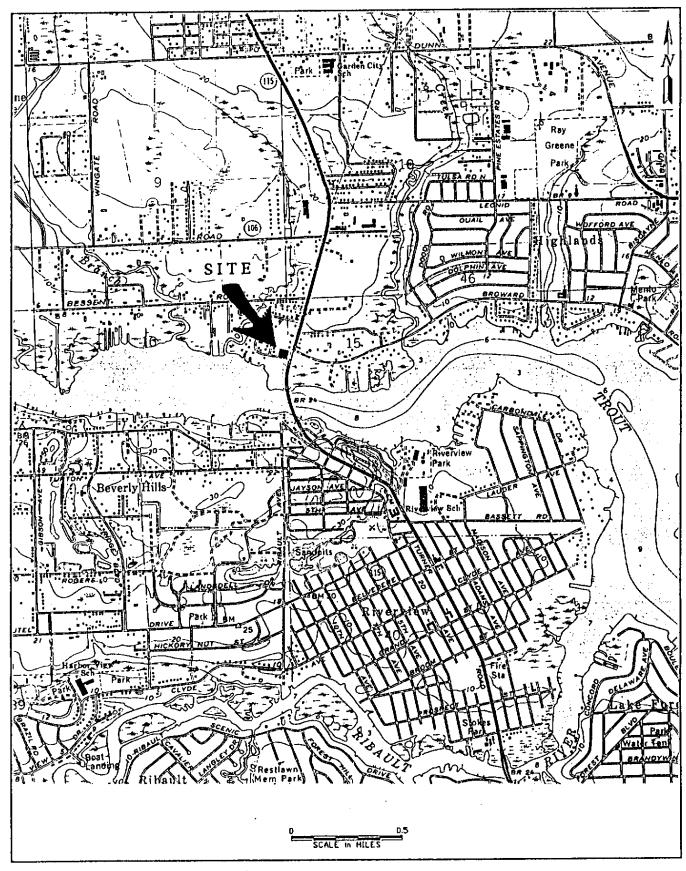


Figure 4. Topographic Site Map

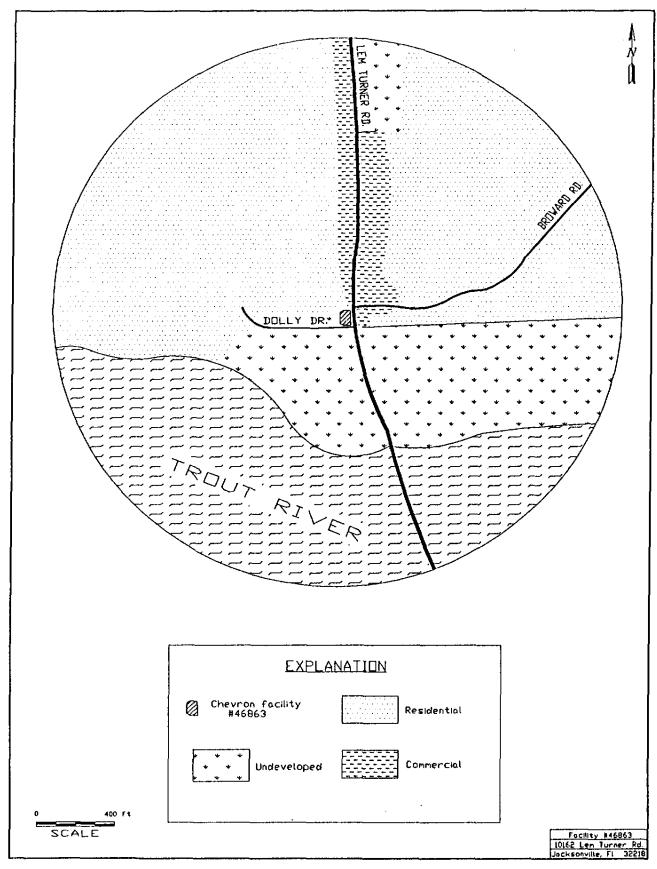


Figure 5. Land Use Map

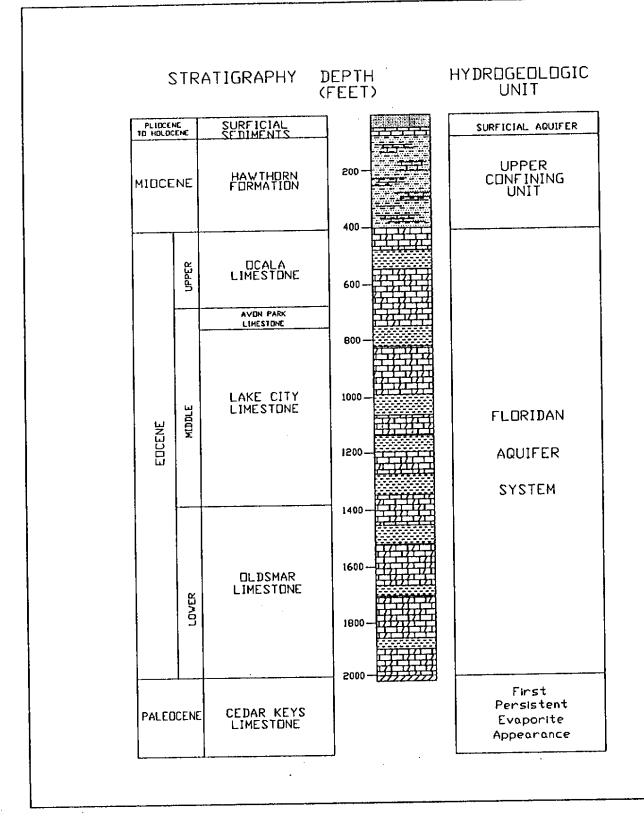
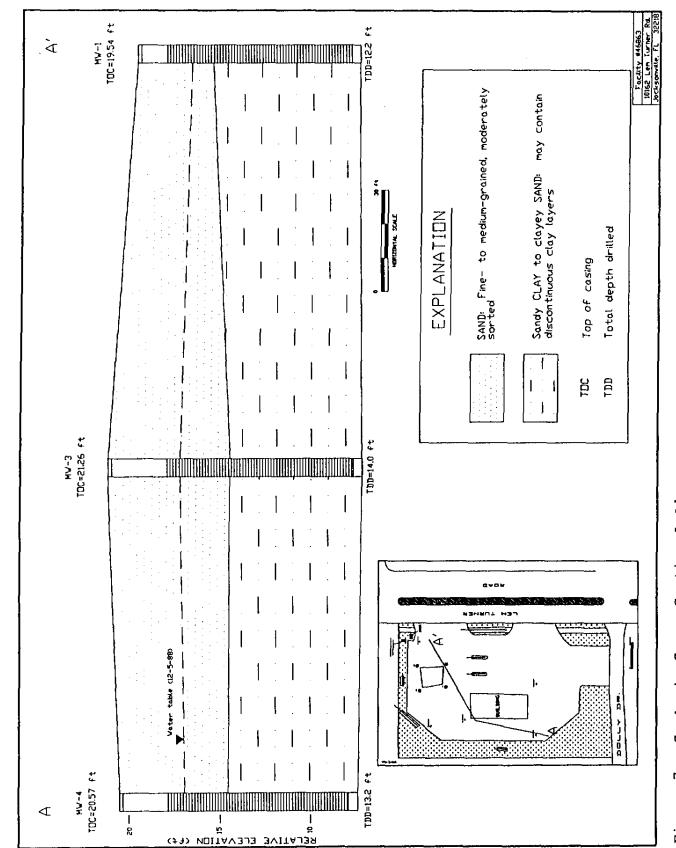



Figure 6. Regional Stratigraphy

GERAGHTY & MILLER, INC.

OLINO

Geologic Cross Section A-A' Figure 7.

MV-2 TDC=20.99 ft TDD=14.0 ft è 10162 SAND: Fine- to medium-grained, moderately sorted Sandy CLAY to clayey SAND: may contain discontinuous clay layers EXPLANATION Total depth drilled MV-3 TDC=21.26 ft TDD=14.0 ft Top of casing ដ ស្ពា 1 HURIZONTAL SCALE p 100 I 1 : Geologic Cross Section B-B' ١ **e**vp≥ **РЭИRUT НЭ**-STATUT **ן** ▼ Vater table (12-5-88) . đ A Figure 8. MV-5 TDC=20.64 Ft TDD=13.5 Ft р | ନ୍ଥ RELATIVE ELEVATION (F1)

GERAGHTY & MILLER, INC.

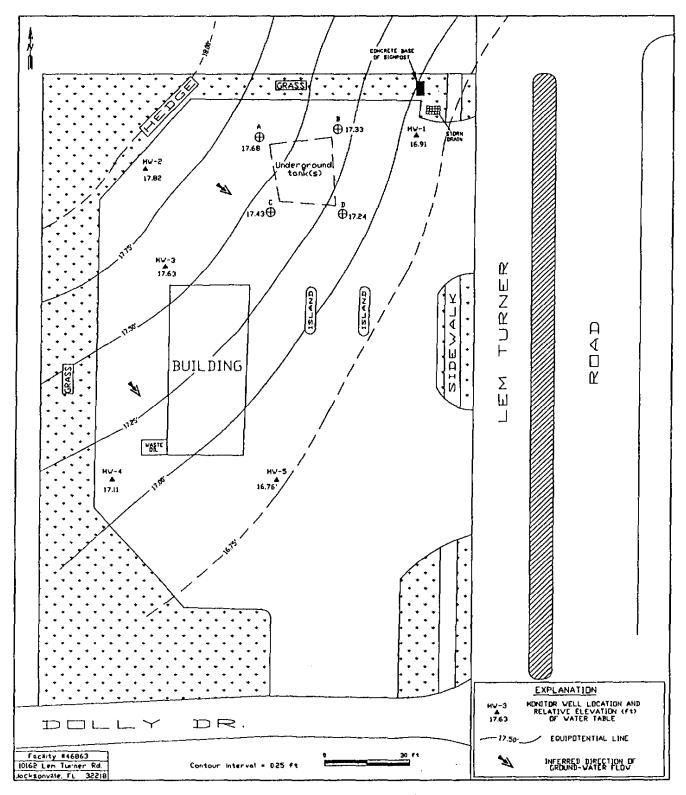
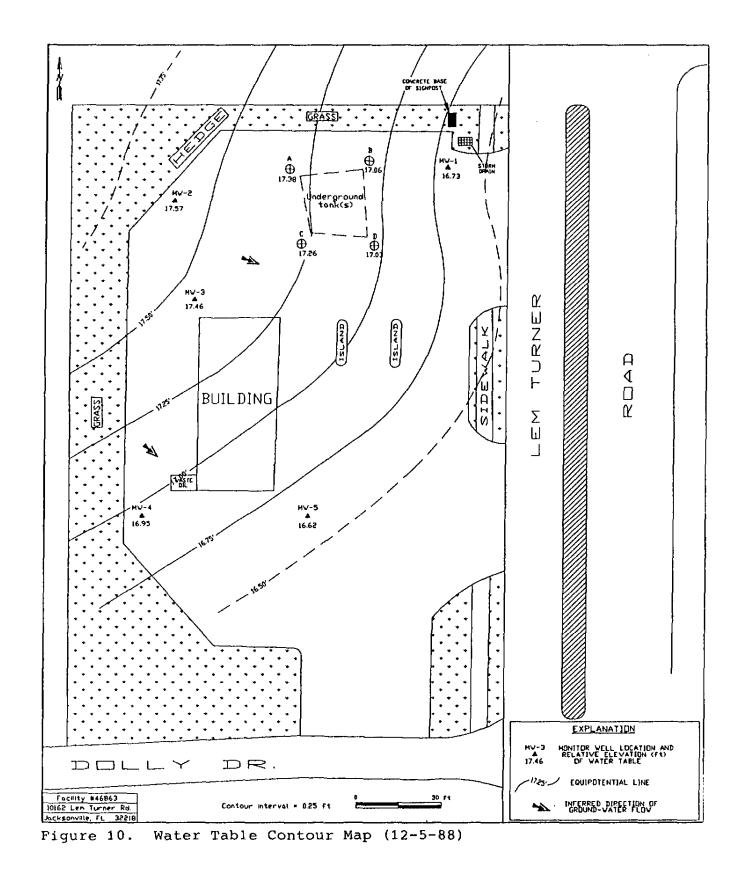



Figure 9. Water Table Contour Map (12-2-88)

Ionn i e millela, nac

Т

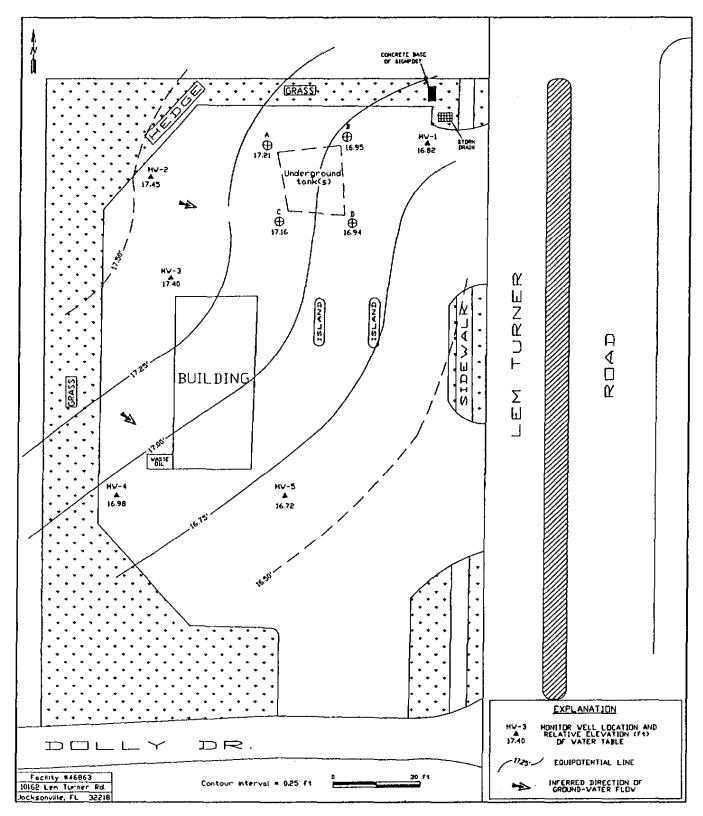


Figure 11. Water Table Contour Map (1-11-89)

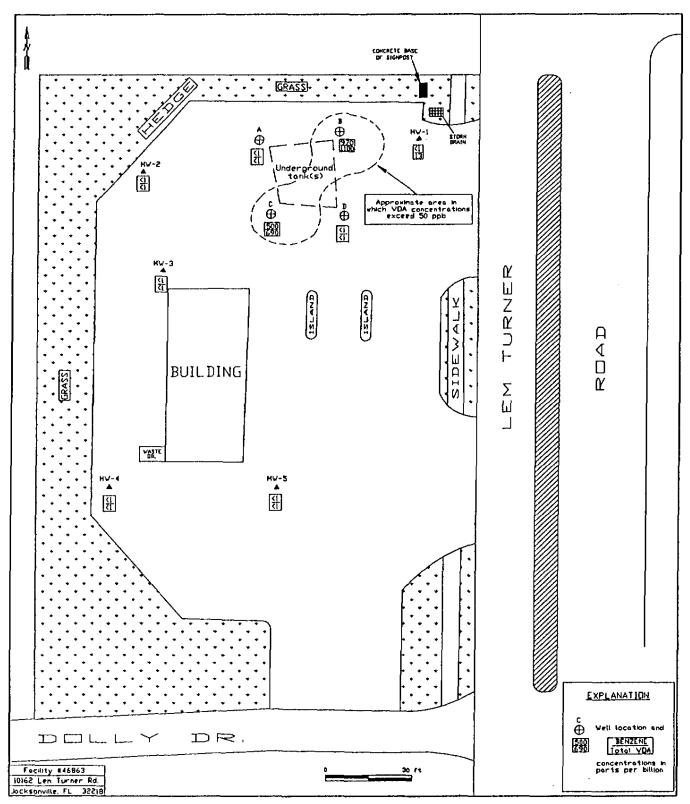


Figure 12. Total VOA Concentration Map

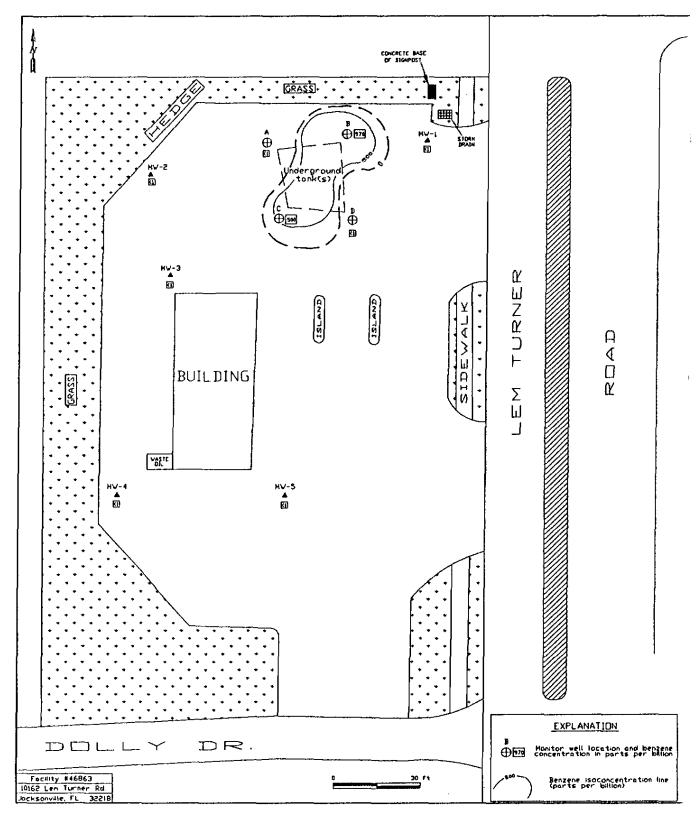


Figure 13. Benzene Concentration Map

. . .

APPENDIX D OVA MEASUREMENTS

.

Organic vapor analyses were performed on selected soil samples from each newly installed monitor well. Continuous split-spoon samples (2-ft intervals) were collected from MW-3. Samples at other wells were collected from the auger flights at 3-ft intervals. All samples were described and placed into 16 ounce sealable jars until the jars were half-filled. Samples were brought to a temperature of 20°C and the headspace was analyzed with a Foxboro Century OVA Model 108 FID which was calibrated to methane before use.

÷Т.

TABLE D-1. ORGANIC VAPOR ANALYSES ON SOIL SAMPLES DATA

ate 05-88	Depth (ft) ¹	0-31	25.00	6-91	ing Depth ³ 9-12'	12-14
05-88	12.20	12.00	25.00	10.00	0.00	
05-88	14.00	0.00	0.00	0.00	0.00	
05-88	14.00	0.00	0.00	0.00	0.00	0.00
05-88	13.20	0.00	0.00	0.00	0.00	
05-88	13.50	0.00	0.00	0.00	0.00	
•	05-88 05-88	05-88 14.00 05-88 13.20	05-88 14.00 0.00 05-88 13.20 0.00	05-88 14.00 0.00 0.00 05-88 13.20 0.00 0.00	05-88 14.00 0.00 0.00 0.00 05-88 13.20 0.00 0.00 0.00	05-88 14.00 0.00 0.00 0.00 0.00 05-88 13.20 0.00 0.00 0.00 0.00

· |

¹ Total depth measured from the top of well casing.

2 OVA = Organic Vapor Analysis

 3 Sampling depth measured from the ground surface.

APPENDIX E GROUND-WATER ANALYTICAL DATA

.

Ground-water samples were collected from previously installed compliance wells (A through D) on September 19, 1988 and from subsequently installed monitor wells 1 through 5 on December 5, 1988. Before collection of samples, each well was purged by evacuating at least three well volumes or until the well was totally evacuated. Samples were collected in accordance with the G&M General Quality Assurance Plan on-file with the FDER in Tallahassee.

All samples were collected in laboratory supplied bottles. After collection, samples were placed on ice and forwarded to the laboratory via overnight express to Savannah Laboratories and Environmental Services, Inc. in Tallahassee for analyses. Analyses of all samples were for dissolved constituents in the "Gasoline Group" including benzene, toluene, ethylbenzene, total xylenes, methyl-tert-butyl-ether (MTBE), and total volatile organic aromatics (VOA) using EPA Method 602.

Ground-Water Consultants	 CHAIN-(CHAIN-OF-CUSTODY RECORD		- ,
Project Number JF0495/105		SAMPLE BOTTLE	SAMPLE BOTTLE / CONTAINER DESCRIPTION	
Jeksonville, Fi				
E.	L'en			
	2122			
		. / /		
	209			
MW-NW 9/19/58 2				7
- SW 1				200
MW - 5E + 2				сP
>				2
		-	1	
)			Total No. of Bottles/ Containers	S
Relinquished by build build build have build	Organization:	CULU CULO	Date 9 1/9183 Time 1/00 Date 9 1/01 RN Time 9 : 30 Am	Seal Intact?
Balinni iishad hr	Ornanization:		j j j	
Received by:	Organization:		Date / Time	Yes No N/A
Special Instructions/Remarks:				

James W. Andrews, Ph.D. President

Janette M. Davis Vice-President

SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION P. O. Box 13056 • Tallahassee, FL 32317-3056 2820 Industrial Plaza Blvd. (32301) (904) 878-3994

LOG NO: 88-5474

Received: 21 SEP 88

, **)**

Project: JF0495LT05-Chevron-I

Mr. John Elrod Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

	REPORT OF ANA	LYTICAL RES	SULTS		Page 1
LOG NO	SAMPLE DESCRIPTION , LIQUID S	AMPLES			SAMPLED BY
5474-2 5474-3	MW-NW (09.19.88) MW-SW (09.19.88) MW-SE (09.19.88) MW-NE (09.19.88)				Client
PARAMETER		5474-1	5474-2		5474-4
Purgeable	Aromatics (EPA 602)				
Benzene,		<1	500	<1	970
Toluene,		<1	48	<1	63
	ene, ug/l 🐘 👘	<1	16	<1	18
	enes, ug/l	<1	130		
	ert-Butyl-Ether (MTBE), ug/l	23	2800		1000
	atile Organic Aromatics, ug/l	<1	690		1100
-	a - a,a,a-Trifluorotoluene, ug/l		9.0		10.3
Surrogate	e - Expected Value, ug/l	10	10		
	a - % Recovery	106 %			
			75-125 %		
Date Coll		,	9/19	•	,
Date Anal			9/20		
	775 E 1	C/7//C 10	5474/5-12	ELTL/E 10	ELTL/E 10

James W. Andrews, Ph.D. President

Janette M. Davis Vice-President

SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION P. O. Box 13056 • Tallahassee, FL 32317-3056 2820 Industrial Plaza Blvd. (32301) (904) 878-3994

LOG NO: 88-5474

Received: 21 SEP 88

Mr. John Elrod Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

Project: JF0495LT05-Chevron-I

- R	EPORT OF ANA	LYTICAL RESU	LTS		Page 2
LOG NO SAMPLE DESCRIPTIO	N , QC SAMPL	ES			SAMPLED B
5474-5Method Blank (Ext5474-6Reagant Water Spi5474-7RWS Expected Valu5474-8RWS % Recovery/Du5474-9RWS Control Limit	ke Result/Du e plicate				Clien
PARAMETER	5474-5	5474-6	5474-7	5474-8	5474-9
Purgeable Aromatics (EPA 602)					
Benzene, ug/1	<1	13/11	10/10	130%/110%	39%-150%
Toluene, ug/l	·. ·<1	10/9.1	10/10	100%/91%	46%-148%
Ethylbenzene, ug/l	<1	Ŧ	·		
Total Xylenes, ug/l	<1				
Methyl-Tert-Butyl-Ether (MTBE), ug/l	<10				
Total Volatile Organic Aromatics, ug/l	<1				
Surrogate - a,a,a-Trifluorotoluene, ug/	10.4	10.6/9.6			
Surrogate - Expected Value,		10			
Surrogate - & Recovery	104 %				
Surrogate - Control Limit		•			
Date Analyzed		9/20			

James W. Andrews, Ph.D. President

Janette M. Davis Vice-President

SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION P. O. Box 13056 • Tallahassee, FL 32317-3056 2820 Industrial Plaza Blvd. (32301) (904) 878-3994.

LOG NO: 88-5474

Received: 21 SEP 88

Mr. John Elrod Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

Project: JF0495LT05-Chevron-I

		REPORT OF ANALYTICA	L RESULTS	Page 3
-	LOG NO	SAMPLE DESCRIPTION , QC SAMPLES		SAMPLED BY
	5474-10 5474-11 5474-12	RWS & RPD & RPD Control Limit Control Limits Source		Client
	PARAMETER			4-11 5474-12
-	Purgeable A Benzene, % Toluene, % Date Colle Date Analy	cted	15 % 8.4 % <	
		: EPA 40 CFR Part 136		••••

HRS Certification #'s:81291,87279,E81005,E87052

Pruitt het B. Prui

Ground-Water Consultants	-			CHAIN-O	CHAIN-OF-CUSTODY RECORD	DY RECOU	- De	-	-		
Project Number JE 0495-2 705	2017.5				SAN	SAMPLE BOTTLE / CONTAINER DESCRIPTION	/ CONTAIN	ER DESCRI	PTION		
Project Location List Turner and	or and Di	<u> </u>	words								
Laboratory SAVANNAH LAB	H LAB	~~·	c.7;4								
Sampler(s) FZANK	VK PROCES	** · 5 % / S	134				<u> </u>				
ΙĘ	Date Sampled	og Juon	to g wer								TOTAL
17 - MW	Déc 5-	N			}						N
НМ - 5	•	И									И
HW-2	"	7									2
MW-3	11	ы									ิ่ห
14N-1	"	4									N
RINS ATE	*	2									~
FIELD BLANK	4	2			, 						ч
	u'	2			 	 					~
						_					
		V			į				Total No. (of Bottles/ Containers	1/2
Retinquished by.	States	torial	Z Organization: Organization:	tion:	ourdimnal	1 (nulo	Date /2 Date 2	5-189 Tim 10 1 201 Tim	187 Time 1745		Seal Intact? Yes No N/A
Relinquished by:			Organizz	tion:			Date /	/ Time	e e		Seal Intact?
Received by:			Organization:	tion:			Date]	e		Yes No N/A
Special Instructions/Remarks: Chevron Facility # 4665 NOTE: ALL SANNES PRESERVED U	Remarks: Chevron F ALL SANRES	ves pr	PRESERVED	16 Bez ;	ter in .	, mm, 20	salqmos	and "P	Pincele	xtuo :	

mes W. Andrews, Ph.D. esident

nette Davis Long ce-President SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION 2820 Industrial Plaza Blvd. (32301) P. O. Box 13056 • Taliahassee, FL 32317-3056 (904) 878-3994

LOG NO: 88-7465

Received: 06 DEC 88

Mr. Andy Miller Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

1.1

Project: JF0495LT05

REPORT OF ANALYTICAL RESULTS

Page 1

· ...

_)G NO SAMPLE DESCRIPT	ION , LIQUID S	SAMPLES			SAMPLED BY
- +65-1 MW-1 +65-2 MW-2 - +65-3 MW-3 - +65-4 MW-4 +65-5 MW-5					Client
_ \RAMETER	7465-1	7465-2	7465-3	7465-4	7465-5
 irgeable Aromatics (EPA 60) Benzene, ug/1 foluene, ug/1 fotal Xylenes, ug/1 fotal Xylenes, ug/1 fethyl-Tert-Butyl-Ether (M) fotal Volatile Organic Aromatics, ug/1 Surrogate - a,a,a-Trifluorotoluene, ug Burrogate - & Recovery, & H Burrogate - & Recovery, & H Gurrogate - Control Limit Date Collected Date Analyzed C Report ID for above 	<1 <1 <1 (1 13 13 9.9 g/1 10	12.13.88		<1 <1 <1 8.8 10 88 % 75-125 %	12.5.88 12.13.88

James W. Andrews, Ph.D. President

Janette Davis Long Vice-President SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION 2820 Industrial Plaza Bivd. (32301) P. O. Box 13056 • Tallahassee, FL 32317-3056 (904) 878-3994

LOG NO: 88-7465

Received: 06 DEC 88

Mr. Andy Miller Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

Project: JF0495LT05

REPORT OF ANALYTICAL RESULTS

Page 2

_JOG NO	SAMPLE DESCRIPTION , LIQUID SAME	?LES	SAMPLED BY
/465-6	Rinsate		Client
- PARAMETER		7465-6	
Benzene, ug Toluene, ug Ethylbenzen Total Xylen Methyl-Tert Total Volat Surrogate - Surrogate - Surrogate - Date Collec Date Analyz	// He, ug/1 Hes, ug/1 -Butyl-Ether (MTBE), ug/1 ile Organic Aromatics, ug/1 a,a,a-Trifluorotoluene, ug/1 Expected Value % Recovery, % Rec. Control Limit ted	<1 <1 <1 <1 <1 <1 <1 (1 9,9 10 99 % 75-125 % 12.5.88 12.13.88 7465/7-21	

ames W. Andrews, Ph.D. President

anette Davis Long Vice-President SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION 2820 Industrial Plaza Blvd. (32301) P. O. Box 13056 • Tallahassee, FL 32317-3056 (904) 878-3994

LOG NO: 88-7465

Received: 06 DEC 88

Mr. Andy Miller Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

Project: JF0495LT05

REPORT OF ANALYTICAL RESULTS

Page 3

OG NO SAMPLE DESCRIPTION	, QC SAMPL	ES			SAMPLED BY
465-7 Method Blank (MB) F 465-8 Lab Control Standar 465-9 LCS Expected Value 465-10 LCS % Recovery 465-11 LCS % Recovery Limit	d (LCS) Rea	sult			Client
ARAMETER	7465-7	7465-8	7465-9	7465-10	7465-11
'urgeable Aromatics (EPA 602)					
- Benzene, ug/1	<1	8.6	10	86 %	85-115 %
Toluene, ug/l	<1	8.8	10	88 %	85-115 %
Ethylbenzene, ug/l	<1	9.3	10	93 🕏	85-115 %
— Total Xylenes, ug/1	<1	9.1	10	91 %	85-115 🕏
Methyl-Tert-Butyl-Ether (MTBE)	, ug/l <1	9.2	10	92 🕏	85-115 %
Total Volatile Organic	<1			• • •	
_ Aromatics, ug/l	10.3	10.0			
Surrogate -	10.5	10.9			
- a,a,a-Trifluorotoluene, ug/l	10	10			
Surrogate - Expected Value	10	10			
- Surrogate - % Recovery, % Rec.		109 %			
Surrogate - Control Limit					
Date Analyzed	12.13.88	12.13.88			
Mathady FDA 40 CFP Part 13					

Method: EPA 40 CFR Part 136

HRS Certification #'s:81291,87279,E81005,E87052

lames W. Andrews, Ph.D. President

Janette Davis Long Vice-President SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION 2820 Industrial Plaza Blvd. (32301) P. O. Box 13056 • Tallahassee, FL 32317-3056 (904) 878-3994

LOG NO: 88-7465

Received: 06 DEC 88

Mr. Andy Miller Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

Project: JF0495LT05 REPORT OF ANALYTICAL RESULTS Page 4 LOG NO SAMPLE DESCRIPTION , QC SAMPLES SAMPLED BY '465-12Matrix Spike (MS) Result/Duplicate'465-13MS Expected Value- 7465-14MS % Recovery/Duplicate'465-15MS % Recovery Limit- 7465-16MS % RPD (Limit) Client AMETER 7465-12 7465-13 7465-14 7465-15 7465-16 PARAMETER Purgeable Aromatics (EPA 602) 14.4/14.6 11.9/11.7 9.6/9.5 10 144%/146% 70%-148% 1.4%(<20%) — Benzene, ug/1 10 119%/117% 66%-150% 1.7%(<20%) Toluene, ug/l Surrogate -- - -- - -- - a,a,a-Trifluorotoluene, ug/l Surrogate - Expected Value 10/10 - - -. . . - - -- Surrogate - % Recovery, % Rec. 96%/95% ---- - -. . . _ _ _ Surrogate - Control Limit 75-125 % - - -- - -- - -Date Analyzed 12.13.88 - - -. . . - - -. . . Method: EPA 40 CFR Part 136 HRS Certification #'s:81291,87279,E81005,E87052

James W. Andrews, Ph.D. President

Janette Davis Long Vice-President SAVANNAH LABORATORIES AND ENVIRONMENTAL SERVICES, INC. TALLAHASSEE DIVISION 2820 Industrial Plaza Blvd. (32301) P. O. Box 13056 • Tallahassee, FL 32317-3056 (904) 878-3994

LOG NO: 88-7465

Received: 06 DEC 88

Mr. Andy Miller Geraghty & Miller, Inc. 8936 Western Way, Suite 7 Jacksonville, Florida 32256

Project: JF0495LT05

REPORT OF ANALYTICAL RESULTS

Page 5

LOG NO SAMPI	LE DESCRIPTION , QC SAMPLE	S			SAMPLED BY
7465-18 IQC 4 - 7465-19 IQC 4 7465-20 IQC 4	pendent QC Check (IQC) Res Expected Value & Recovery & Recovery Limits Source	ult			Client
PARAMETER	7465-17	7465-18	7465-19	7465-20	7465-21
Purgeable Aromat - Benzene, ug/1 Toluene, ug/1 Ethylbenzene, ug Date Analyzed	6.29 3.00	6.59 3.27 6.52	95 % 92 % 95 %	60-147% 45-161% 56-145%	WP020 WP020 WP020
- Method: EPA	40 CFR Part 136	•			

HRS Certification #'s:81291,87279,E81005,E87052

n/et Β.

Appendix B

Industrial Septic Tank Closure Assessment

Environmental Geoscience & Engineering, Inc.

--

UNDERGROUND STORAGE TANK CLOSURE ASSESSMENT REPORT

CHEVRON STATION NO. 46863 10162 LEM TURNER ROAD JACKSONVILLE, FLORIDA FDER FACILITY ID NO. 168506977

July 9, 1993

Prepared for Chevron U.S.A., Inc. 2300 Windy Ridge Parkway, Suite 800 Marietta, Georgia

Prepared by

Environmental Geoscience & Engineering, Inc. 1750 Rogero Road Jacksonville, Florida 32211 (904) 743-7732

Contents

Section	<u>n</u>		Page
1.0	INTRO		. 1
	1.1	Site Location	. 1
	1.2	Site Description	. 1
	1.3	Background	. 1
	1.4	Objectives of the Current Investigation	
2.0	METH	DDOLOGY	. 3
	2.1	Underground Septic Tank Content Sampling	
	2.2	Underground Septic Tank Removal	
	2.3	Well Inventory	
	2.4	Soil Assessment	
	2.5	Temporary Monitoring Well Installation	. 5
	2.6	Groundwater Quality Sampling and Analysis	. 5
3.0	INVES	TIGATIVE RESULTS	. 7
	3.1	Underground Septic Tank Sampling	. 7
	3.2	Underground Septic Tank Removal	
	3.3	Well Inventory	. 7
	3.4	Soil Assessment Results	
	3.5	Site Geology	. 8
	3.6	Groundwater Analytical Results	. 8
4.0	CONCL	USIONS AND RECOMMENDATIONS	. 9

Tables

1. Soil He	adspace	and	Anal	ytical	Result
------------	---------	-----	------	--------	--------

2. Water Well Inventory Results

Figures

- 1. Site Location Map
- 2. Site Plan
- 3. Soil Boring and Temporary Monitoring Well Locations
- 4. Water Well Locations
- 5. Results of Soil Headspace Screening

Appendices

- A. Laboratory Results
- B. Photograph Log
- C. Septic Tank Closure Documentation

Environmental Geoscience & Engineering, Inc.

Page

1.0 INTRODUCTION

1.1 Site Location

The Chevron Facility No. 46863 site is located in Township 1, Range 26, Section 16, Duval County, Florida (Figure 1). The site is located at 10162 Lem Turner Road, Jacksonville, Florida.

1.2 Site Description

The Chevron Facility No. 46863 is located in a populated area of Jacksonville consisting of commercial and residential property (Figure 2). Commercial property border the subject site. Residential property predominates along the side streets in the area.

The site is located at an elevation of approximately 5 feet National Geodetic Vertical Datum. The area has a gradual slope to the south toward the Trout River. The Trout River is the nearest large surface water body and is located approximately 750 feet south of the assessment site. Regional surface water runoff is expected to flow to the south toward the Trout River. The property is currently vacant but was used as a service station until recently when the station was demolished.

1.3 Background

In May 1988, petroleum hydrocarbon contamination was discovered. The property owners applied for, and were subsequently accepted into, the Early Detection Incentive Program (EDI). After being approved for the EDI program, the site was turned over to the state for remediation.

An industrial septic tank had been installed during construction of the facility to receive waste water from the service bays prior to final disposal. Chevron retained Environmental Geoscience & Engineering, Inc. (EGE) to oversee the closure of the septic tank.

1.4 Objectives of the Current Investigation

The objectives of the closure assessment investigation conducted at Chevron Facility No. 46863 were to meet the criteria of Chapter 17-761.800(2) and (3), and Chapter 17-770.300(7) and (8) F.A.C.

Environmental Geoscience & Engineering, Inc.

.

2.0 METHODOLOGY

2.1 Underground Septic Tank Content Sampling

On March 26, 1993 EGE sampled the contents of the sludge in the septic tank for disposal. Chevron and EGE chose the analytical methods based on the requirements set by Industrial Waste East, of Jacksonville, Florida, the disposal coordinator. Sludge samples were collected for volatile aromatics (EPA Method 8020, total petroleum hydrocarbons (EPA Method 9073), and the eight RCRA metals and delivered to ENCO Laboratories in Jacksonville, Florida.

Following receipt of the lab data further disposal sampling was conducted on the material for TCLP Benzene and Lead. The additional sampling was conducted on May 12, 1993. Following collection, EGE shipped the samples via overnight courier to Analytical Technologies Laboratory in Pensacola, Florida. All sampling was conducted in accordance with EGE's Comprehensive Quality Assurance Plan (CompQAP) on file with FDER in Tallahassee, Florida. Complete Laboratory Analytical Results are included in Appendix A.

2.2 Underground Septic Tank Removal

In April, 1993 H & H Mechanical, Inc. closed a single concrete 1,000 gallon septic tank for Chevron. H & H Mechanical, Inc. is a Florida Pollutant Storage System Specialty Contractor. EGE conducted closure groundwater sampling and closure soil assessment on May 12, 1993. The closure assessment was conducted to comply with FAC 17-761 a description of closure assessment activities is included in subsequent sections.

The septic tank was removed as follows:

First, several inches of oily water were vacuumed out of the tank (the water was floating on top of the sludge in the UST). Second, the remaining sludge was dipped out of the UST and placed in 55-gallon open top drums and staged on site.

Third, the inside of the UST was steam cleaned and the accumulated water removed with the vacuum truck. And finally, the UST was crushed and left in place. Clean backfill was added to the excavation and compacted. The photograph log for the septic tank closure is included in Appendix B.

The retrieval and disposal of the water in the tank was conducted by Industrial Water Inc., of Jacksonville. A 3000 gallon vacuum truck was used. A total of 200 gallons of oily waste water was collected. Copies of the disposal manifests are included in Appendix C.

During the crushing of the UST, visual signs of petroleum products (used oil) were identified in the UST excavation walls. Therefore, a discharge reporting form was filed with FDER (Appendix C). Appendix C also contains the Closure Assessment Form, the Underground Storage Tank Installation and Removal Form for Certified Contractors, and an updated Storage Tank Registration Form.

2.3 Well Inventory

Following the field investigation, a records search was conducted to develop a database of available water well data in the vicinity of Chevron Facility No. 46863. The City of Jacksonville Regulatory and Environmental Services Departments (RESD) records were reviewed to compile a well inventory of public and private wells in the area of the site. In accordance with Chapter 17-761 and 17-770 F.A.C. criteria, permitted private water supply wells within a ¼-mile radius and all public wells within a ½-mile radius of the site were identified. Additionally, well depths, construction details, and well uses were ascertained when available.

2.4 Soil Assessment

On May 12, 1993, eleven soil borings were installed in accordance with FAC Chapter 17-770 and FDER's "Guidelines for the Assessment and Remediation of Petroleum Contaminated Soils", dated May, 1992. Soil samples were collected with a stainless steel hand auger. Soil vapors were screened for petroleum hydrocarbon vapors using a TECO Model 580B organic vapor meter with a photoionization detector

calibrated to manufacturer's specifications. In addition to headspace analysis and visual inspection of the soils, confirmatory TPH samples were collected and sent to Analytical Technologies Laboratories for EPA method 9073 Analysis.

The hand augers and any other soil sampling equipment were decontaminated with a Liquinox soap solution wash followed by a distilled water rinse. Soil boring locations were plotted and screening samples were collected; boring advancement was stopped at the water table. The soil boring locations are shown in Figure 3. Soil Headspace and Analytical Results are presented in Table 1. Original Laboratory Results are included as Appendix A.

2.5 Temporary Monitoring Well Installation

On May 12, 1993 a shallow temporary monitoring well was installed by EGE. The well was installed using a stainless steel hand auger. Prior to the initiation of drilling, the hand auger, and other miscellaneous equipment used in the performance of drilling activities, were decontaminated with a Liquinox Soap solution followed by a distilled water rinse, and an isopropanol rinse.

The shallow temporary monitoring well was constructed of 2-inch diameter, Schedule 40 polyvinyl chloride (PVC) casing with threaded joints and a 5-ft section of 0.010-inch slot size screen. The top of the screen was set above the water table to intercept petroleum hydrocarbons on the water table, if present. The annular space surrounding the screen was backfilled with native material. The top of the screened interval was set at 2.0' ft bls. Temporary monitoring well location is shown on Figure 3.

2.6 Groundwater Quality Sampling and Analysis

On May 12, 1993, immediately following purging, a groundwater sample was collected from the temporary monitoring well. The well was purged dry with a dedicated teflon bailer preceding sample collection. All sampling was conducted using the dedicated teflon disposable bailer, monofilament line, and latex gloves. The sample containers were labeled for identification and laboratory pre-preserved when

required. During sample collection, an equipment blank sample was collected and analyzed. Groundwater samples were transferred into laboratory provided sample bottles and placed in a cooler on ice for delivery to Analytical Technologies Inc. located in Pensacola, Florida. Complete chain of custody documentation is included with the Laboratory Analytical Results in Appendix A.

The temporary monitoring well was sampled for the Waste Oil Analytical Group which included priority pollutant volatile organic compounds (EPA method 8240), extractable priority pollutant organics (EPA method 8270), and total petroleum hydrocarbons (EPA Method 418.1).

Environmental Geoscience & Engineering, Inc.

· 1

3.0 INVESTIGATIVE RESULTS

3.1 Underground Septic Tank Sampling

On March 26, and May 12, 1993 EGE sampled the used oil sludge from the UST for disposal. The results of the March 26, 1993 used oil sludge sampling indicated significant levels of volatile aromatics, total petroleum hydrocarbons, and RCRA metals were present in the material. EGE contacted IWE to ascertain the disposal options for the material. IWE requested TCLP analysis for benzene and lead. On May 12, 1993 EGE collected the TCLP samples during the soil assessment. The results indicated that the material was hazardous (40 CFR 261.24 (b)) for TCLP Benzene at 400 mg/l; the regulatory limit is 0.5 mg/l. Chevron is contracting for the disposal of the sludge.

3.2 Underground Septic Tank Removal

In April, 1993 H & H Mechanical, Inc. closed a single concrete 1,000 gallon septic tank for Chevron. Following removal of the sludge, the tank was steam cleaned, crushed, and used as backfill in the excavation.

3.3 Well Inventory

In accordance with Chapter 17-770 F.A.C. criteria, EGE identified permitted private water supply wells within a ¼-mile radius of the site and all public wells within a ½-mile radius of the site were identified. Additionally, well depths, construction details, and well uses were ascertained when available. Four private supply wells were identified within a one-half mile radius of the site. No public supply wells were found within a ½-mile radius of the site. Well inventory data are listed in Table 2 and water well locations are presented on Figure 4.

3.4 Soil Assessment Results

Results of the soil survey are summarized in Table 2. Soil samples were typically collected continuously to approximately 4 feet below land surface (the water table was encountered at approximately 3.0 ft-bls) in order to perform the following:

1. Delineate potential hydrocarbon impact in the unsaturated zone above the water table; and,

2. Preliminary assessment of hydrocarbon impact in the surficial groundwater.

Soil headspace concentrations in the vadose zone ranged from below instrument detection limits to 149 parts per million (ppm) in the soil borings. Figure 5 illustrates the distribution of soil headspace concentrations.

3.5 Site Geology

During the construction of the monitoring well and performance of soil borings, soil samples were collected and described for the sediment content. A brown slightly silty to silty sand was observed within the top 6 feet bls. The silty sand was underlain by a gray to brown silty, clayey sand. This gray silty, clayey sand was encountered to the bottom of the deepest boring (7 ft-bls) in TW-1. The depth to groundwater at the site was approximately 3.0' bls.

3.6 Groundwater Analytical Results

On May 12, 1993 groundwater samples were collected from the temporary well at Chevron Facility No. 46863. Copies of the original laboratory analytical reports are included in Appendix A.

Laboratory analytical results for the groundwater samples obtained at the site indicate that naphthalene was detected in TW-1 at the site at 22 μ g/L. The FDER Guidance Concentration for naphthalene is 10 μ g/L.

Seven Tenatively Identified Compounds (TICs) were also detected in groundwater at the site. The total aggregate concentration of TIC compounds found in the TW-1 at the site was 120 μ g/L. All TIC compounds discovered in TW-1 were found in the semi volatile (EPA method 8270) scan. No volatile (EPA method 8240) TICs were found. FDER Guidance criteria for TIC's is addressed on a site by site basis.

Only one total metal was detected in TW-1; Arsenic was detected at 8 μ g/L. The FDER Guidance criteria is 50 μ g/L.

4.0 CONCLUSIONS AND RECOMMENDATIONS

The soil and groundwater in the immediate vicinity of the closed septic tank have been impacted by hydrocarbons. EGE recommends that the impact in this area be incorporated into the assessment and remediation performed under the EDI program.

Tables

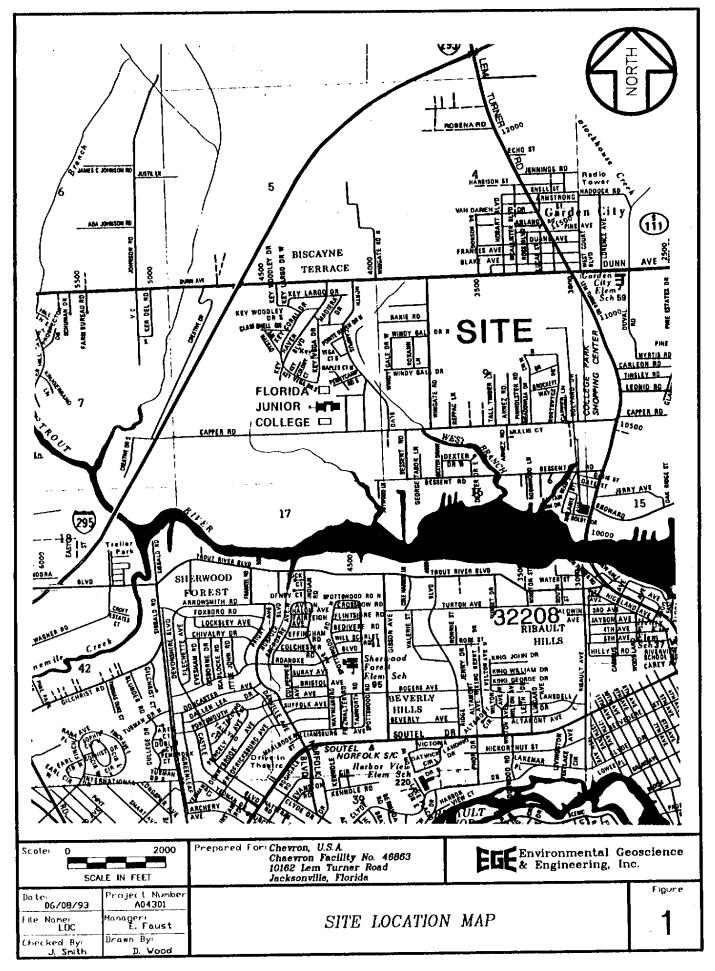
Environmental Geoscience & Engineering, Inc.

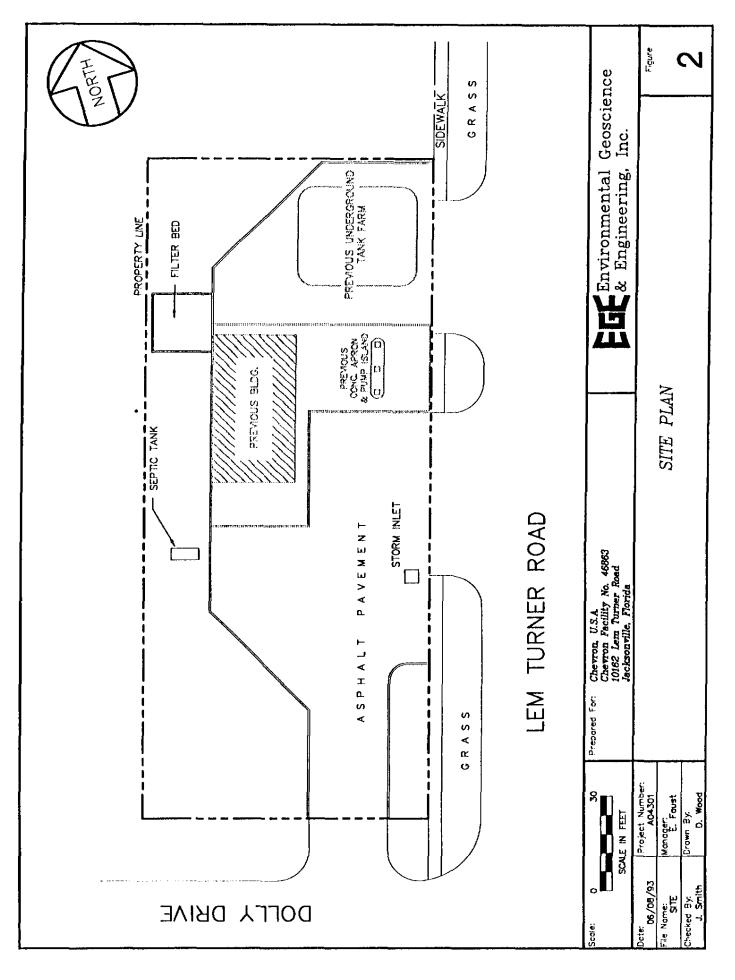
Boring	Sample	Total VOC	TPH Concentration EPA Method
<u> </u>	Interval	(ppm)	9073 Analysis (ppm)
	1-2 (ft)	0	
SB-1	2-3 (ft)	0	*****
	3-4 (ft)	40	ND
	1000		
60.2	1-2 (ft)		
SB-2	2-3 (ft)	2.2	ND
	3-4 (ft)	30	
	· · · · · · · · · ·		
	1-2 (ft)	0	
SB-3	2-3 (ft)	146	6900
	3-4 (ft)	102	140
	1-2 (ft)	0	
SB-4	2-3 (ft)	0	•
	3-4 (ft)	149	520
	1-2 (ft)	o	
SB-5	2-3 (ft)	ŏ	
02.0	3-4 (ft)	ŏ	
	0 4 (10)	Ŭ	
	1-2 (ft)	0	
SB-6	2-3 (ft)	0	
	3-4 (ft)	17	670
	1-2 (ft)	0	
SB-7	2-3 (ft)	ŏ	
	3-4 (ft)	ŏ	
	0.4 (11)		
	1-2 (ft)	1	
SB-8	2-3 (ft)	0	
Į	3-4 (ft)	0	
	1-2 (ft)		
68.0		0	
SB-9	2-3 (ft)	0	
	3-4 (ft)	0	
ļ	1-2 (ft)	0	
SB-10	2-3 (ft)	ō	
	3-4 (ft)	0	
ł			
	1-2 (ft)	0	
\$B-11	2-3 (ft) 3-4 (ft)	0	*****

Table 1 - Soil Headspace and Soil Analytical Results Chevron Facility #46863, 10162 Lett Turtier Road, Jacksonville, Florida

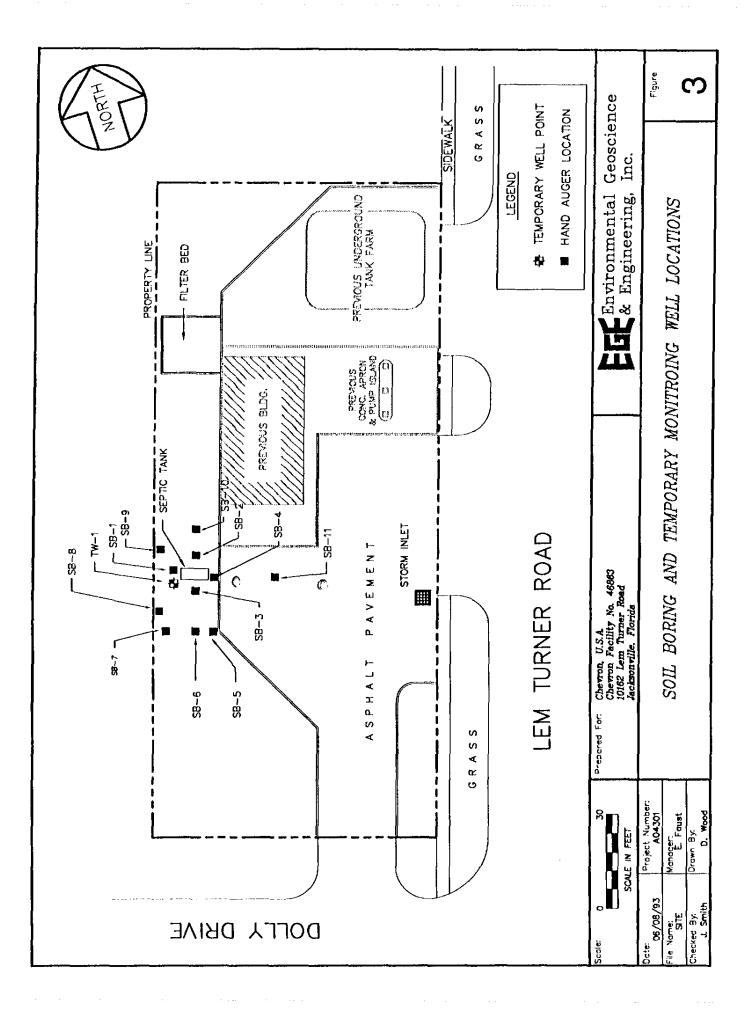
Notes:

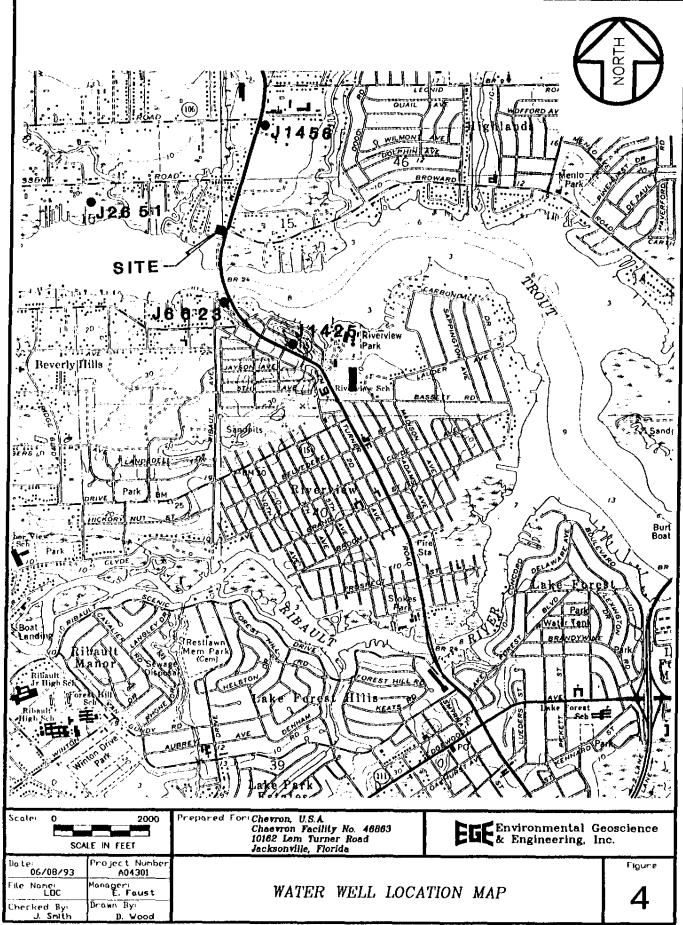
Soil Borings were sampled on 5/12/93.

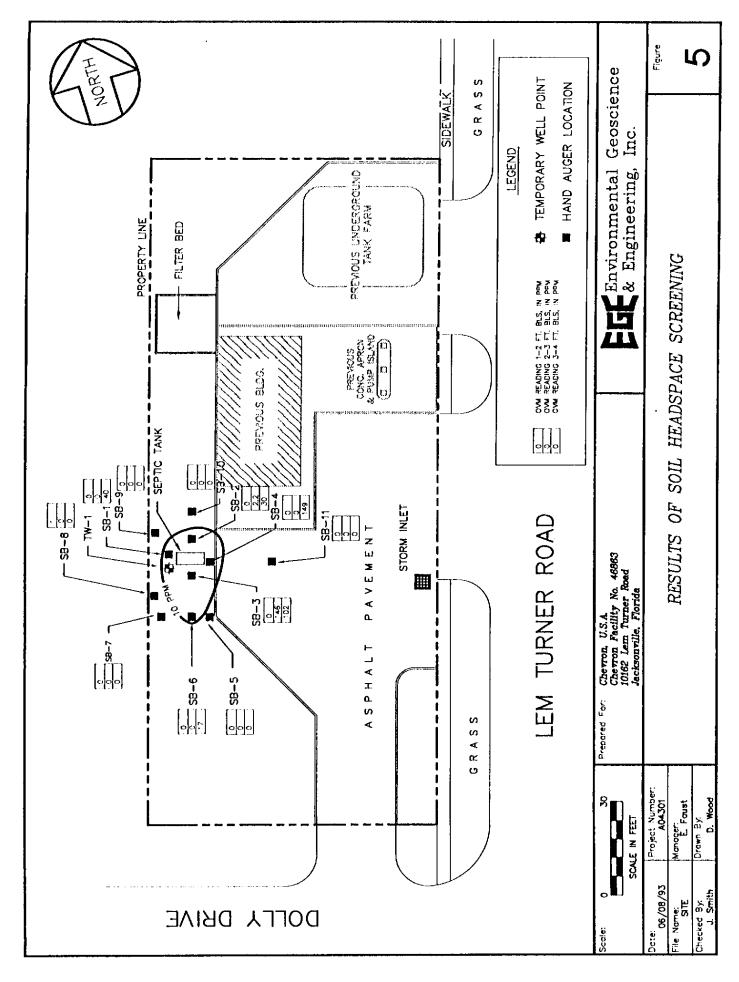

-----Not sampled for EPA Method 9073 TPH.


Table 2 - Well Inventory Results Chevron Facility # 46863, 10162 Lem Turner Road, Jacksonville, Florida

			Well Information			
	Address	Ownership/Use	Well Construction Information	Information	Installation Date	Well Status
J6623	9953 Old Lem Turner Road	Private/P & A	Total Depth (feet) Diameter (inches)	550 2	12/1/89	Plugged & Abandoned
J1425	9641 Lem Turner & Woodland Ave.	Private/Carwash	Total Depth (feet) Diameter (inches)	1 0 7	8/27/77	Active
J1456	2946 Capper Road	Private/Supply	Total Depth (feet) Diameter (inches)	700	8/8/77	Active
J2651	3742 Bessent Road	Private/Supply	Total Depth (feet) Diameter (inches)	650 2	00/00/81	Active


.


Figures


....

Ľ

.

. . . .

Appendices

Appendix A

Laboratory Analytical Results

Environmental Conservation Laboratories 4810 Executive Park Ct., Ste. 211 Jacksonville, Florida 32216-6069 904 / 296-3007 Fax 904 / 296-6210

Laboratories DHRS Certification No. E82277

CLIENT : Environmental Geoscience & Engineering, Inc. ADDRESS: 1750 Rogero Road Jacksonville, FL 32211

REPORT # :JX3214 DATE SAMPLED :March 26, 1993 DATE SUBMITTED:March 26, 1993 DATE REPORTED :March 30, 1993

ATTENTION: Scott Hughes

PAGE 1 OF 4

SAMPLE IDENTIFICATION

Soil sample submitted and identified by CLIENT as:

Project# A04301

Chevron Lem Turner (03/26/93 @ 1310)

LABORATORY MANAGER

Charles M. Ged

ENCO LABORATORIES REPORT # :JX3214 DATE REPORTED:March 30, 1993 REFERENCE :A04310

PAGE 2 OF 4

RESULTS OF ANALYSIS

_	EPA METHOD 8020 - <u>Volatile aromatics</u>	CHEVRON LEM TURNER	LAB <u>Blank</u>	<u>units</u>
_	Methyl-t-butyl Ether	939	1 U	ug/Kg
	Benzene	15330	1 U	ug/Kg
<u> </u>	Toluene	96958	1 U	ug/Kg
	Ethylbenzene	41741	1 U	ug/Kg
_	Total Xylenes	427345	2 U	ug/Kg
	Chlorobenzene	100 U	1 U	ug/Kg
	1,2-Dichlorobenzene	100 U	īυ	ug/Kg
- ·	1,3-Dichlorobenzene	100 U	1 U	ug/Kg
	1,4-Dichlorobenzene	100 U	1 U	ug/Kg
_	<u>Surrogate:</u>	<u>% REC</u>	<u> * REC</u>	LIMITS
_	Bromofluorobenzene	110	86	79-144
_	Date Analyzed	03/28/93	03/28/93	

-	EPA METHOD 9073	CHEVRON <u>LEM TURNER</u>	<u>UNIT8</u>
-	Total Recoverable Petroleum Hydrocarbons	268500	mg/Kg
	Date Analyzed	03/30/93	

ENCO LABORATORIES REPORT # :JX3214 DATE REPORTED:March 30, 1993 REFERENCE :A04310

PAGE 3 OF 4

RESULTS OF ANALYSIS

TOTAL METALS	METHOD	CHEVRON Lem Turner	<u>UNITS</u>
Arsenic, As Date Analyzed	7061	3.48 03/29/93	. mg/Kg
Barium, Ba Date Analyzed	7080	20.0 U 03/30/93	mg/Kg
- Cadmium, Cd Date Analyzed	7130	1.98 03/30/93	mg/Kg
Chromium, Cr Date Analyzed	7190	4.80 03/28/93	mg/Kg
Lead, Pb Date Analyzed	7420	249.0 03/28/93	mg/Kg
Mercury, Hg Date Analyzed	7470	0.103 03/26/93	mg/Kg
Selenium, Se Date Analyzed	7741	0.030 PQL 03/29/93	mg/Kg
Silver, Ag Date Analyzed	7760	0.40 U 03/27/93	mg/Kg

ENCO LABORATORIES REPORT # :JX3214 DATE REPORTED:March 30, 1993 REFERENCE :AO4310

PAGE 4 OF 4

QUALITY CONTROL DATA

	PARAMETER	% RECOVERY MS/MSD/LCS	ACCEPT <u>LIMITS</u>	% RPD <u>MS/MBD</u>	ACCEPT <u>LIMITS</u>
	EPA_Method_8020				
_	Benzene	108/102/94	83-141	6	20
	Toluene	98/88/86	81-128	11	19
	Ethylbenzene	100/110/94	79-135	10	15
	Total Xylenes	103/100/97	79-135	3	19
_	Total Metals				
	Arsenic, 7061	88/87/102	65-138	1	19
_	Barium, 7080	57/55/59	39-126	2	13
	Cadmium, 7130	108/108/106	89-116	<1	7
—	Chromium, 7190	116/120/108	19-145	4	18
	Lead, 7420	92/93/91	69-125	1	15
_	Mercury, 7470	102/106/100	59-134	4	21
	Selenium, 7741	83/88/98	61-125	5	12
	Silver, 7760	96/93/100	83-124	3	7
	EPA Method 9073				
_	Total Recoverable	100/106/113	90-115	7	14
_	Petroleum Hydrocarbons	100,100,110		,	7.4

MS = Matrix Spike
 MSD = Matrix Spike Duplicate
 LCS = Laboratory Control Standard
 RPD = Relative Percent Difference
 < = Less Than

.

Data Qualifier Codes

Environmental Conservation Laboratories adheres to the guidelines set forth in the Florida Department of Environmental Regulation's Quality Assurance Chapter, specified in F.A.C. 17-160.670, concerning the reporting of data qualifiers. The following is an explanation of the qualifier codes used in this report. Please refer to the F.A.C. for further information regarding data qualifiers and other reporting requirements, as established by the FDER.

Code Description

A Value reported is the average of two or more determinations. This code is used if the results of two or more discrete and asparate samples are averaged. These samples have been processed and analyzed independently. This code is not used if the data are the result of replicate analyses on the same sample aliquot, extract, or digestate. Under most conditions, replicate values will be reported as individual analyses.

J Established value; value not accurate. This code is used in the following instances:

- 1. surrogate recovery limits have been exceeded;
- 2. no known quality control component exists for the component;
- 3. the reported value failed to meet the established QC criteria for either precision or accuracy;
- 4. the sample matrix interfered with the ability to make any accurate determination;
- 5. the data is questionable because of improper laboratory or field protocals.

Note: A "J" value will be accompanied by justification for its use. A "J" value is not to be used if another code applies in a more specific manner (e.g. K, L, M, T, V, Y, PQL).

K Off-scale low. Actual value is known to be less than the value given. This code shall be used if:

1. The value is less than the lowest calibration standard and the calibration curve is known to be non-linear; or

- 2. The value is known to be less than the reported value based upon the sample size, dilution, or some other variable.
- 1. Off-scale high. Actual value is known to be greater than the value given. This code shall be used when the concentration of the of the analyte is above the acceptable level of quantitation (exceeds the linear range or highest calibration standard) and the calibration curve is known to exhibit a negative deflection.
- M When reporting chemical analyses:

The presence of material is verified but not quantified; the actual value is less than the value given.

The reported value is the PQL. This code is used if the level is too low to permit accurate quantification, but the estimated concentration is <u>areater than</u> the MDL.

When reporting Oxygen Reduction Potential or Temperature:

indicate a negative value.

N Presumptive evidence of presence of material.

1. The component has been tentatively identified based on mass spectral library search; or

2. There is an indication that the analyte is present, but quality control requirements for confirmation were not met (i.e., presence of analyte was not confirmed by alternate procedures).

- O Sampled, but analysis not performed.
- Q Sample held beyond the accepted holding time. This code is used if the value is derived from a sample that was prepared or analyzed <u>after</u> the approved holding time restrictions for sample preparation of analysis.
- T Value reported in less than the MDL. The value is reported for informational purposes only and shall not be used in statistical analysis.
- U Indicates that the compound was analyzed for but not detected. This is used to indicate that the specified compound was not detected. The value associated with the qualifier is the MDL.
- V Indiactes the analyte was detected in both the sample and the associated method blank.
- Y The laboratory analysis was from an unpreserved or improperly preserved sample. The data may not be accurate.
- PQL. The reported value is between the laboratory MDL and PQL.
- RE Data is rejected and should not be used. Some or all of the quality control data for the analyte were outside the criteria, and the presence or absence of the analyte cannot be determined from the data.
- NAI Not analyzed due to interferences.

		CONSERVATION 1 CONSERVATION 1 4810 EXECUTIVE PARK CT PHONE (904) 296-3007 • FAI	CNVINCIMENTAL IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	- *	HAIN DF LUST L Y Age L .
PROJECT NO.	D. S.C. / (SIGNATURE) DATE T	PROJECT NAME CALEVRON	LEN TURNER Le STATION LOCATION	NO. OF CONTRINERS	REMARKS
			X LEN TURNER		BOITLES CAMP
	3/26/93 13	1330 X 1330 X	LEN TURNER		ENE AN 7702
]			
					3, 30, 92
RELINOUI	RELINQUISHED BY:		RECEIVED BY:	RELINQUISHED BY:	DATE/TIME: RECEIVED BY:
RELINQUISHED BY	marte	DATE/TINE: DATE/TINE:	RECEIVED BY:	RELINQUISHED BY:	DATE/TIME: REMARKS:
BELINOU	RELINQUISHED BY:	DATE/TIME:	RECEIVED BY:	RECEIVED FOR LABORATORY BY.	3/24/93 1430

(904) 474-1001

SIGNATURE PAGE

Reviewed by:

ATI Project Manager

Client:

CHEVRON USA, PRODUCTS CO. MARIETTA, GEORGIA

Project Name: 46863 CHEVRON, LEM TURNER RD. Project Name: 46863 (Project Number: A04301 Project Location: 10163 LEM TURNER RD. JACKSONVILLE, FL Accession Number: 305298

JIM SMITH / BARL FAUST (ENV. GEOSCIENCE) JOHN MACHEN (CHEVRON) Project Manager: Sampled By: EARL FAUST

	"Method Report Summary"		Page 1 Date 24-May-93
Accession Number: Client: Project Number: Project Name: Project Location: Test:	305298 CHEVRON USA, PRODUCTS CO. A04301 46863 CHEVRON, LEM TURNER RD. 10163 LEM TURNER RD. JACKSONVILLE, FL Group of Single Metals		
Client Sample Id:	Parameter:	Unit:	Result:
TW-1	ARSENIC (206.2)	MG/L	0.008

Analytical **Technologies**, Inc. 11 East Oilve Road Pensacola, Florida 32514

Page 2 Date 24-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Matrix: Qc Level:	A04301 46863 (10163 I Group (N USA, PRODU CHEVRON, LEM LEM TURNER R of Single Me JEOUS TCLP	TURNER RD. D. JACKSONVII	LLE, FL			Date 24	-мау-93
Lab Id: Client Sample Id:	001 Drum				Date/T		12-MAY-93 13-MAY-93	1520
Parameters:		Units:	Results:	Rpt	Lmts:	Q:	Batcha	Analyst:
LEAD, TCLP (6010)		MG/L	ND	0.5			P6T029	GL

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, Florida 32514

Page 3 Date 24-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Matrix: Qc Level:	A04301 46863 10163	N USA, PROD CHEVRON, LE LEM TURNER of Single M	M TURNER RD. RD. JACKSONVI	LLE, FL			
Lab Id: Client Sample Id:	008 TW-1			Sample Date/T Received Date	ime:	12-MAY-93 13-MAY-93	1550
Parameters:		Units:	Results:	Rpt Lmte:	Q:	Batch:	Analyst:
ARSENIC (206.2) CADMIUM (213.2) CHROMIUM (200.7) LEAD (239.2)		MG/L MG/L MG/L MG/L	0.008 ND ND ND	0.005 0.0005 0.01 0.003		R2W099 C2W099 How084 P2W099	BGR TH GL JP

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

,

Page 4 Date 24-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Matrix: Qc Level:	305298 CHEVRON USA, PRODU A04301 46863 CHEVRON, LEM 10163 LEM TURNER R Group of Single Me WATER IIC	TURNER RD.	LLE, FL			
Lab Id: Client Sample Id:	009 RINSATE		Sample Date/T Received Date		12-MAY-93 13-MAY-93	1510
Parameters:	Units:	Results:	Rpt Lmts:	Q÷	Batch:	Analyst:
ARSENIC (206.2) CADMIUM (213.2) CHROMIUM (200.7) LEAD (239.2)	MG/L MG/L MG/L MG/L	ND ND ND ND	0.005 0.0005 0.01 0.003		R2W099 C2W099 How084 P2W099	BGR TH GL JP

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

Page 5 Date 24-May-93

"Metals Quality Control Report"

Parameter:	LEAD	ARSENIC	CADMIUM	CHROMIUM	LEAD
Batch Id:	P6T029	R2W099	C2W099	HOWO84	P2W099
Blank Result:	<0.5	<0.005	<0.0005	<0.01	<0.003
Anal. Method:	6010	206.2	213.2	200.7	239.2
Prep. Method:	N/A	N/A	N/A	N/A	N/A
Analysis Date:	21-MAY-93	19-MAY-93	17-MAY-93	20-MAY-93	17-MAY-93
Prep. Date:	20-MAY-93	14-MAY-93	14-MAY-93	17-MAY-93	14-MAY-93
Sample Dup	lication				
Sample Dup:	305402-1	305265-1	305265-1	305215-1	305265-1
Rept Limit:	<0.5	<0.005	<0.0005	<0.01	<0.003
Sample Result:	<.5	<.005	<.0005	<.01	<.003
Dup Result:	<0.5	<0.005	<0.0005	<0.01	<0.003
Sample Rpd:	N/C	N/C	N/C	N/C	N/C
Max Rpd:	0.5	0.005	0.0005	0.01	0.003
Dry Weights	N/A	N/A	N/A	N/A	N/A
Matrix Spi	ke				
Sample Spiked:	305402-1	305265-1	305265-1	305215-1	305265-1
Rept Limlt:	<0.5	<0.005	<0.0005	<0.01	<0.003
Sample Result:	<0.5	<0.005	<0.0005	<0.01	<0.003
Spiked Result:	1.0	0.039	0.0055	1.9	0.022
Spike Added:	1.0	0.040	0.0050	2.0	0.020
% Recovery:	100	98	1110	95	110
% Rec Limlts:	75-125	75-125	75-125	75-125	75-125
Dry Weight%	N/A	N/A	N/A	N/A	N/A
Icv					
Icv Result:	4.8	0.038	0.0039	4.8	0.038
True Result:	5.0	0.040	0.0040	5.0	0.040
Recovery:	96	95	98	96	95
% Rec Limite:	80-120	90-110	90-110	90-110	90-110
Lcs					
Lcs Result:	5.2	0.037	0.0037	4.7	0.037
True Result:	5.0	0.040	0.0040	5.0	0.040
% Recovery:	104	93	93 80-120	94	93
% Rec Limits:	90-110	80-120		80-120	80-120

Analytical **Technologies**, Inc. 11 East Olive Road

Pensacola, Florida 32514

Page 6 Date 24-May-93

"Quality Control Comments"

Batch Id: Comments:

Spike Source: Plasma Chem, Lot # A2M82N10D for Lead. LCS Source: Spex Industries, Lot # 2-329PR for Lead. Spike Source: Plasma Chem, Lot # S2M33N1H for Argenic. LCS Source: Plasma Chem, Lot # S2M33N1H for Argenic. Spike Source: Plasma Chem, Lot # L2M48N1PG for Cadmium. LCS Source: Plasma Chem, Lot # L2M48N1PG for Cadmium. Spike Source: Plasma Chem, Lot # L2M48N1PG for Cadmium. Spike Source: Plasma Chem, Lot # Y1M24L10AP8 for Chromium. LCS Source: Spex Industries, Lot # 2-155PR for Chromium. Spike Source: Plasma Chem, Lot # L2M82N1PI for Lead. LCS Source: Plasma Chem, Lot # L2M82N1PI for Lead. P6T029 P6T029 R2W099 R2W099 C2W099 C2W099 H0W084 H0W084 P2W099 P2W099

Page 7 Date 24-May-93

----- Common Footnotes Metals -----

N/A = NOT APPLICABLE. N/S = NOT SUBMITTED. N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW ATI METHOD DETECTION LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS DODUCTOR LIMITS APPLY N/D = NOT DETECTED.DISS. OR D = DISSOLVED T & D = TOTAL AND DISSOLVED R = REACTIVET = TOTAL= SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X ATI METHOD DETECTION LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW ATI METHOD DETECTION LIMIT; THEREFORE, THE RESULTS ARE G OR BELOW ATI METHOD DETECTION LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".
 Q = THE ANALYTICAL (POST-DIGESTION) SPIKE IS REPORTED DUE TO FAILURE OF THE MATRIX (PRE-DIGESTION) SPIKE.
 # = ELEVATED DETECTION LIMIT DUE TO INSUFFICIENT SAMPLE.
 + = ELEVATED DETECTION LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.
 * = ELEVATED DETECTION LIMIT DUE TO MATRIX INTERFERENCE.
 @ = ADJUSTED DETECTION LIMIT DUE TO SAMPLE MATRIX.
 P = ANALYTICAL (POST DIGESTION) SPIKE.
 I = DUPLICATE INJECTION.
 £ = AUTOMATED = AUTOMATED æ x = ADIONATED > 4 X SPIKE CONCENTRATION. N/C+ = NOT CALCULABLE N/C* = NOT CALCULABLE; SAMPLE SPIKED > 4 X SPIKE CONCENTRATION. H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X ATI METHOD DETECTION LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE ATI METHOD DETECTION LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL"; SAMPLE IS NOV - NONCEMBENGES NON -HOMOGENEOUS A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL"; SAMPLE IS NON -HOMOGENEOUS. SW-846, 3rd Edition, November 1986. EPA 600/4-79-020, Revised March 1983. JP = JAY PEREZ GL = GENE LANDRUM BGR = BARBIE GRIMES REED TH = TODD HUBBARD AJ = AURORA JALOCON JR = JOHN REED JRR = JOHN R. ROWE

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, Florida 32514

Page 1 Date 18-May-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	10163 LEM TURNER TOTAL PETROLEUM 1 418.1 EPA 600 /	EM TURNER R RD. JACKSO HYDROCARBON 04-79-020,	NVILLE, FL S (418.1) Rev. March 19			
Lab Id: Client Sample Id:	008 TW-1	<u> </u>	Sample Da Received		12-MAY-93 13-MAY-93	
Batch: TPW158 Blank: A	Dilution Factor: Dry Weight %:	l N/A	Extraction Analysis 1		14-MAY-93 16-MAY-93	
Parameter:		Units:	Results:	Rpt Lm	ts: Q:	
TOTAL PETROLEUM HY ANALYST	DROCARBON	MG/L INITIALS	ND IP	1		

Analytical Technologies, Inc. 11 East Olive Road

Pensacola, Florida 32514

.

1

Page 2 Date 18-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:		EM TURNER R RD. JACKSO HYDROCARBON 04-79-020,	NVILLE, FL S (418.1) Rev. March 19	83 83	Date	18-May-93
Lab Id: Client Sample Id:	009 RINSATE		Sample Da Received		12-MAY 13-MAY	-93 1510 -93
Batch: TPW158 Blank: A	Dilution Factor: Dry Weight %:	1 N/A	Extractio Analysis		14-MAY 16-MAY	
Parameter:		Units:	Results:	Rpt La	its:	Q:
TOTAL PETROLEUM HY	DROCARBON	MG/L INITIALS	ND IP	1		

Commente:

Page 3 Date 18-May-93

"QC Report"					Date 18-May-9
Title: Batch: Analysis Method: Extraction Method:	Water Blank TPW158 418.1 EPA 600 / (418.1 EPA 600 / (04-79-020, RG 04-79-020, RG	ev. March 19 ev. March 19	983 983	
Blank Id: A Date	e Analyzed: 16-MA	Y-93 Date	Extracted:	14-MAY-93	
Parameters:		Units:	Results:	Reporting	Limits:
TOTAL PETROLEUM HYI Analyst	DROCARBON	MG/L INITIALS	ND IP	1	

Page 4 Date 18-May-93

Title: Water Reag Batch: TPW158		"QC Rep				Da	ite 18-Ma	у-93
Analysis Method: 418.1 EPA Extraction Method: 418.1 EPA	600 / 04-7 600 / 04-7	9-020, R	ev. March ev. March	1983 1983				
RS Date Analyzed: RSD Date Analyzed:	16-MAY-93 16-MAY-93						14-MAY- 14-MAY-	
Parameters: TOTAL PETROLEUM HYDROCARBON	Spike Added 2.1	Sample Conc <1		RS Rec% 90	RSD Conc 1.9	RSD Rec% 90	Rpd D 20 Rpd Lmts	Rec Lmts 50-143
Surrogates:								
Comments:								
Notes: N/S = NOT SUBMITTED N/ MG/L = PARTS PER MILLION * = VALUES OUTSIDE OF QU SOURCES FOR CONTROL LIMI PROGRAM AND REFERENCED M	. < = LE ALITY CONT TS ARE INT	SS THAN I ROL LIMI	REPORTING rs.	LIMIT	•	ANCE		

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, Florida 32514

Page 5 Date 18-May-93

		"QC Repo	rt"					1
Title:Water MatriBatch:TPW158Analysis Method:418.1 EPA 6Extraction Method:418.1 EPA 6	500 / 04-3	79-020, Re	v. March	1983 1983	<u> </u>			
Dry Weight %: N/A Sample Spiked: 305298-8		Analyzed: Analyzed				te Extra ate Extr		4-MAY-93 4-MAY-93
Parameters: Total Petroleum Hydrocarbon	Spike Added 2.1	Sample Conc <1	MS Conc 2.8	MS Rec% 133	MSD Conc 3.1		Rpd Rpd Lmts 11 50	
Surrogates:								
Comments:								
Notes: N/S = NOT SUBMITTED N/A MG/L = PARTS PER MILLION. * = VALUES OUTSIDE OF QUA SOURCES FOR CONTROL LIMIT PROGRAM AND REFERENCED ME	<pre>< = LE LITY CONT S ARE INT</pre>	SS THAN RI	EPORTING	LIMIT.		ANCE		

Analytical **Technologies**, Inc. 11 East Olive Road

Pensacola, Florida 32514 (904) 474-1001 Page 6 Date 18~May-93

· 1

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. MG/L = PARTS PER MILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS. ND = NOT DETECTED ABOVE REPORTING LIMIT.

LJT = LISA THOMASON CD = CHRISTY DRAPER JP = JOE POPEIP = INGRID PITTMAN RP = ROB PEREZSKR = SVETLANA RODKINA

11 East Olive Road

•••

Chevron Level I Supplementary Information for Method 418.1 (TPH)

- 1) A five point curve is analyzed on a daily basis (this replaces a continuing calibration).
- 2) The curve passes all criteria, if a coefficient of determination (r^2) greater than 0.995 is calculated.
- 3) The concentration of the sample is calculated as follows:

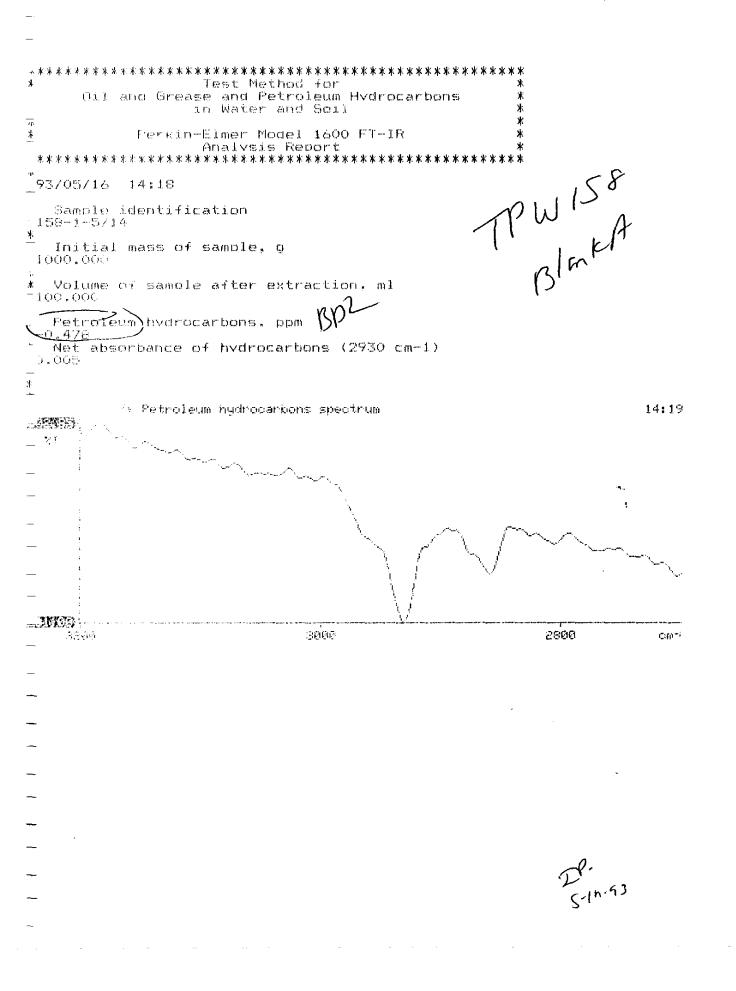
Amt(compound) = (area of compound)(computer generated R.F.) \pm (C.F.)

A) R.F. = Response Factor

Analytical**Technologies,**Inc.

- B) The computer generated R.F. is calculated from calibration runs using the least squares method.
- C) C.F. = Correction factor to bring y-intercept to zero.

4) Original sample concentration (water) = [Amt(compound)] x dilution


5) Original sample concentration (soil) = $[Amt(compound)] \times dilution$ (dry weight of sample $\times 10^{-2}$)

Spike Source: Hunt, Wesson, Inc. Lot #M28A1 and Phillip Diesel 01-ORGN01-08

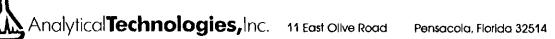
* Test Method for Oil and Grease and Petroleum Hydrocarbons * in Water and Soil 漱 ж Ferkin-Elmer Model 1600 FT-IR Calibration Report * ж 93/05/16 14:07 Concentrations of standards. mg/100 ml 41.000 20.000 _7.000 0,900 **±**. Net absorbance of standards 0.811 -റ.625 ⇒.410 0.195 LSF: slope 0.020; y-intercept 0.014; correlation 0.99982 1.0 Ŷ ٩.

P's. nº93

Page 1 Date 18-May-93

Ξ.

"Method Report Summary"


Accession Number: Client:	305298 CHEVRON USA, PRODUCTS CO.
Project Number:	A04301
	46863 CHEVRON, LEM TURNER RD.
Project Location:	10163 LEM TURNER RD. JACKSONVILLE, FL
Test:	TOTAL PETROLEUM HYDROCARBONS (9073)
······································	

Client Sample Id:	Parameter:	Unit:	Result:
SB-3 (2-3)	TOTAL PETROLEUM HYDROCARBON	MG/KG	6900
SB-3 (3-4)	TOTAL PETROLEUM HYDROCARBON	MG/KG	140
SB-4 (3-4)	TOTAL PETROLEUM HYDROCARBON	MG/KG	520
SB-6 (3-4)	TOTAL PETROLEUM HYDROCARBON	MG/KG	670

Analytical **Technologies, I**nc. 11 East Olive Road Pensacola, Florida 32514

Page 2 Date 18-May-93

Accession:305298Client:CHEVRON USA, PRODUCTS CO.Project Number:A04301Project Name:46863 CHEVRON, LEM TURNER RD.Project Location:10163 LEM TURNER RD. JACKSONVILLE, FLTest:TOTAL PETROLEUM HYDROCARBONS (9073)Analysis Method:9073 / SW 846, 3rd Edition, November 1986Extraction Method:Extraction by Sonication.Matrix:SOILQc Level:IICLab Id:002Sample Date/Time:12-MAY-93 1450						-
Lab Id: Client Sample Id:	002 SB-1 (3-4)	_	Sample Dat Received D		12-MAY-93 13-MAY-93	
Batch: TPS157 Blank: A			Extraction Date: 14-MAY-9 Analysis Date: 16-MAY-9			
Parameter:		Units:	Results:	Rpt Lm	its: Qi	
TOTAL PETROLEUM HY ANALYST	DROCARBON	MG/KG INITIALS	ND IP	1		

Page 3 Date 18-May-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	305298 CHEVRON USA, PRO A04301 46863 CHEVRON, L 10163 LEM TURNER TOTAL PETROLEUM 9073 / SW 846, 3 Extraction by So SOIL IIC	EM TURNER R RD. JACKSO HYDROCARBON rd Edition,	NVILLE, FL S (9073)	6		
Lab Id: Client Sample Id:	003 SB-2 (2-3)	, , , , , , , , , , , , , , , , ,	Sample Da Received		12-MAY-93 15 13-MAY-93	10
Batch: TPS157 Blank: A	Dilution Factor: Dry Weight %:	1 80	Extraction Analysis 1		14-MAY-93 16-MAY-93	
Parameter:		Units:	Results:	Rpt Lm	its: Q:	
TOTAL PETROLEUM HY ANALYST	DROCARBON	MG/KG INITIALS	ND IP	1		

Analytical **Technologies,**Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

Page 4 Date 18-May-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	At: CHEVRON USA, PRODUCTS CO. A04301 A04301 A6863 CHEVRON, LEM TURNER RD. A6863 CHEVRON, LEM TURNER RD. A6863 CHEVRON, LEM TURNER RD. A6863 CHEVRON, LEM TURNER RD. ACKSONVILLE, FL TOTAL PETROLEUM HYDROCARBONS (9073) Vais Method: 9073 / SW 846, 3rd Edition, November 1986 Action Method: Extraction by Sonication. Ix: SOIL Avel: IIC					
Lab Id: Client Sample Id:	004 SB-3 (2-3)		Sample Date Received Da		12-MAY-93 13-MAY-93	
Batch: TPS157 Blank: A	Dilution Factor: Dry Weight %:	10 85	Extraction Analysis Da		14-MAY-93 16-MAY-93	
Parameter:		Units:	Results:	Rpt Lm	ts: Q:	
TOTAL PETROLEUM HY ANALYST	DROCARBON	MG/KG INITIALS	6900 IP	12		

Comments:

_

ł

Page 5 Date 18-May-93

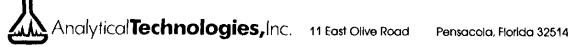
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	TOTAL PETROLEUM 9073 / SW 846. 3	EM TURNER R RD. JACKSO HYDROCARBON rd Edition.	NVILLE, FL S (9073)	6	DACA 10	
Lab Id: Client Sample Id:	005 SB-3 (3-4)		Sample Dat Received I		12-MAY-9 13-MAY-9	
Batch: TPS157 Blank: A	Dilution Factor: Dry Weight %:	1 64	Extraction Analysis J		14-МАҮ-9 16-МАҮ-9	
Parameter:		Unite:	Results:	Rpt Lm	ts: Q:	
TOTAL PETROLEUM HYD Analyst	DROCARBON	MG/KG INITIALS	140 IP	2		

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

Page 6 Date 18-May-93

Accession: 305298 Client: CHEVRON USA, PRODUCTS CO. Project Number: A04301 Project Name: 46863 CHEVRON, LEM TURNER RD. Project Location: 10163 LEM TURNER RD. JACKSONVILLE, FL Test: TOTAL PETROLEUM HYDROCARBONS (9073) Analysis Method: 9073 / SW 846, 3rd Edition, November 1986 Extraction Method: Extraction by Sonication. Matrix: SOIL QC Level: IIC						-
Lab Id: Client Sample Id:	006 SB-4 (3-4)		Sample Da Received		12-MAY-93 13-MAY-93	1535
Batch: TPS157 Blank: A	Dilution Factor: Dry Weight %:	1 83			14-MAY-93 16-MAY-93	
Parameter:		Units:	Results:	Rpt Ln	nte: Q:	
TOTAL PETROLEUM HY	DROCARBON	MG/KG INITIALS	520 IP	1		

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514


Page 7 Date 18-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: Oc Level:	A04301 46863 CHEVRON, L 10163 LEM TURNER TOTAL PETROLEUM 9073 / SW 846, 3	CHEVRON USA, PRODUCTS CO. A04301 46863 CHEVRON, LEM TURNER RD. 10163 LEM TURNER RD. JACKSONVILLE, FL TOTAL PETROLEUM HYDROCARBONS (9073) 9073 / SW 846, 3rd Edition, November 1986 Extraction by Sonication. SOIL					
Lab Id: Client Sample Id:	007 SB-6 (3-4)	<u> </u>	Sample Dat Received I			AY-93 AY-93	1550
Batch: TPS157 Blank: A	Dilution Factor: Dry Weight %:	1 83				4-MAY-93 5-MAY-93	
Parameter:		Unite:	Results:	Rpt Lm	its:	Q:	
TOTAL PETROLEUM HY ANALYST	DROCARBON	MG/KG INITIALS	670 IP	1			

Page 8 Date 18-May-93

Title: Batch: Analysis Metho Extraction Met	Soil Blank TPS157 d: 9073 / SW hod: Extraction	"QC Report" 846, 3rd Edition, by Sonication.	November 19	86	Date 18-M
Blank Id: A	Date Analyzed:	16-MAY-93 Date	Extracted:	14-MAY-93	
Parameters:		Unite:	Results:	Reporting	Limits:
TOTAL PETROLEU. ANALYST	M HYDROCARBON	MG/KG INITIALS	ND IP	1	

Page 9 Date 18-May-93

		"QC Rep	ort"	Date 18-May-93				
Batch: 7	Soil Reagent PS157 1073 / SW 846, 3rd Extraction by Soni	Edition,		1986				
RS Date An RSD Date A	nalyzed: 16-MAY-9 nalyzed: 16-MAY-9				tracted: 14-MAY-93 ktracted: 14-MAY-93			
Parameters: TOTAL PETROLEUM HYDR	Spike Added COCARBON 234	Sample Conc <1	RS Conc 215	RS RSD Rec% Conc 92 246	RSD Rpd Rec Rec% Rpd Lmts Lmts 105 13 18 7-16			
Surrogates:								
Comments:								
* = VALUES OUTS	ER MILLIÓN. < = 1 IDE OF QUALITY CON TROL LIMITS ARE IN	LESS THAN NTROL LIMI	REPORTING		RANCE			

Pensacota, Florida 32514

Page 10 Date 18-May-93

"QC Report" Title: Soil Matrix Batch: TPS157 Analysis Method: 9073 / SW 846, 3rd Edition, November 1986 Extraction Method: Extraction by Sonication. Dry Weight %: 70 Sample Spiked: 305298-2 MS Date Analyzed: 16-MAY-93 MSD Date Analyzed: 16-MAY-93 MS Date Extracted: 14-MAY-93 MSD Date Extracted: 14-MAY-93 Rpd Rec Sample MS MS MSD MSD Spike Rect Conc Rec% Rpd Lmts Lmts 100 4 50 17-1 Conc <1.43 Parameters: Added Conc TOTAL PETROLEUM HYDROCARBON 17-129 334 346 104 333 Surrogates: _ Comments: Notes: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT MG/KG = PARTS PER MILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Pensacola, Florida 32514 (904) 474-1001 Page 11 Date 18-May-93

Common notation for Organic reporting

_ LJT = LISA THOMASON CD = CHRISTY DRAPER JP = JOE POPE

IP = INGRID PITTMAN
 RP = ROB PERE2
 SKR = SVETLANA RODKINA

Analytical **Technologies,** Inc.

Chevron Level I Supplementary Information for Method 9073 (TPH)

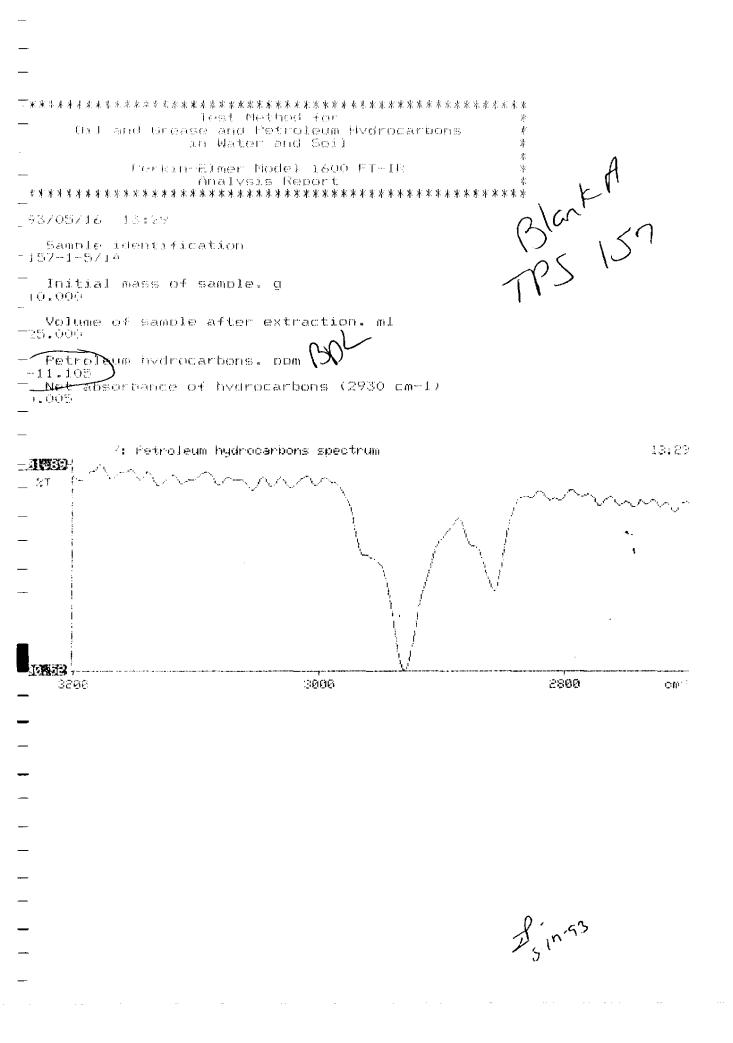
- 1) A five point curve is analyzed on a daily basis (this replaces a continuing calibration).
- 2) The curve passes all criteria, if a coefficient of determination (r^2) greater than 0.995 is calculated.
- 3) The concentration of the sample is calculated as follows:

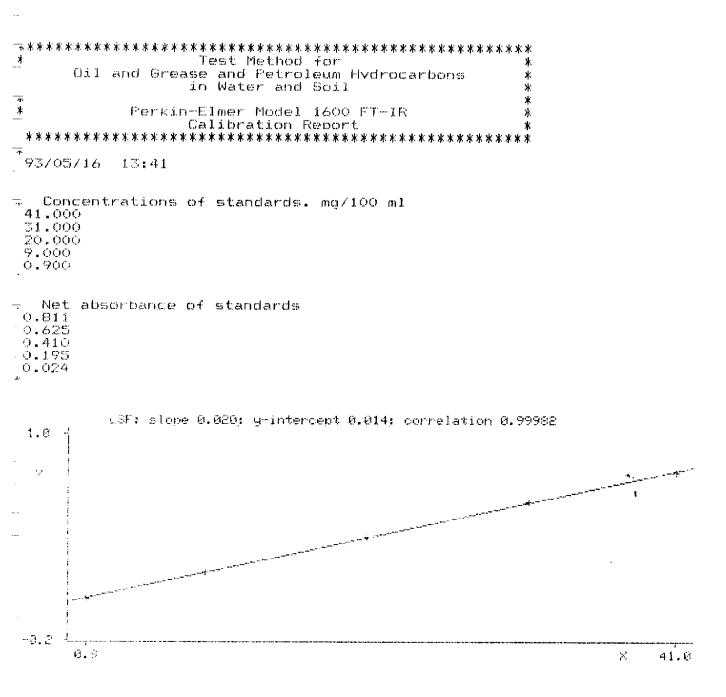
Amt(compound) = (area of compound)(computer generated R.F.) \pm (C.F.)

- A) R.F. = Response Factor
- B) The computer generated R.F. is calculated from calibration runs using the least squares method.
- C) C.F. = Correction factor to bring y-intercept to zero.

4) Original sample concentration (water) = [Amt(compound)] x dilution

5) Original sample concentration (soil) = $[Amt(compound)] \times dilution$ (dry weight of sample x 10⁻²)


Spike Source: Hunt, Wesson, Inc. Lot #M28A1 and Phillip Diesel 01-ORGN01-08


IMAGE QUALITY

AS YOU REVIEW THE NEXT GROUP OF IMAGES, PLEASE NOTE THAT THE ORIGINAL DOCUMENTS WERE OF POOR QUALITY.

• • •

1

	"Method Report Summary"		Page 1 Date 19-May-93
Accession Number: Client: Project Number: Project Name: Project Location: Test:	305298 CHEVRON USA, PRODUCTS CO. A04301 46863 CHEVRON, LEM TURNER RD. 10163 LEM TURNER RD. JACKSONVILLE, FL TCLP VOLATILES (8240)		
Client Sample Id:	Parameter:	Unit:	Result:
DRUM	BENZENE	MG/L	400

Pensacola, Florida 32514

·· ·]

Page 2 Date 19-May-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:		EM TURNER RE RD. JACKSON 8240) d Edition, N Method	VILLE, FL		Dac	6 13~)	May-93
Lab Id: Client Sample Id:	001 Drum		Sample Dat Received I			AY-93 AY-93	1520
Batch: VIW072 Blank: C	Dilution Factor: Dry Weight %:	100 N/A	Extraction Analysis I			AY-93 AY-93	
Parameter:		Units:	Results:	Rpt Lm	:8:	Q:	
BENZENE BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		MG/L %REC/SURR %REC/SURR %REC/SURR INITIALS	400 101 94 102 LP	.1 86-115 76-114 88-115			

Comments:

.

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

Page 3 Date 19-May-93

"QC Report" Title: Water Blank/MS						
Batch: VIW072 Analysis Method: 8240, SW Extraction Method: TCLP, Ex	846. 3rd Edition. N	ovember 198	6			
Blank Id: C Date Analyze	d: 18-MAY-93 Date	Extracted:	17-MAY-93			
Parameters:	Units:	Results:	Reporting	Limits:		
BENZENE	MG/L	ND	0.001			
CARBON TETRACHLORIDE	MG/L	ND	0.002			
CHLOROBENZENE	MG/L	ND	0.001			
CHLOROFORM	MG/L	ND	0.002			
1,4-DICHLOROBENZENE	MG/L	ND	0.002			
1,2-DICHLOROETHANE	MG/L	ND	0.002			
1,1 DICHLOROETHYLENE	MG/L	ND	0.002			
METHYL ETHYL KETONE	MG/L	ND	0.010			
TETRACHLOROETHYLENE	MG/L	ND	0.002			
TRICHLOROETHYLENE	MG/L	ND	0.001			
VINYL CHLORIDE	MG/L	ND	0.001			
BROMOFLUOROBENZENE		101	86-115			
1,2-DICHLOROETHANE-D4	%REC/SURR	96	76-114			
TOLUENE-D8	%REC/SURR	102	88-115			
ANALYST	INITIALS	LP				

Analytical **Technologies**, Inc. 11 East Olive Road

Pensacola, Florida 32514

Page 4 Date 19-May-93

	"QC Report"								
	gent 846, 3rd Ec raction Met		ovember 1	1986		·			
RS Date Analyzed: RSD Date Analyzed:	17-MAY-93 17-MAY-93				ate Exti Date Ext		N/A N/A		
Parameters: 11-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE	Spike Added 0.050 0.050 0.050 0.050 0.050	Sample Conc <0.001 <0.001 <0.001 <0.005 <0.001	RS Conc 0.053 0.053 0.052 0.052 0.052	RS Rec% 106 106 104 104 104	RSD Conc 0.053 0.052 0.051 0.051 0.051		Rpd 0 2 2 2	Rpd Lmts 14 14 11 13 13	Rec Lmts 94-129 78-117 85-113 47-150 81-118
Surrogates: 1,2-DICHLOROETHANE-D4 TOLUENE-D8 BROMOFLUOROBENZENE				100 100 99		103 98 99			76-114 88-115 86-115

Comments:

Notes:

- N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT MG/L = PARTS PER MILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Analytical **Technologies**, Inc. 11 East Olive Road

Page 5 Date 19-May-93

_		Water Matri: VIW072 8240, SW 844 TCLP, Extra	6, 3rd Ed:			36				.,	,
_	Dry Weight %: N/A Sample Spiked: 3052	224-1		Analyzed: Analyzed:			MS Date MSD Date				
	Parameters: 11-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE		Spike Added 0.050 0.050 0.050 0.050 0.050	<0.001 <0.001 <0.005	MS Conc 0.052 0.051 0.052 0.055 0.055	MS Rec% 104 102 104 110 104	MSD Conc 0.056 0.054 0.054 0.057 0.054	MSD Rec% 112 108 108 114 108	Rpd 7 6 4 4 4	Rpd Lmts 14 14 11 13 13	Rec Lmts 94-129 78-117 85-113 47-150 81-118
	Surrogates: 1,2-DICHLOROETHANE- TOLUENE-D8 BROMOFLUOROBENZENE	·D4				100 101 101		101 101 100			76-114 88-115 86-115

Comments:

Notes:

-

- N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT MG/L = PARTS PER MILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Pensacola, Florida 32514 (904) 474-1001 Page 6 Date 19-May-93

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS

ND = NOT DETECTED ABOVE REPORT LIMIT.

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

LP =	LEVERNE PETERSON	RW = RITA WINGO	BR = BILL RUBERT
DWB ≖	DAVID BOWERS	LD = LARRY DILMORE	
DB =	DENNIS BESON	DC = DAVID CELESTIAL	

CHEVRON QC REPORT

Determination of the relative response factor (rrf): 1> $RRF = AREA(compound) \times CONC.(is)$ AREA(is) x CONC. (compound) In daily calibration: CONC.(is) = 50 ug/LCONC. (compound) = 50 ug/L. Quantitation of sample results: 2>

CONC. (compound) = AREA(compound) x CONC. (is) AREA(is) x RRF

Standards: 3>

Standard	lot #	Conc (ug/ml)	Manufacturer
8240 standards mix Purge C Mix Internal Standard mix Surrogate Mix Matrix Spike mix	**** 013173 032-135 122-075 2A34194	200/2000 200 1,000 250 250 250	Accustandard Accustandard Accustandard Accustandard Supelco

4> Lab standard mix ID #'s:

standard mix	Lab Identification
8240 standard mix	02-MSW/5_ 03
Matrix spike mix	02-MSW15-02
IS/Surrogate mix	02-MSW 14-03
Purge C mix	02-MSW/4-02
Sample lab identification:	3052981

5> Sample lab identification:

**** 062-,146, 102-185, 102-001,092-038

7A VOLATILE CONTINUING CALIBRATION CHECK

-	Lab Name: <u>A.T.I.</u>	Contract:	
_	Lab Code: Case No.	: STAND SAS No. :	SDQ No.:
_	Instrument ID: <u>FINN</u>	Calibration date: <u>05/18/93</u>	Time: <u>923</u>
-	Lab File ID: <u>CAV518</u>	Init. Calib. Date(s): <u>05/05/</u>	/93 05/05/93
_	Matrix:(soil/water) <u>WATER</u> L	.evel:(low/med) <u>LOW</u> Column:	(pack/cap) PACK
	Min RRF50 for SPCC(#) = 0.30	0 (0.250 for Bromoform) Max X	(D for CCC(*) = 25.0%

		RRF50	7 D
hloromethanef			10.0
romomethane	1 963	1 621	17.4
'inyl Chloride*	E 1 612	1 3331	17.3
hloroethane	1 006	0 866	13.9
lethylene Chloride	1 657	1 413	14 7
cetoneI	0 361	0 268	25 8
arbon Disulfide	3 924	2 687	31 6
richlorofluoromethene !	3 577	2.924	18 3
1-Dichloroethene	1 222	1.286	-5.2
,1-Dichloroethane	3 037	2, 842	6.4
,2-Dichloroethene (total)	1.318	1.271	3.6
hloroform			
,2-DichloroethaneI	2 460	1. 9431	21.0
ButanoneI	0.112	0.072	17.9
,1,1-Trichloroethanel	0, 707	0. 6461	B. 6
arbon Tetrachloride	0.711	0.611	14.1
'inyl Acetate!	0.665	0. 615	
romodichloromethane	0 9001	0.8141	
,2-Dichloropropane#	0.421	0.4181	0.7 +
is-1,3-Dichloropropene	0.6231	0. 5931	4.8
richloroethene	0.458	0.4681	-2.2
ibromochloromethaneI	0.771	0. 6891	10.6
,1,2-Trichloroethane	0. 378	0. 3721	1.6
enzene!	0.8951	0.9011	-0.7
rans-1.3-dichloropropene!	0.4991	0. 4321	13.4
romoform #	0,5861	0. 5181	11.6 1
-Methyl-2-Pentanone	0. 344 !	0. 2921	15.1
-Hexanonel	0.2141	0. 1721	19.6
etrachloroethene	0.5161	0. 5091	1.4
,1,2,2-Tetrachloroethane#	0.7321	0.6601	9.8 i
oluene*	0, 6551	0.6521	0.5)
hlorobenzene 🕴 🦷	0. 9361	0. 9561	2.1 #
thylbenzene#	0.4141	0. 4131	0.2 *
tyreneI	0.8361	0.8191	2.0
VIENE (tatal) 2	1	I	
, p. Xulene 1	0.4901	0.4871	0.6
-Xulene	0.4641	0.4751	-2.4
,3-Dichlorobenzene	1.091	1.1281	3.4
, 2-Dichlorobenzene	1, 1341	1. 1351	-0.1
,4-Dichlorobenzene!	1 0411	1 1721	-12 6

; ====================================		2 pp. pp. 10 10 20 pp. 20 0		1
Toluene-d8I	1.0241	1.0321	-0.8	ł
Bromofluorobenzene	0.9271	0.9211	0.6	۱
11,2-Dichloroethane-d4t	2.3021	1.7811	22.6	ł
11			·····	1

FORM VII VOA

1/87 Rev.

.


```
Page 1
Date 17-May-93
```

14

"Method Report Summary"

Client Sample Id:	Parameter:	Unit:	Result:
Project Name:	CHEVRON USA, PRODUCTS CO. A04301 46863 CHEVRON, LEM TURNER RD. 10163 LEM TURNER RD. JACKSONVILLE, FL PRIORITY POLLUTANT VOLATILES (8240)		

UG/L TW-1 CHLOROBENZENE

Analytical **Technologies, I**nc. 11 East Olive Road Pensacola, Florida 32514

Page 2 Date 17-May-93

Accession:	305298				Dat	e 17-∦	lay-9
Client: Project Number:	CHEVRON USA, PRO A04301	DUCTS CO.					
Project Name:	46863 CHEVRON, L						
Project Location:							
Test:	PRIORITY POLLUTA						
Analysis Method:	8240, SW 846, 3r						
Extraction Method: Matrix:	GROUNDWATER	Trap For Vol	latiles water	6			
Qc Level:	IIC						
Lab Id:	008		Sample Da			AY-93	1550
Client Sample Id:	TW-1		Received	Date:	13-M	AY-93	
Batch: VIW071	Dilution Factor:	1	Extractio	n Date:	N/A		
Blank: C	Dry Weight %:	N/A	Analysis	Date:	14-M	AY-93	
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:	
ACROLEIN		UG/L	ND	100			
ACRYLONITRILE		UG/L	ND	100			
BENZENE		UG/L	ND	ĩ			
BIS (CHLOROMETHYL) ET	THER	UG/L	ND	5			
BROMOFORM		UG/L	ND	2			
CARBON TETRACHLORII)E	UG/L	ND	2			
CHLOROBENZENE		UG/L	14	1			
CHLORODIBROMOMETHAN	1E	UG/L	ND	5 1			
CHLOROETHANE		UG/L	ND	1			
2-CHLOROETHYLVINYL	ETHER	UG/L	ND	5			
CHLOROFORM		UG/L	ND	2			
DICHLOROBROMOMETHAN		UG/L	ND	1			
DICHLORODIFLUOROME	HANE	UG/L	ND	5			
1,1-DICHLOROETHANE		UG/L	ND	1			
1,2-DICHLOROETHANE 1,1 DICHLOROETHYLEN	12	UG/L UG/L	ND ND	2 1			
TRANS 1,2 DICHLORO		UG/L	ND	5			
1,2-DICHLOROPROPANE		ŬG/L	ND	2			
1,3-DICHLOROPROPYLE		ŬG/L	ND	2 5			
ETHYL BENZENE		UG/L	ND	ĭ			
METHYL BROMIDE		UG/L	ND	5			
METHYL CHLORIDE		UG/L	ND	5			
METHYLENE CHLORIDE		UG/L	ND	3			
1,1,2,2-TETRACHLORC	DETHANE	UG/L	ND	2			
TÉTRACHLOROETHENE		UG'/L	ND	1			
TOLUENE		UG/L	ND	5			
1,1,1-TRICHLOROETHA		UG/L	ND	5 2			
1,1,2-TRICHLOROETHA	NE	UG/L	ND	2			
TRICHLOROETHYLENE		UG/L	ND	1			
TRICHLOROFLUOROMETH	IANE	UG/L	ND	5			
VINYL CHLORIDE		UG/L	ND	1			
BROMOFLUOROBENZENE	D.4	&REC/SURR	103	86-115			
1,2-DICHLOROETHANE-	04	%REC/SURR	96	76-114			
TOLUENE-D8 ANALYST		%REC/SURR INITIALS	102 LP	88-115			
United # 1		101111000					

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

Page 3 Date 17-May-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	PRIORITY POLLUTANT VOLATILES 8240, SW 846, 3rd Edition, No	VILLE, FL (8240) ovember 1986		
Lab Id: Client Sample Id:	008 TW-1	Sample Date/Time: Received Date:	12-MAY-93 13-MAY-93	
	"Sample Tic Rep	port"		
Number of Tics Fou Concentration Unit Cas Number: Co	· · · · ·	RT:	Est Conc:	Q:
	loromethane	0.92	3	# ⁻
	known Hydrocarbon known Hydrocarbon	11.23 30.45	6 8	J J

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, Florida 32514

...

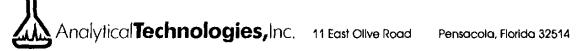
Page 4 Date 17-May-93

					Dat	te 17-M	lay-
Accession: Client:	305298 CHEVRON USA,						
Project Number		FRODUCIS CO.					
Project Name:		, LEM TURNER RI).				
Project Locati		NER RD. JACKSON					
Test:		UTANT VOLATILES					
Analysis Metho	d: 8240. SW 846.	3rd Edition, 1	lovember 1986				
Extraction Met	hod: 5030, Purge A	nd Trap For Vol	atiles Water	6			
Matrix:	WATER			-			
Qc Level:	IIC						
Lab Id:	009		Sample Da	te/Time:	12-1	4AY-93	151
Client Sample	Id: RINSATE		Received			1AY-93	
Batch: VIW071	Dilution Fact	or: 1	Extractio	n Date:	N/A		
Blank: C	Dry Weight %:	N/A	Analysis	Date:	14-1	4AY-93	
Devenateve		Units:	Results:	Dot In	+	0.	
Parameter:		OUTCR!	VERATCRI	Rpt Ln	1001	Q:	
ACROLEIN		UG/L	ND	100			
ACRYLONITRILE		UG/L	ND	100			
BENZENE		UG/L	ND	1			
BIS (CHLOROMETH	YL)ETHER	UG/L	ND	5			
BROMOFORM		UG/L	ND	2			
CARBON TETRACH	LORIDE	UG/L	ND	2			
CHLOROBENZENE		UG/L	ND	1 5			
CHLOROD I BROMOM	ETHANE	UG/L	ND	5			
CHLOROETHANE		UG/L	ND	1			
2-CHLOROETHYLV	INYL ETHER	UG/L	ND	5			
CHLOROFORM		UG/L	ND	2			
DICHLOROBROMOM		UG/L	ND	1			
DICHLORODIFLUO		UG/L	ND	5			
1,1~DICHLOROET		UG/L	ND	1			
1,2-DICHLOROET	HANE	UG/L	ND	2			
1,1 DICHLOROETI	HYLENE	UG/L	ND	1 5			
TRANS 1,2 DIC		UG/L	ND	5			
1,2-DICHLOROPR	DPANE	UG/L	ND	25			
1,3-DICHLOROPR	DPYLENE	UG/L	ND	5			
ETHYL BENZENE		UG/L	ND	1			
METHYL BROMIDE		UG/L	ND	5			
METHYL CHLORIDI		UG/L	ND	5			
METHYLENE CHLO		UG/L	ND	3			
1,1,2,2-TETRAC		UG/L	ND	2 1			
TETRACHLOROETH	ENE	UG/L	ND	1			
TOLUENE		UG/L	ND	5 5			
1,1,1-TRICHLOR		UG/L	ND	5			
1,1,2-TRICHLOR		UG/L	ND	2			
TRICHLOROETHYL		UG/L	ND	1			
TRICHLOROFLUOR	OMETHANE	UG/L	ND	5			
		UG/L	ND	1			
VINYL CHLORIDE				07 117			
BROMOFLUOROBEN		%REC/SURR	104	86-115			
BROMOFLUOROBEN 1,2-DICHLOROETI		%REC/SURR	96	76-114			

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514

Page 5 Date 17-May-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	PRIORITY POLLUTANT VO 8240, SW 846, 3rd Ed:	URNER RD. JACKSONVILLE, FL DLATILES (8240) ition, November 1986		-
Lab Id: Client Sample Id:	009 RINSATE	Sample Date/Time: Received Date:		1510
	"Sample	e Tic Report"		
Number of Tics Four Concentration Units				
Cas Number: Con	npound Name:	RT:	Est Conc:	Q:


_

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

"QC Report"

Page 6 Date 17-May-93

Title: Water Blank/ Batch: VIW071 Analysis Method: 8240, SW 846 Extraction Method: 5030, Purge	, 3rd Edition,	November 198 latiles Wate	36 278
	<u> </u>		
Blank Id: C Date Analyzed: 1	4-MAY-93 Dat	e Extracted:	N/A
Parameters:	Units:	Results:	Reporting Limit
ACETONE	UG/L	ND	10
ACROLEIN	UG/L	ND	100
ACRYLONITRILE	UG/L	ND	100
BENZENE	UG/L	ND	1
BROMODICHLOROMETHANE	UG/L	ND	1
BROMOFORM	UG/L	ND	2
BROMOMETHANE	UG/L	ND	1
2-BUTANONE (MEK)	UG/L	ND	3
CARBON DISULFIDE	UG/L	ND	1
CARBON TETRACHLORIDE	UG/L	ND	2
CHLOROBENZENE	UG/L	ND	1
CHLOROETHANE	UG/L	ND	1
2-CHLOROETHYLVINYL ETHER	UG/L	ND	5 2 2
CHLOROFORM	UG/L	ND	2
CHLOROMETHANE	UG/L	ND	2
CHLORODIBROMOMETHANE	ŬĠ/L	ND	5
DIBROMOMETHANE	UG/L	ND	5
DICHLORODIFLUOROMETHANE	UG/L	ND	5
1,1-DICHLOROETHANE	ŬĠ/L	ND	ī
1,2-DICHLOROETHANE	UG/L	ND	1 2 1
1,1-DICHLOROETHENE	UG/L	ND	ī
TOTAL 1,2-DICHLOROETHYLENE	ŬĠ/L	ND	5
1.2-DICHLOROPROPANE	UG/L	ND	2
CIS-1.3-DICHLOROPROPENE	ŬĠ/L	ND	ī
TRANS-1, 3-DICHLOROPROPENE	UG/L	ND	ī
1,4-DICHLORO-2-BUTENE	UG/L	ND	5
ETHANOL	UG/L	ND	50
ETHYL BENZENE	UG / I.	ND	1
ETHYL METHACRYLATE	UG/L	ND	5
2-HEXANONE	UG/L	ND	3
IODOMETHANE	UG/L	ND	3 5
METHYLENE CHLORIDE	UG/L	ND	3
4-METHYL-2-PENTANONE	UG/L	ND	3 3 2
STYRENE	UG/L	ND	2
1,1,2,2-TETRACHLOROETHANE	UG/L UG/L	ND	2
TETRACHLOROETHENE	UG/L	ND	1
	UG/L UG/L		5
		ND	
1, 1, 1-TRICHLOROETHANE	UG/L	ND	3
1,1,2-TRICHLOROETHANE	UG/L	ND	5 2 1
TRICHLOROETHENE	UG/L	ND	1
TRICHLOROFLUOROMETHANE	UG/L	ND	1
1,2,3 TRICHLOROPROPANE	UG/L	DND	5 2
VINYL ACETATE	UG/L	ND	2
VINYL CHLORIDE	UG/L	ND	1
TOTAL XYLENES	UG/L	ND ND ND ND ND	2
BROMOFLUOROBENZENE	%RÉC/SURR	101	86-115

Page 7 Date 17-May-93

		"OC Report"		
Title:	Water Blank/MS	•		
Batch:				
Analysis Method:	8240, SW 846, 3			
Extraction Method:	5030, Purge And	Trap For Vo	latiles Wate	ers
•·····••				
				ma status maturatas
Parameters:		Units:	Results:	Reporting Limits:
Parameters: 1.2-DICHLOROETHANE	-D4	•••••	Results: 97	Reporting Limits: 76-114
Parameters: 1,2-DICHLOROETHANE TOLUENE-D8	-D4	Units: %REC/SURR %REC/SURR		× 9

Pensacola, Florida 32514

Page 8 Date 17-May-93

Title: Water Re	agent	"QC Rep	ort"			-			4
Batch: VIW071 - Analysis Method: 8240, SW	846, 3rd Ed rge And Trap					.			
- RS Date Analyzed: RSD Date Analyzed					ate Exti Date Exi	racted: tracted:	N/# : N/#		
 Parameters: 11-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE 	Spike Added 50 50 50 50 50 50	Sample Conc <1 <1 <1 <5 <5 <1	RS Conc 53 52 51 52 53	RS Rec% 106 104 102 104 106	RSD Conc 51 52 50 51 51	RSD Rec% 102 104 100 102 102	Rpd 4 0 2 2 4	Rpd Lmts 14 14 11 13 13	Rec Lmts 94-129 78-117 85-113 47-150 81-118
Surrogates: 1,2-DICHLOROETHANE-D4 TOLUENE-D8 - BROMOFLUOROBENZENE				100 101 100		96 101 101			76-114 88-110 90-107

.

- Notes: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Analytical **Technologies**, Inc. 11 East Olive Road

Page 9 Date 17-May-93

	trix 846, 3rd E rge And Tra		ovember						,
_ Dry Weight %: N/A Sample Spiked: 305215-1		Analyzed e Analyze				te Extra ate Extr			
 Parameters: 11-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE 	Spike Added 50 50 50 50 50 50	Sample Conc <1 <1 <1 <5 <1	MS Conc 47 52 50 51 51	MS Rec% 94 104 100 102 102	MSD Conc 47 51 50 52 53	102 100	Rpd 0 2 0 2 4	Rpd Lmts 14 14 11 13 13	Rec Lmts 94-129 78-117 85-113 47-150 81-118
Surrogates: 1,2-DICHLOROETHANE-D4 TOLUENE-D8 BROMOFLUOROBENZENE				102 100 99		104 102 99			76-114 88-110 86-115

Comments:

Notes:

- B: N/S = NOT SUBMITTED N/A * NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Pensacola, Florida 32514 (904) 474-1001 Page 10 Date 17-May-93

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS

ND = NOT DETECTED ABOVE REPORT LIMIT.

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

LP = LEVERNE PETERSON	RW = RITA WINGO	BR = BILL RUBERT
DWB = DAVID BOWERS	LD = LARRY DILMORE	
DB = DENNIS BESON	DC = DAVID CELESTIAL	

CHEVRON QC REPORT

1>	Determination of the relative response factor (rrf):
	RRF = AREA(compound) x CONC.(is) AREA(is) x CONC.(compound)
	In daily calibration: CONC.(is) = 50 ug/L CONC.(compound) = 50 ug/L
2>	Quantitation of sample results:
	$CONC.(compound) = AREA(compound) \times CONC.(is)$

 $AREA(compound) = AREA(compound) \times conc.(1s)$ $AREA(is) \times RRF$

3> Standards:

Standard	lot #	Conc (ug/ml)	Manufacturer
8240 standards mix Purge C Mix Internal Standard mix Surrogate Mix Matrix Spike mix	+ 0:13-173 0:32-135 122-075 2.12-075 2.13-119-1	200/2000 200 1,000 250 250	Accustandard Accustandard Accustandard Accustandard Supelco

4> Lab standard mix ID #'s:

standard mix

8240 standard mix

Matrix spike mix

IS/Surrogate mix

Purge C mix

02-MSW13-03 02-MSW15-02 02-MSW14-03 02-MSW14-03

305298 (89)

Lab Identification

5> Sample lab identification:

+ 062-146, 102-185, 102-001,092-035

7A VOLATILE CONTINUING CALIBRATION CHECK

	Lab Name: <u>A.T.I.</u>	ug-g-1-m	
	Lab Code: Case No. :	SAS No. :	SDG No :
	Instrument ID: <u>FINN</u>	Calibration date: <u>05/14/93</u>	Time: 915
	Lab File ID: <u>CAV514</u>	Init. Calib. Date(s): <u>05/05/</u>	93 05/05/93
	Matrix:(soil/water) <u>WATER</u> L	evel:(low/mod) <u>LOW</u> Column:	(pack/cap) <u>PACK</u>
•	Min RRF50 for SPCC(#) = 0.300	0 (0.250 for Bromeform) Max %	D for CCC(*) = 25.0%

		\$ 	
	RRF	RRF 50	7.D
Chloromethane	1.586	1.384	127#
Bromomethane1	1.963	1.656	15.6
Vinyl Chloride*	1.612	1.324	17.9 *
Chloroethanel	1,004	0. 906	9.9
Methylene Chloride	1.657	1.468	
Acetone Carbon Disulfide	0, 361	0. 242	
Carbon Disulfide!	3, 926)	2.969	
Trichlorofluoromethane	3.577	3.100	
1,1-Dichloroethene*	1. 2221	1. 463	-19.7 *
1,1-Dichloroethane#	3. 037	3.061	0.8 #
1,2-Dichloroethene (total)_	1.316	1. 369	3.9 (
Chloroform*	3, 5321	3.420	3.2*
1,2-Dichloroethane	2, 4601	2.133	13.3
2-Butanonel	0.112	0 094	16.1 L
1,1,1-Trichloroethane	0.7071	0.666	5.8
Carbon Tetrachloride	0.711	0.629	11.7
Vinyl Acetate	0.6651	0.624	6.2
Bromodichloromethane	0. 9001	0.844	6.2
1,2-Dichloropropane*	0.4211	0.4381	4.0 *
cis-1,3-Dichloropropenel	0. 6231	0. 608	2.4 :
Trichloroethenei			-3.9 1
Dibromochloromethane1	0.771;	0.701	9.1 1
1,1,2-Trichloroethane			
Benzene			
trans-1, 3-dichloropropene!	0.4991	0. 4461	10.6
Bromoform#			
4-Methyl-2-Pentanone	0.3441	0.2811	18.3
2-Hexanonel			22.4
Tetrachloroethene	0.5161	0.5191	-0.6
1, 1, 2, 2-Tetrachloroethane#	0.7321	0.6521	
Foluene*			
Chlorobenzene#	0.9361	0. 9591	-2.5 #
thylbenzene*	0.4141	0.4181	-1.0 ¥
Styrene	0 8361	0.8611	-301
(YLENE (total)	1	1	
o,p Xylene	0.490	0 4921	0.4
n-Xylene		0.4581	
l, 3-Dichlorobenzene			
1,2-Dichlorobenzene		1. 1231	
1,4-Dichlorobenzene		1.1921	
	- +, ¥***#1	a - 2 / 65	6 ° - 14

1787 Rev.

. אם אות איז	17 JZ	1 2 2	a ta 11 M m	. 37 27 3		1 22 22 33 3	2 45: 12	1
lTo)vene-d8	1	1.	024	1.	0251	-0	1	ł
Bromofluorobenzene	1	Ø.	9271	Q,	9151	1.	Э	ł
11,2-Dichloroethane-d4	1	2.	3021	1.	8851	18.	1	-t
	۱.,			w 1418 garant	· · · · · · · · · · · · · · · · · · ·	-		1

FORM VII VOA 1/87 Rev.

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514

L

Page 1 Date 20-May-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	PP ACID EXTRACTA 8270, SW 846, 3r	EM TURNER RD RD. JACKSON BLES (8270) d Edition, N	VILLE, FL ovember 1986	3	Duck		, , , , , , , , , , , , , , , , , , ,
Lab Id: Client Sample Id:	008 TW-1		Sample Dat Received I		12-M/ 13-M/	AY-93 AY-93	1550
Batch: ALWO82 Blank: C	Dilution Factor: Dry Weight %:	1 N/A	Extraction Analysis I		13-M7 19-M7		
Parameter:		Units:	Results:	Rpt Lm	tß:	Q٠	
P-CHLORO-M-CRESOL PENTACHLOROPHENOL PHENOL 2,4,6-TRICHLOROPHENOL 2,4-DICHLOROPHENOL 2,4-DINITROPHENOL 2,4-DINITROPHENOL 2-CHLOROPHENOL 4,6-DINITRO-O-CRESO 4-NITROPHENOL 2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENO ANALYST	DL	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND 70 68 58 LD	25 30 5 20 10 5 30 15 10 50 20 21-100 10-94 10-123			

Comments:

-

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514

Page 2 Date 20-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	10163 LEM TURNER PP ACID EXTRACTA 8270, SW 846, 3r	EM TURNER RE RD. JACKSON BLES (8270) d Edition, N	VILLE, FL lovember 1986	8	240		
Lab Id: Client Sample Id:	009 RINSATE		Sample Da Received	te/Time: Date:		AY-93 AY-93	1510
Batch: ALW082 Blank: C	Dilution Factor: Dry Weight %:	1 N/A	Extraction Analysis			AY-93 Ay-93	
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:	
P-CHLORO-M-CRESOL PENTACHLOROPHENOL PHENOL 2,4,6-TRICHLOROPHENOL 2,4-DICHLOROPHENOL 2,4-DINITROPHENOL 2,4-DINITROPHENOL 2-NITROPHENOL 4,6-DINITRO-O-CRESO 4-NITROPHENOL 2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENOC ANALYST	DL	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND 81 57 68 LD	25 30 5 20 10 5 30 15 10 50 20 21-100 10-94 10-123			

Comments:

-

_ -

- -_

-

Page 3 Date 20-May-93

Title: Water Blank	"QC Repo	ort"		Date 20-
Batch: ALW082 Analysis Method: 8270, SW 844 Extraction Method: SW-846, Extr	·	on. November 198	6	
Extraction Method: SW-846, Ext:	raction Metho	od 3510 for wate:	rs	
Blank Id: C Date Analyzed:	17-MAY-93	Date Extracted:	13-MAY-93	
Parameters:	Units:	Results:	Reporting	Limits:
BENZOIC ACID	Units: UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND	50	
4-CHLORO-3-METHYLPHENOL		ND	10	
2-CHLOROPHENOL		ND	10	
2-CHLOROPHENOL 2,4-DICHLOROPHENOL 2,6-DICHLOROPHENOL 2,4-DIMETHYLPHENOL 4,6-DINITRO-2-METHYLPHENOL 2,4-DINITROPHENOL		ND	ĩŏ	
2. 6-DICHLOROPHENOL		ND	10	
2 A-DIMETHYLPHENOL		ND	iŏ	
A 6-DINITRO-2-METHVLPHENOL		ND	50	
$2 A_{\rm DINITROPHENOL}$		ND	50	
2,4-DINITROPHENOL 2-METHYLPHENOL 4-METHYLPHENOL 2-NITROPHENOL 4-NITROPHENOL PENTACHLOROPHENOL PHENOL		ND		
A- MERUVI DURNOI			10	
4-MEINIEPHENOL	00/1	ND	10	
A MIRDODURNOL			10	
4~NITROPHENOL	0671	ND ND	50	
PENTACHLOROPHENOL	UG/L	ND	50	
PHENOL 2,3,4,6-TETRACHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL ACENAPHTHENE ACENAPHTHYLENE ACETOPHENONE 4-AMINOBIPHENYL ANILINE ANTHRACENE BENZO (A) ANTHRACENE BENZO (A) PYRENE BENZO (B) FLUORANTHENE	UG/L	UМ	10	
2,3,4,6-TETRACHLOROPHENOL	UG/L	ND	10	
2,4,5-TRICHLOROPHENOL	UG/L	ND	50	
2,4,6-TRICHLOROPHENOL	UG/L	ND	10	
ACENAPHTHENE	UG/L	ND	10	
ACENAPHTHYLENE	UG/L	ND	10	
ACETOPHENONE	UG/L	ND	10	
4~AMINOBIPHENYL	UG/L	ND	10	
ANILINE	UG/L	ND	10	
ANTHRACENE	UG/L	ND	10	
BENZIDINE	UG/L	ND	10	
BENZO (A) ANTHRACENE	UG/L	ND	10	
BENZO (A) PYRENE	UG/L	ND	10	
BENZO (A) PYRENE BENZO (B) FLUORANTHENE BENZO (G,H,I) PERYLENE BENZO (K) FLUORANTHENE BENZYL ALCOHOL	UG/L	ND	10	
BENZO (G,H,I) PERYLENE	UG/L	ND	10	
BENZO (K) FLÚORANTHENE	UG/L	ND	10	
BENZYL ALCOHOL	UG/L	ND	10	
BIS (2-CHLOROETHOXY) METHANE BIS (2-CHLOROETHYL) ETHER	UG/L	ND	10	
BIS (2-CHLOROETHYL) ÉTHER	UG/L	ND	10	
BIS(2-CHLOROETHYL)ETHER BIS(2-CHLOROISOPROPYL)ETHER BIS(2-ETHYLHEXYL)PHTHALATE 4-BROMOPHENYL PHENYL ETHER BUTYLEENZYL PHTHALATE	UG/L	ND	10	
BIS (2-ETHYLHEXYL) PHTHÁLATE	UG/L	ND	10	
4-BROMOPHENYL PHÉNYL ETHER	UG'/L	ND	10	
BUTYLBENZYL PHTHALATE	UG/L	ND	10	
4-CHLOROANILINE	UG/L	ND	10	
1-CHLORONAPHTHALENE	ŬĠ/L	ND	īŏ	
2-CHLORONAPHTHALENE	116271.	MO	ĩŏ	
4-CHLOROPHENYL PHENYL ETHER	ŭg/ī.	ND ND ND ND ND ND	10	
CHRYSENE	UG/L	ND	10	
	UG/L UG/L UG/L	ND	10	
DIBENZ(A,H)ANTHRACENE DIBENZ(A,J)ACRIDINE	UC/L	ND	10	
DIBENZ(A, J)ACRIDINE	UG/L	ND		
DIBENZO (A, H) ANTHRACENE	UG/L UG/L		10	
DIBENZOFURAN			10	
1,2-DICHLOROBENZENE	UG/L	ND	10	

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, Florida 32514

Page 4 Date 20-May-93

			Dat	e 20-
Title: Water Blank/M	"QC Report" S			
n-1-1			_	
ALW082 Analysis Method: 8270, SW 846, Extraction Method: SW-846, Extra	3rd Edition,	November 198	6	
Extraction Method: SW-846, Extra	ction Method 3	510 IOF WALE		
Parameters:	Units:	Results:	Reporting Lim	its:
1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE 3,3'-DICHLOROBENZIDINE DIETHYLPHTHALATE	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND	10	
1,4-DICHLOROBENZENE	UG/L	ND	10	
3,3'-DICHLOROBENZIDINE	UG/L	ND	50	
	UG/L	ND	10	
P-DIMETHYLAMINOAZOBENZENE	UG/L	ND	10	
7,12-DIMETHYLBENZ(A)ANTHRACENE	UG/L	ND	10	
A-, A-DIMETHYLPHENETHYLAMINE	UG/L	ND	10	
DIMETHYLPHTHALATE	UG/L	ND	10	
DI-N-BUTYLPHTHALATE	UG/L	ND	10	
2,4-DINITROTOLUENE	UG/L	ND	10	
2,6-DINITROTOLUENE	UG/L	ND	10	
DI-N-OCTYLPHTHALATE		ND	10	
DIPHENYLAMINE	UG/L		10	
A-, A-DIMBINIDIANE INIDAMINE DIMETHYLPHTHALATE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE DI-N-OCTYLPHTHALATE DIPHENYLAMINE 1,2-DIPHENYLHYDRAZINE FLUOROANTHENE		ND	10	
Leonomining	UG/L	ND	10	
FLUORENE	UG/L	ND	10	
HEXACHLOROBENZENE HEXACHLOROBUTADIENE			10	
HEXACHLOROBUTADIENE			10	
HEXACHLOROCYCLOPENTADIENE		ND	10	
HEXACHLOROETHANE			10	
INDENO (1,2,3-CD) PYRENE		ND	10	
			10	
J-METHILCHULANIARENE 2-METHUINADUTUAIENE			10 10	
Z"MEINIDUATNIALENE Nadutualene		ND	10	
1-NADHTHYLAMINE	UG/L	ND	10	
2-NAPHTHYI.AMINE		ND	10	
2-NITROANILINE	UG/L	ND	10	
A-NITROANILINE		ND	10	
A-NITROANILINE		ND	10	
NITROBENZENE		ND	10	
INDENO (1,2,3-CD) PYRENE ISOPHORONE 3-METHYLCHOLANTHRENE 2-METHYLNAPHTHALENE NAPHTHALENE 1-NAPHTHYLAMINE 2-NITROANILINE 3-NITROANILINE 3-NITROANILINE N-NITROSODIMETHYLAMINE N-NITROSODIMETHYLAMINE N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE N-NITROSODIPHENYLAMINE N-NITROSODIPHENYLAMINE N-NITROSOPIPERIDINE PENTACHLOROBENZENE (PCNB) PHENACETIN PHENANTHRENE	UG/L	ND	10	
N-NITROSODI-N-RUTYLAMINE		ND	10	
N-NITROSODIPHENYLAMINE		ND	10	
N-NITROSO-DI-N-PROPYLAMINE		ND	10	
N-NITROSOPIPERIDINE		ND	10	
PENTACHLOROBENZENE	UG/L	ND	10	
PENTACHLORONITROBENZENE (PCNB)	UG/I.	ND	10	
PHENACETIN		ND	10	
PHENANTHRENE	UG/L	ND	10	
2-PICOLINE		ND	10	
PRONAMIDE	ug/r	ND	10	
PYRENE		ND	10	
1,2,4,5-TETRACHLOROBENZENE		ND	10	
1,2,4 TRICHLOROBENZENE		ND	10	
2-FLUOROPHENOL	%REC/SURR	99	21-100	
PHENOL-D6	&REC/SURR	92	10-94	
LURUAT-DA	THE SURK	56	10-2 -	

Page 5 Date 20-May-93

	"QC Report"
Title: Batch:	Water Blank/MS ALW082 8270 SN 846 3rd Edition November 1985
Extraction Method:	8270, SW 846, 3rd Edition, November 1986 SW-846, Extraction Method 3510 for waters

Parameters:	Units:	Results:	Reporting Limits:
2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	%REC/SURR %REC/SURR %REC/SURR %REC/SURR INITIALS	104 94 92 103 RW	10-123 43-116 35-114 33-141

Comments:

_ ...

....

------ -

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514

Page 6 Date 20-May-93

		"QC Rep	ort"			Da	ate	20-Ma	y-93
Title: Water Rea Batch: ALW082 Analysis Method: 8270, SW Extraction Method: SW-846, E	- 846, 3rd Ec	lition, N	ovember						
RS Date Analyzed: RSD Date Analyzed:	13-MAY-93 13-MAY-93					racted: tracted		-MAY- -May-	
Parameters: PHENOL 2-CHLOROPHENOL - 14-DICHLOROBENZENE N-NITRO-DI-N-PROPYLAMINE 1,2,4 TRICHLOROBENZENE 4-CHLORO-3-METHYLPHENOL ACENAPHTHENE 4-NITROPHENOL 2,4-DINITROTOLUENE - PENTACHLOROPHENOL PYRENE	Spike Added 200 100 100 200 100 200 100 200 100 200	Sample Conc <10 <10 <10 <10 <10 <10 <10 <50 <10 <50 <10	RS Conc 144 158 90 94 96 174 104 176 102 132 102	RS Rec% 72 90 94 96 87 104 88 102 66 102	RSD 166 188 82 84 86 188 94 184 92 140 94	RSD Rec% 83 94 82 84 86 94 94 92 92 70 94	Rpd 14 17 9 11 11 8 10 4 10 6 8	Rpd Lmts 42 28 38 28 42 31 50 38 50 31	Rec Lmts 5-112 23-134 20-124 18-122 44-142 22-118 47-145 1-132 39-139 14-176 52-115
Surrogates: NITROBENZENE-D5 2-FLUOROBIPHENYL TERPHENYL-D14 PHENOL-D6 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL				98 100 104 84 83 102		87 92 98 91 100 110			35-114 43-116 33-141 10-94 21-100 10-123

Comments:

Notes: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Analytical **Technologies,** Inc. 11 East Olive Road

Pensacola, Fiorida 32514

Page 7 Date 20-May-93

Title: Water Ma	triv	"QC Repo	rt"						,
Batch: ALW082									
	846, 3rd B	dition No.	vombor	1006					
Extraction Method: SW-846,	Evtraction	Mothod 351	Vember	1700					
	BALLACCION	Mechod 351		acers					
Dry Weight %: N/A	MS Date	Analyzed:	17-MA	Y-93	MS Dat	te Extra	acte	d: 1	3-MAY-93
Sample Spiked: 305118-1	MSD Dat	e Analyzed	: 17-MA	Y-93	MSD D	ate Ext	ract		3-MAY-93
	Spike	Sample	MS	MS	MSD	MSD		Rpd	Rec
Parameters:	Added	Conc	Conc	Rect	Conc	Rec%	Rpd		Lmts
- PHENOL	2000	<10	1600	80	1720	86	7	42	5-112
2-CHLOROPHENOL	2000	<10	1660	83	1820	91	9	40	23-134
14-DICHLOROBENZENE	1000	<10	740	74	800	80	8	28	20-124
N-NITRO-DI-N-PROPYLAMINE	1000	<10	820	82	880	88	7	38	18-122
1,2,4 TRICHLOROBENZENE	1000	<10	760	76	820	82	8	28	44-142
4-CHLORO-3-METHYLPHENOL	2000	<10	1880	94	1980	99	5	42	22-118
ACENAPHTHENE	1000	<10	760	76	820	82	8	31	47-145
4-NITROPHENOL	2000	<50	1740	87	1460	73	18	50	1-132
2,4-DINITROTOLUENE	1000	<10	500	50	460	46	8	38	39-139
PENTACHLOROPHENOL	2000	<50	740	37	620	31	18	50	14-176
PYRENE	1000	<10	580	58	620	62	7	31	52-115
Surrogates: NITROBENZENE-D5				61		58			35-114
2-FLUOROBIPHENYL				72		73			43-116
TERPHENYL-D14				69		71			33-141
PHENOL-D6				88		94			10-94
2-FLUOROPHENOL				86		95			21-100
- 2,4,6-TRIBROMOPHENOL				70		76			10-123
				, v					10 123

Comments:

Notes:

- -

-

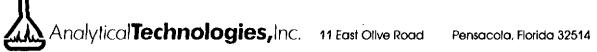
-

s: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Analytical **Technologies**, Inc. 11 East Olive Road

Pensacola, Florida 32514 (904) 474-1001 Page 8 Date 20-May-93

Common notation for Organic reporting


N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUTD = DILUTED OUT UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS

ND = NOT DETECTED ABOVE REPORT LIMIT.

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

LP = LEVERNE PETERSON	RW = RITA WINGO	BR = BILL RUBERT
DWB = DAVID BOWERS	LD = LARRY DILMORE	
DB = DENNIS BESON	DC = DAVID CELESTIAL	

Page 1 Date 20-May-93

"Method Report Summary"

Accession Number: Client:	CHEVRON USA, PRODUCTS CO.
	46863 CHEVRON, LEM TURNER RD. 10163 LEM TURNER RD. JACKSONVILLE, FL
Test:	PP BASE/NEUTRAL EXTRACTABLES (8270)

Client Sample Id:	Parameter:	Unit:	Result:
TW-1	NAPHTHALENE	UG/L	22

Analytical Technologies, Inc. 11 East Olive Road Pensacola, Florida 32514

_

1.1

....

Page 2 Date 20-May-93

			Date	20-8	iay-93
CTS CO.					
Method 351) for waters				
	Sample Date.	/Time:	12-MA	Y-93	1550
	Extraction I	Date:	13-MA	Y-93	
,	······ ·				
nits:	Results:	Rpt Lm	ts:	Q:	
G/L	ND	10			
G/L					
		10			
		10			
	ND	10			
G/L		10			
G/L	ND	10			
G'/L	ND	10			
G/L		10			
G/L	ND	10			
G/L	ND				
	ND	10			
P.					
G/L	ND	10			
	TRACTABLES Edition, Nov Method 3510 /A nits: G/L G/L G/L G/L G/L G/L G/L G/L G/L G/L	TURNER RD. D. JACKSONVILLE, FL TRACTABLES (8270) Edition, November 1986 Method 3510 for waters Sample Date, Received Date Received Date (A Analysis Date) A Analysis Date (A Analysis Date) (A A	TURNER RD.D. JACKSONVILLE, FLTRACTABLES (8270)Edition, November 1986Method 3510 for watersSample Date/Time: Received Date:Received Date:Analysis Date:/AAnalysis Date:nits:Results:Results:Rpt LmG/LND10G/LNDG/LNDG/LNDG/LNDG/LNDG/LNDG/LNDG/LNDG/LNDG/LNDG/LNDG/LNDND10G/LNDG/LNDG/LNDG/LNDND10G/LNDSAMPLENDG/L <td>CTS CO. TURNER RD. D. JACKSONVILLE, FL TRACTABLES (8270) Edition, November 1986 Method 3510 for waters Sample Date/Time: 12-MA Received Date: 13-MA /A Extraction Date: 13-MA /A Analysis Date: 19-MA nits: Results: Rpt Lmts: G/L ND 10 G/L ND</br></td> <td>TURNER RD. D. JACKSONVILLE, FL TRACTABLES (8270) Edition, November 1986 Method 3510 for waters Sample Date/Time: 12-MAY-93 Received Date: 13-MAY-93 /A Analysis Date: 19-MAY-93 /A Analysis Date: 19-MAY-93 nits: Results: Rpt Lmts: Q: G/L ND 10 G/L ND 10</td>	CTS CO. TURNER RD. D. JACKSONVILLE, FL 	TURNER RD. D. JACKSONVILLE, FL TRACTABLES (8270) Edition, November 1986 Method 3510 for waters Sample Date/Time: 12-MAY-93 Received Date: 13-MAY-93 /A Analysis Date: 19-MAY-93 /A Analysis Date: 19-MAY-93 nits: Results: Rpt Lmts: Q: G/L ND 10 G/L ND 10

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

Page 3 Date 20-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: Qc Level:	PP BASE/NEUTRA 8270, SW 846,	LEM TURNER RD ER RD. JACKSON L EXTRACTABLES 3rd Edition, N	VILLE, FL (8270) ovember 1986		Date 20	-мау-эз
Lab Id: Client Sample Id:	008 TW-1		Sample Da Received		12-MAY-9 13-MAY-9	
Parameter:		Units:	Results:	Rpt Lm	its: Q:	
HEXACHLOROETHANE INDENO (1,2,3-CD) F ISOPHORONE NAPHTHALENE NITROBENZENE N-NITROSODIMETHYLAM N-NITROSO-DI-N-PROF N-NITROSODIPHENYLAM PHENANTHRENE PYRENE 1,2,4 TRICHLOROBENZ 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	INE YLAMINE INE	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND 22 ND ND ND ND ND 77 68 82 LD	10 10 10 10 10 10 10 10 10 10 43-116 35-114 33-141		

Comments:

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, FlorIda 32514

Page 4 Date 20-May-93

Tesť: Analysis Method:	305298 CHEVRON USA, PRODUCTS CO. A04301 46863 CHEVRON, LEM TURNER RD. 10163 LEM TURNER RD. JACKSONV PP BASE/NEUTRAL EXTRACTABLES 8270, SW 846, 3rd Edition, Nor SW-846, Extraction Method 3510 GROUNDWATER IIC	(8270) vember 1986	Dale 20-May-
Lab Id:	008	Sample Date/Time:	12-MAY-93 155
Client Sample Id:	TW-1	Received Date:	13-MAY-93

"Sample Tic Report"

Number of Tics Found: 7 Concentration Units: UG/L

Cas Number:	Compound Name:	RT:	Est Conc:	Q:
	Hexanoic Acid Compound	12.30	50	 J
90-12-0	1-Methyl Naphthalene	13.07	20	J
	Unknown Hydrocarbon	23.97	10	J
	Unknown Slloxane	30,97	10	J
	Unknown Siloxane	32.32	10	J
	Unknown Siloxane	32.35	10	Ĵ
	Unknown Siloxane	32.37	10	Ĵ

.

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514

Page 5 Date 20-May-93

					Dat	e 20-1	May-93
Accession:	305298						
Client:	CHEVRON USA, PRO	DUCTS CO.					
Project Number:	A04301		n				
Project Name:	46863 CHEVRON, L						
Project Location:	10163 LEM TURNER						
Test:	PP BASE/NEUTRAL						
Analysis Method:	8270, SW 846, 3r						
Extraction Method:		on Method 3	510 for water	н Н			
Matrix:	WATER						
Qc Level:	IIC					,	
Lab Id:	009		Sample Da	te/Time:	12-M	IAY-93	1510
Client Sample Id:	RINSATE		Received	Date:	13-M	IAY-93	
Batch: ALW082	Dilution Factor:	1	Extractio	n Date:	13-2	1AY-93	
Blank: C	Dry Weight %:	N/A	Analysis			IAY-93	
	,,		•••••••••••••••••••••••••••••••••••••••				
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:	
ACENAPHTHENE		UG/L	ND	10			
ACENAPHTHYLENE		UG/L	ND	10			
ANTHRACENE		UG/L	ND	īŏ			
BENZIDINE		UG/L	ND	īŏ			
BENZO (A) ANTHRACEN)F	ŬĜ/L	ND	īŏ			
BENZO (A) PYRENE		UG/L	ND	īõ			
3,4-BENZOFLUORANTHE	CNE	UG/L	ND	īõ			
BENZO (G,H,I) PERYI	· · · ·	UG/L	ND	10			
BENZO (K) FLÚORANTH		UG'/L	ND	10			
BIS(2-CHLOROETHOXY)		UG/L	ND	10			
BIS(2-CHLOROETHYL)É	THER	UG/L	ND	10			
BIS (2-CHLOROISOPROF	YL)ETHER	UG/L	ND	10			
BIS(2-ETHYLHEXYL)PH	ITHÁLATE	UG/L	ND	10			
4-BROMOPHENYL-PHÉNY	LETHER	UG/L	ND	10			
BUTYLBENZYLPHTHALAI		UG/L	ND	10			
2-CHLORONAPHTHALENE		UG/L	ND	10			
4-CHLOROPHENYL-PHEN	IYLETHER	UG/L	ND	10			
CHRYSENE		UG/L	ND	10			
DIBENZO (A,H) ANTHF		UG/L	ND	10			
1,2-DICHLOROBENZENE		UG/L	ND	10			
1,3-DICHLOROBENZENE		UG/L	ND	10			
1,4-DICHLOROBENZENE		UG/L	ND	10			
3,3'-DICHLOROBENZID	DINE	UG/L	ND	50			
DIETHYLPHTHALATE		UG/L	ND	10			
DIMETHYLPHTHALATE		UG/L UG/L	ND	10 10			
DI-N-BUTYLPHTHALATE	•	UG/L	ND ND	10			
2,4-DINITROTOLUENE 2,6-DINITROTOLUENE		UG/L	ND	10			
DI-N-OCTYLPHTHALATE	•	UG/L	ND	10			
1,2-DIPHENYLHYDRAZI		UG/L	ND	10			
FLUOROANTHENE		ŬG/L	ND	ĩŏ			
FLUORENE		UG/L	ND	10			
				ĩŏ			
HEXACHLOROBENZENE		UG/L	ND	10			
HEXACHLOROBENZENE HEXACHLOROBUTADIENE	;	UG/L	ND	10			

Analytical **Technologies**, Inc. 11 East Olive Road Pensacola, Florida 32514

Page 6 Date 20-May-93

Analysis Method: 82	RD. DNVILLE, FL SS (8270) November 1986 510 for water	В	Date 20-		
Lab Id: 00 Client Sample Id: RI	9 NSATE	Sample Da Received	te/Time: Date:	12-MAY-93 13-MAY-93	
Parameter:	Units:	Results:	Rpt Lm	nts: Q:	
HEXACHLOROETHANE INDENO (1,2,3-CD) PYR ISOPHORONE NAPHTHALENE N-NITROSODIMETHYLAMINI N-NITROSODIPHENYLAMINI PHENANTHRENE PYRENE 1,2,4 TRICHLOROBENZENI 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	UG/L UG/L UG/L E UG/L AMINE UG/L E UG/L UG/L UG/L	ND ND ND ND ND ND ND ND 71 67 81 LD	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 10\\ 43-116\\ 35-114\\ 33-141 \end{array} $	ł	

Comments:

Analytical **Technologies,** Inc. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

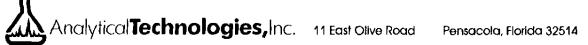
Page 7 Date 20-May-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method:	305298 CHEVRON USA, PRODUCTS CO. A04301 46863 CHEVRON, LEM TURNER RD. 10163 LEM TURNER RD. JACKSONVII PP BASE/NEUTRAL EXTRACTABLES (4 8270, SW 846, 3rd Edition, Nove	3270)	
Extraction Method: Matrix: Qc Level:	SW-846, Extraction Method 3510 WATER IIC	for waters	
Lab Id:	009	Sample Date/Time:	12-MAY-93 1510

Client Sample Id: RINSATE

Received Date: 13-MAY-93

"Sample Tic Report"


Number of Tice Found: 5 Concentration Unite: UG/L

Cas Number:	Compound Name:	RT:	Est Conc:	Q:
	Isomer of 2-Methyl Cyclopentanol	5.55	100	J
	Ester of 1,2-Benzenedicarboxylic Acid	19.85	10	Э
	Unknown Siloxane	28.67	10	J
	Unknown Siloxane	38.73	10	J
	Unknown Siloxane	31.68	10	J

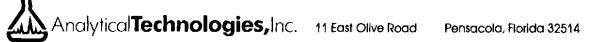
Page 8 Date 20-May-93

Title: Water Blank/	"QC Report' MS	1		Date 20
Batch: ALW082 Analysis Method: 8270, SW 846 Extraction Method: SW-846, Extr	, 3rd Edition, action Method 3	November 198 3510 for wate	5 r s	
Blank Id: C Date Analyzed: 1	7-MAY-93 Dat	te Extracted:	13-MAY-93	
Parameters:	Units:	Results:	Reporting	Limits:
BENZOIC ACID	UG/L	ND	50	
4-CHLORO-3-METHYLPHENOL	UG/L	ND	10	
2-CHLOROPHENOL	UG/L	ND	10	
2,4-DICHLOROPHENOL 2,6-DICHLOROPHENOL 2,4-DIMETHYLPHENOL	UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10	
2,6-DICHLOROPHENOL	UG/L	ND	10	
2.4-DIMETHYLPHENOL	UG/L	ND	10	
4.6-DINITRO-2-METHYLPHENOL	UG/L	ND	50	
4,6-DINITRO-2-METHYLPHENOL 2,4-DINITROPHENOL 2-METHYLPHENOL 4-METHYLPHENOL 2-NITROPHENOL	ŬĠĹ	ND	50	
2-METHYLPHENOL	UG/L	ND	10	
A-METHYLPHENOL	UG/L	ND	10	
2-NITROPHENOL	UG/L	ND	10	
4-NITROPHENOL	UG/L	ND	50 50	
PENTACHLOROPHENOL	UG/L	ND	50	
NURMOT	UG/L	ND	10	
2, 3, 4, 6-TETRACHLOROPHENOL 2, 4, 5-TRICHLOROPHENOL	UG/L	ND	10	
2,4,5-TRICHLOROPHENOL	UG/L	ND	50	
2,4,6-TRICHLOROPHENOL	UG/L	ND	10	
		ND ND	10	
ACENAPHTHENE	UG/L UG/L		10	
ACENAPHTHILENE	UG/L			
ACENAPHTHYLENE ACETOPHENONE 4-AMINOBIPHENYL ANILINE ANTHRACENE	UG/L	ND	10	
4-AMINOBIPHENIL	UG/L	ND	10	
ANILINE	UG/L	ND	10	
ANTHRACENE	UG/L	ND	10	
BENZIDINE	UG/L	ND ND ND ND ND ND ND ND	10	
BENZO (A) ANTHRACENE	UG/L	ND	10	
BENZO (A) PIRENE	UG/L	ND	10	
BENZO (B) FLUORANTHENE	06/1	ND ND	10	
BENZO (G,H,I) PERYLENE	UG/L		10	
BENZO (K) FLÚORANTHENE	UG/L	ND	10	
BENZYL ALCOHOL	UG/L	ND	10	
BIS (2-CHLOROETHOXY) METHANE	UG/L	ND ND	10	
BIS(2-CHLOROETHYL)ETHER	UG/L		10	
BIS(2-CHLOROISOPROPYL)ETHER	UG/L	ND	10	
BIS (2-CHLOROISOPROPYL) ETHER BIS (2-ETHYLHEXYL) PHTHALATE	UG/L	ND	10	
4-BROMOPHENYL PHENYL ETHER	UG/L	ND	10	
BUTYLBENZYL PHTHALATE	UG/L	ND	10	
4-CHLOROANILINE	UG/L	ND	10	
1-CHLORONAPHTHALENE	UG/L	ND	10	
2-CHLORONAPHTHALENE	UG/L	ND	10	
4-CHLOROPHENYL PHENYL ETHER	υσίτ	ND	10	
CHRYSENE	UG/L	ND ND ND	10	
DIBENZ(A, H)ANTHRACENE	UG/L	ND	10	
DIBENZ(A, J)ACRIDINE	ŬG/L	ND	10	
DIBENZO (A,H) ANTHRACENE	UG/L	ND	10	
DIBENZOFURAN	UG/L	ND	10	
1,2-DICHLOROBENZENE	UG/L	ND	10	
	00/11		10	

Page 9 Date 20-May-93

					Date 20-
mitles M	ahow Dlawls /MC	"QC Report"	•		
Detet. 31	ater Blank/MS LW082				
Analysis Method: 8	270, SW 846,	3rd Edition,	November 198	36	
Analysis Method: 8 Extraction Method: S	W-846, Extrac	tion Method 3	510 for wate	ers	
Parameters:		Units:	Results:	Reporting	y Limits:
1,3~DICHLOROBENZENE 1,4~DICHLOROBENZENE		UG/L	ND	10	
1,4-DICHLOROBENZENE		UG/L	ND	10	
3,3'-DICHLOROBENZIDI	NE	UG/L	ND	50	
DIETHYLPHTHALATE		UG/L	ND	10 10	
P-DIMETHYLAMINOAZOBE	NZENE	UG/L			
7,12-DIMETHYLBENZ(A)	ANTHRACENE		ND	10	
A-, A-DIMETHYLPHENETH	ILAMINE	0671	ND	10 10	
DIMETHYLPHTHALATE			ND		
DI-N-BUTILPHTHALATE			ND	10	
2,4~DINITROTOLUENE			ND	10 10	
Z, 6~DINITROTOLUENE			ND	10	
DI-N-OCTILPHTHALATE					
DIPHENILAMINE	D		ND	10 10	
DIMETHYLPHTHALATE DI-N-BUTYLPHTHALATE 2,4~DINITROTOLUENE 2,6~DINITROTOLUENE DI-N-OCTYLPHTHALATE DIPHENYLAMINE 1,2~DIPHENYLHYDRAZINI FLUOROANTHENE	L			10	
FLUOROANTHENE				10	
FLUORENE			ND	10	
HEXACHLOROBENZENE HEXACHLOROBUTADIENE			ND	10	
HEXACHLOROCYCLOPENTAI	TENE		ND	10	
HEXACHLOROCTCLOPENTAL HEXACHLOROETHANE	DIENE			10	
INDENO (1,2,3-CD) PYI	DENE			10	
ISOPHORONE	NENE		ND	10	
2 METUVI CUAL ANTUDENE			ND	10	
2-METHYLNADHTHALFNE			ND	10	
NAPHTHALENE			ND	10	
1-NAPHTHYLAMINE			ND	ĩŏ	
2-NAPHTHYLAMINE			ND	10	
2-NITROANTLINE			ND	īŏ	
3-NITROANILINE			ND	10	
A-NITROANILINE		UG/L	ND	10	
NTTROBENZENE		$\frac{UG}{L}$	ND	10	
ISOPHORÒNÉ 3-METHYLCHOLANTHRENE 2-METHYLNAPHTHALENE NAPHTHALENE 1-NAPHTHYLAMINE 2-NITROANILINE 3-NITROANILINE 4-NITROANILINE NITROBENZENE N-NITROSODIMETHYLAMIN N-NITROSODIPHENYLAMIN	NE.	$\frac{UG}{L}$	ND	10	
N-NITROSODI-N-BUTYLAN	ATNE	$\frac{UG}{I}$	ND	10	
N-NITROSODIPHENYLAMIN	NE.	$\frac{UG}{I}$	ND	10	
		UG/I	ND	10	
N-NITROSO-DI-N-PROPYI N-NITROSOPIPERIDINE PENTACHLOROBENZENE	514111112		ND	10	
PENTACHLOROBENZENE			ND	10	
PENTACHLORONITROBENZE	ENE (PCNB)		ND	10	
PHENACETIN		UG/T	ND	10	
PHENANTHRENE			ND	10	
2-PICOLINE		ŭG/I.	ND	10	
PRONAMIDE		UG/I	ND	10	
PYRENE		ũG/ĩ.	ND	10	
	ENZENE	ŬG/I	ND	-	
2.4 TRICHLORORENZEN	NR		ND	-	
2-FLUOROPHENOL		SREC/SURR	99		
		%REC/SURP	92		
1,2,4,5-TETRACHLOROBE 1,2,4 TRICHLOROBENZEN 2-FLUOROPHENOL PHENOL-D6	ENZENE Ve	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND 99 92	10 10 21~100 10~94	

Analytical **Technologies**, Inc. 11 East Olive Road


Page 10 Date 20-May-93

	"QC Report"
Title: Batch: Analysis Method: Extraction Method:	Water Blank/MS ALW082 8270, SW 846, 3rd Edition, November 1986 SW-846, Extraction Method 3510 for waters
<u></u>	

Parameters:	Units:	Results:	Reporting Limits:
2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	%REC/SURR %REC/SURR %REC/SURR %REC/SURR INITIALS	104 94 92 103 RW	10-123 43-116 35-114 33-141

Comments:

. ...

Page 11 Date 20-May-93

Title: Water Reag Batch: ALW082 Analysis Method: 8270, SW 8 Extraction Method: SW-846, Ex	46, 3rd Ed		ovember					20-Ma	y-93
	13-MAY-93 13-MAY-93					racted: tracted		-MAY- -May-	
Parameters: PHENOL 2-CHLOROPHENOL 14-DICHLOROBENZENE N-NITRO-DI-N-PROPYLAMINE 1,2,4 TRICHLOROBENZENE 4-CHLORO-3-METHYLPHENOL ACENAPHTHENE 4-NITROPHENOL 2,4-DINITROTOLUENE PENTACHLOROPHENOL PYRENE	Spike Added 200 100 100 200 100 200 100 200 100 200	Sample Conc <10 <10 <10 <10 <10 <10 <50 <10 <50 <10 <50 <10	RS Conc 144 158 90 94 96 174 104 176 102 132 102	RS Rec% 72 79 90 94 96 87 104 88 102 66 102	RSD Conc 166 188 82 84 86 188 94 184 92 184 92 140 94	RSD Rec% 83 94 82 84 86 94 92 92 92 70 92	Rpd 14 17 9 11 11 8 10 4 10 6 8	Rpd Lmts 42 28 38 28 42 31 50 38 50 31	Rec Lmts 5-112 23-134 20-124 18-122 44-142 22-118 47-145 1-132 39-139 14-176 52-115
Surrogates: 				98 100 104 84 83 102		87 92 98 91 100 110			35-114 43-116 33-141 10-94 21-100 10-123

Comments:

Notes:

- B: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Page 12 Date 20-May-93

	"QC Report"			
Title: Water Matrix Batch: ALW082 Analysis Method: 8270, SW 846, 3rd Edit Extraction Method: SW-846, Extraction Met	tion, November 19 thod 3510 for wat	86 ers		
Dry Weight %: N/A MS Date An Sample Spiked: 305118-1 MSD Date A	nalyzed: 17-MAY- Analyzed: 17-MAY-			3-MAY-93 3-MAY-93
Parameters:AddedCPHENOL2000 <2-CHLOROPHENOL2000 <14-DICHLOROBENZENE1000 <N-NITRO-DI-N-PROPYLAMINE1000 <1,2,4 TRICHLOROBENZENE1000 <4-CHLORO-3-METHYLPHENOL2000 <ACENAPHTHENE1000 <4-NITROPHENOL2000 <2,4-DINITROTOLUENE1000 <2,4-DINITROTOLUENE1000 <2,4-DINITROTOLUENE1000 <- PENTACHLOROPHENOL2000 <	Sample MS Conc Conc (10 1600 (10 740 (10 720 (10 740 (10 760 (10 760 (10 760 (10 500 (10 500 (10 580	MS MSD Rec% Conc 80 1720 83 1820 74 800 82 880 76 820 94 1980 76 820 87 1460 50 460 37 620 58 620 61 72 69 88 88 86 70	MSD Rpd B6 Rpd 42 91 9 40 80 8 28 82 8 28 99 5 42 99 5 42 82 8 31 73 18 50 46 8 38 31 18 50 62 7 31 58 73 71 94 95 76	Rec Lmts 5-112 23-134 20-124 18-122 44-142 22-118 47-145 1-132 39-139 14-176 52-115 35-114 43-116 33-141 10-94 21-100 10-123

Comments:

Notes:

B: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

Pensacola, Florida 32514 (904) 474-1001 Page 13 Date 20-May-93

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS

ND = NOT DETECTED ABOVE REPORT LIMIT.

SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS.

LP = LEVERNE PETERSON	RW = RITA WINGO	BR = BILL RUBERT
DWB = DAVID BOWERS	LD = LARRY DILMORE	
DB = DENNIS BESON	DC = DAVID CELESTIAL	

CHEVRON QC REPORT

GC/	MS Semivolatiles Data S	heet	Date: <u>S</u>	1 26 193
1>	Determination of the r	elative respo	nse factor (r	rf):
	RRF = AREA(compound)	x AMOUNT(is)		
	AREA(is) X AMOU	NT(compound)		
	In daily calibration:		= 40 ug/ml npound) = 50 u	1g/ml
2>	Quantitation of sample	results:		
	waters: Amount(compound	d) = AREA(comp	oound) x AMOUN	VT(is) x DL
		ARI	EA(is) x RRF	
	soils: Amount(compound	1) = AREA(comp	ound) x AMOUN	WT(is) x DF
	DL = dilution DF = dilution factor = 1000/(amount of		EA(is) x RRF s X dry weight	;) .
3>	Standards:			
	standard	lot #	Conc(ug/ml)	Manufacturer
	8270 standards mix Pyridine 2,4-Dinitrophenol acid spike base neutral spike acid surrogate base neutral surrogate internal standard (IS)	K-05272-26 5425 1018 A-1184 1812 1904 1902 122-121	2,000 10,000 5,840 1,500 1,000 2,000 1,000 2,000	Accustandard Supelco Supelco Restek Restek Restek Restek Accustandard
4>	Lab QC standard mixes:			
	standard mix	Lab Identi	fication	
	8270 standard mix	2-BNAW-	10 - 2	
	A/BN spike mix	2-BNAW	- 12-1	
	A/BN surrogate mix	2-BNAL	-11-2	<u></u>
5>	Sample lab Identificati	.on:303	5298-8,9	

_

_

—

- -

SEMIVOLATILE CONTINUING CALIBRATION CHECK

_÷b	Name:	<u>A. T. 1.</u>			_ Con	tract						
⊑ab	Code:		Case No	.: <u>STANI</u>	<u>)</u> 54	S No.	:		SDG	No.:		-
_าร1	trument	t ID: <u>FINN</u>	<u> </u>	Calibı	ration	date:	05/	19/93	Time:	821	<u></u>	
	File :	ID: <u>CAA051</u>	9	Init.	Calib.	Date	(5):	03/14	<u>,73</u>	03/16	/93	
⊡n	RRF50	for SPCC(#) = 0.0	50				Max	%D for	- CCC(*) = ;	25. 0%
—		; <u> </u>			1		1	;		t		

I COMPOUND				
lPyridine	_1 1.277	0.896	29.8	ł
12-PICOLINE	1	1	· · ·	•
IMETHYL METHANESULFONATE	!	l	t	•
IN-Nitrosodimethylamine	! 0.631	0.454	28.0	ł
[Pheno]	* 1.979	1.735	12.3 +	ŧ
Aniline	_1 2.426	2. 026	16.5	
lbis(2-Chloroethyl)Ether	1 1.719	1 1.516	: 11.8	I
12-Chlorophenol	1 1.497	1.640	-9.6	1
11,3-Dichlorobenzene	_ 1.547	1.483	4.1	
11,4-Dichlorobenzene	* 1.564	1.619	-3.5 +	¥
Benzyl Alcohol	_1 0.953	0.819	14.1	ł
11,2-Dichlorobenzene	1.519	1.396	8.1	l –
12-Methylphenol	1. 328	1.294	2.6	1
ACETOPHENONE	1	1	i 1	1
IN-NITROSOPIPERIDINE	1	l	1	
<pre>lbis(2-Chloroisopropyl)Ethe</pre>	rl 2.783	2.168	22.1	l
(4-Methylphenol	1.370	1.324	3.4	
IN-Nitroso-Di-n-Propylamine	#0, 926	0.717	22.6	
Hexachloroethane	1 0, 763	0.780	-2.2	
Nitrobenzene		0.420	4.1	
lisophorone		0.705	13.9	1
l2-Nitrophenol	_* 0.221	0.247	-11.8	¥
2,4-Dimethulphenol	0.357	0.321	1 10.1	l
Benzoic Acid	0.708	0.522	26.3	
lbis(2-Chloroethoxy)Methane	0. 526	0.463	12.0	
12,4-Dichlorophenol	* 0.282	0.278	1 -5.7 +	¥-
<pre>[1,2,4-Trichlorobenzene</pre>	; 0.293	0.325	1-10. 9	:
IA, A-DIMETHYLPHENETHYLAMINE		ł		l
INaphthalene	0. 975	1.040	-6.7	l
14-Chloroaniline	. 0. 450	0.470	-4.4	1
Hexachlorobutadiene	_* 0.139	0.170	1-22.3 (Ħ-
4-Chloro-3-Methylphenol	* 0.367	0.311	15.3 4	
2-Methylnaphthalene	1 0.648	0.635	2.0	•
Hexachlorocyclopentadiene_		0.170	1 -3.0 1	ŧ
12, 4, 6-Trichlorophenol	_* 0.322	0.370	1-14.9	₩-
12,4,5-Trichlorophenol	_ 0, 329	0,390	1-18.5	;
12-Chloronaphthalene	1.034	1.177	-13.8	F
l2-Nitroaniline		1 0.395	1 5.3	l .
Dimethyl Phthalate	1 1.123	1.350	1-20.2	I .
N-NITROSODIBUTYLAMINE	!	i	1	1
		i	i <u></u>	i

FORM VII SV-1 1/87 Rev.

Acenaphthylene	1.4231	1.4931 -4.9 1
12,6-Dinitrotoluenel	0.3171	0. 3701-16. 7
		0.3961-22.2 1
		1.0471 -8.3 *
		0.2891-20.4 #
4-Nitrophenol#	0. 2741	0.3401-24.1 #
	l	l

•

.

FORM VII SV-1

1/87 Rev.

•

		SEMIVOLATILE CO	7C DNTINUING CALIBRATION CHECK	
:b	Name:	<u>A. T. I.</u>	_ Contract:	

in RRF50 for SPCC(#) = 0.050

Max %D for CCC(*) = 25.0%

1				 000	EA	 %	`
	COMPOUND						
•	enzofuran	•		•		l - 1 1 .	
			417	i 1.	578	i — I I . I	e:
	2, 4, 5-TETRACHLOROBENZENE_		~~~	i I A		i). 477	÷
ie:/*	-Dinitrotoluene	1 0.	387	i U. I	400	i ~17. 1	a
11-0	CHLORONAPHTHALENE	1	757) 1 (171	' ¦−17.	^
1010	ethylphthalate Chlorophenyl-phenylether		200) <u>1</u> .) <u>0</u>	4/1	1-17.	7
	TACHLOROBENZENE		750) V. 1	694	!‴≝⊥. !	v
	APHTHYLAMINE			•	I	1	
1 = - 1	Jorene	1	079) 1	170	, _0	Δ
11.10	Nitroaniline	$\frac{1}{1}$	354	1 1	1//	· 7.	Å
! 1 t	APHTHYLAMINE	1 0.	000	1 U. !	000	, ,. !	Ģ
	HENYLAMINE	1		!		!	
	5-Dinitro-2-Methylphenol	i n	143	, , 0	149		2
! N1	Nitrosodiphenylamine	μ κ Ο	836	1 0	802	1	7
	NACETIN	,	000	1 Q. 1	w/c.	, D. 1	
	2-Diphenylhydrazine	.' 1 1.	257		247	, ; 0.	8
:4-1	Bromophenyl-phenylether	1 0	207	1 0	217	-4	้ล
	MINOBIPHENYL			1		· · · ·	-
He	(achlorobenzene	, 1 O.	216	, 0.	240	-11.	1
Pei	ntachlorophenol	∦ 0.	203	0.	210	1 -3.	4
IPRO	DNAMIDE	1				1	
(Ph)	enanthrene	1 1.	029	1 1.	078	-4.	8
l An f	hracene	0.	990	1 1.	005	-1.	5
	TACHLORONITROBENZENE	1		ł		1	
	NOSEB	1		1		ł	
lDi-	-n-Butylphthalate	1.	612	1 1.	432	111.	2
1F11	oranthene	* 1.	134	1 1.	021	1 10.	
	DIMETHYLAMINDAZOBENZENE	1		ł		1	
17, :	2-DIMETHYLBENZ (A) ANTHRAC	1		1		1	
l Beı	nzidine	1 0.	201	0.	152	1 24.	4
	rene		287	1 1.	167	1 9.	З
1 Bu	tylbenzylphthalate	0 .	905	I 0.	888	1.	9
	3'-Dichlorobenzidine		402	0.	429	1 -6.	7
	1ETHYLCHOLANTHRENE			1		ł	
	nzo(a)Anthracene		131	 1 .	146	-1.	3
1Ch	rysene					1 -3.	
lbi	s(2-Ethylhexyl)Phthalate_	1.	249	1 1.	350	! ~5.	7
ETI	IYL METHANESULFONATE	1		1		1	
Di-	-n-OctylPhthalate	* 1.	837	1 2.	031	-10	. 6
i Bei	nzo(b)Fluoranthene	1.	205	1 1.	327	1-10	. 1

(1) Cannot be separated from Diphenylamine FORM VII SV-2

1/87 Rev.

Benzo(k)Fluoranthene}	1.0731	1.1041 -2.9 1
12, 3, 4, 6-TETRACHLOROPHENOL	;	
Benzo(a)Pyrene*	0.9401	1.0451-11.2 *
Indeno(1,2,3-cd)Pyrene	1.0301	1.2431-20.7
DIBENZ(a, j)ACRIDINE;	ł	1 1
Dibenz(a,h)Anthracene	0.7811	0. 921 -17. 9
Benzo(g,h,i)Perylene	0.8711	1.0421-19.6
	****	***********
Nitrobenzene-d5	0.4491	0.4391 2.21
12-Fluorobiphenyl	1.0211	1.1691-14.5
	0. 9211	0.8681 5.81
IPhenol-d5i	1.9721	1.6131 18.2 1
	1.2831	1.097 14.5
	0.1511	0.2081-37.8
······································		II

(1) Cannot be separated from Diphenylamine

_

-

--- -

FORM VII SV-3

1/87 Rev.

.

•

Appendix D

Laboratory Analytical Results

Environmental Geoscience & Engineering, Inc.

Pensacola, Florida 32514

SIGNATURE PAGE

Reviewed by:

ATI Project Manager

Client:

CHEVRON USA, PRODUCTS CO. MARIETTA, GEORGIA

CHEVRON FACILITY #168506977 Project Name: A04302 Project Number: Project Location: 10152 LEM TURNER RD., JACKSONVILLE Accession Number: 312094 Project Manager: JIM SMITH (ENV. GEOSCI. ENG., FL) JOHN MACHEN (CHEVRON, GA) Sampled By: S.H.

··· ·· · |

Analysis Report

Analysis: Group of Single Metals

Accession: Client: Project Number: Project Name: Project Location: Department:

312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE METALS ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

(0) Page 1 Date 09-Dec-93

Accession: Client: Project Number: Project Name:	A04302 CHEVRON		Y #168	506977				Date 09	-DBC-33
Project Location: Test: Matrix: QC Level:		f Single			ILLE				
Lab Id: Client Sample Id:	001 MW-3		*****************	·····		e Date/S ved Date		02-DEC-93 03-DEC-93	1110
Parameters:		Units:	1	Results:	Rpt	Lmts:	Q:	Batch:	Analyst
ARSENIC (206.2) CADMIUM (200.7) CHROMIUM (200.7) LEAD (239.2)		MG/L MG/L MG/L MG/L	1	0.007 ND 0.02 0.012	0.0 0.0 0.0 0.0	05 1		R2W367 COW296 HOW296 P2W367	JP JR JR GJ

Comments:

_

-

_

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0] Page 2 Date 09-Dec-93

				Date U9	-086-33
312094					
CHEVRON USA, PROD	UCTS CO.				
A04302					
10152 LEM TURNER	RD., JACKSONV	ILLE			
Group of Single M	letals				
GROUNDWATER					
IIC					
002		Sample Date/7	rime:	02-DEC-93	1035
MW-5				03-DEC-93	
Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
MG/L	ND	0.005		R2W367	JP
	ND	0.005		COW296	JR
MG/L	ND	0.01		H0W296	JR
	CHEVRON USA, PROE A04302 CHEVRON FACILITY 10152 LEM TURNER Group of Single M GROUNDWATER IIC 002 MW-5 Units: MG/L MG/L	CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONV Group of Single Metals GROUNDWATER IIC 002 MW-5 Units: Results: MG/L ND MG/L ND	CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE Group of Single Metals GROUNDWATER IIC 002 Sample Date/7 MW-5 Received Date Units: Results: Rpt Lmts: MG/L ND 0.005 MG/L ND 0.005	CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE Group of Single Metals GROUNDWATER IIC 002 MW-5 Units: Results: Rpt Lmts: Q: MG/L ND 0.005 MG/L ND 0.005	312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE Group of Single Metals GROUNDWATER IIC 002 MW-5 CO2 Units: Results: Rpt Lmts: Q: Batch: MG/L ND 0.005 MG/L ND 0.005 COW296

Comments:

(0) Page 3 Date 09-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Matrix: QC Level:	A04302 CHEVRON 10152 I		#168506977 RD., JACKSONV	ILLE		Date 09	-080-93
Lab Id: Client Sample Id:	003 EQB			Sample Date/ Received Dat		02-DEC-93 03-DEC-93	1200
Parameters:		Units:	Results:	Rpt Lmts:	Q:	Batch:	Analyst:
ARSENIC (206.2)		MG/L	ND	0.005		R2W367	JP
CADMIUM (200.7)		MG/L	ND	0.005		COW296	JR
CHROMIUM (200.7)		MG/L	ND	0.01		H0W296	JR
LEAD (239.2)		MG/L	ND	0.003		P2W367	GJ

Comments:

_

_

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 4 Date 09-Dec-93

"Method Report Summary"

Accession Number: Client: Project Number: Project Name: Project Location: Test:	312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE Group of Single Metals		
Client Sample Id:	Parameter:	Unit:	Result:
M₩-3 M₩-5	ARSENIC (206.2) Chromium (200.7) Lead (239.2) Lead (239.2)	MG/L MG/L MG/L MG/L	0.007 0.02 0.012 0.004

_

_

1

Analysis Report

Analysis: ACID & BASE EXTRACTABLES (625)

Accession: Client: Project Number: Project Name: Project Location: Department: 312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE ORGANIC/MS

____ _

_ ----

--

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

(0) Page 1

Accession:	312094				[0) Page 1 Date 14-Dec-93			
Client:	CHEVRON USA, PI	RODUCTS CO.						
Project Number:	A04302							
Project Name:	CHEVRON FACILI							
Project Location:	10152 LEM TURN	ER RD., JACKS	SONVILLE					
Test: Analysis Method:	ACID & BASE EX	TRACTABLES ()	225) Dawt 136	7	002			
	625, Federal R	egister 40 Cl	gister 40 CFR, Part 136, Jul gister 40 CFR, Part 136, Jul					
Matrix:	GROUNDWATER	egiscer 40 ci	ny rate 1907	park ri r	572			
QC Level:	IIC							
	001		Comple Des		00.0		1110	
Lab Id: Client Sample Id:	001 MW-3			Sample Date/Time: Received Date:		02-DEC-93 1110 03-DEC-93		
orrene bampro rai	1111 0		Necorred .	bace.	05-0	20 75		
Batch: ALW207				Extraction Date:		03-DEC-93		
Blank: B	Dry Weight %:	N/A	Analysis I	Date:	10-D	EC-93		
Parameter:		Units:	Results:	Rpt Lm	t s:	Qı		
P-CHLORO-M-CRESOL		UG/L	ND	25				
PENTACHLOROPHENOL		ŬG/L	ND	30				
PHENOL		UG/L	ND	ĩõ				
2,4,6-TRICHLOROPHEN	IOL	UG/L	ND	20				
2,4-DICHLOROPHENOL		ŬG/L	ND	10				
2,4-DIMETHYLPHENOL		UG/L	ND	īŏ				
2,4-DINITROPHENOL		UG/L	ND	30				
2-CHLOROPHENOL		ŬG/L	ND	15				
2-NITROPHENOL		UG/L	ND	īõ				
4,6-DINITROCRESOL		UG/L	ND	50				
4-NITROPHENOL		UG/L	ND	20				
ACENAPHTHENE		UG/L	ND	10				
ACENAPHTHYLENE		UG/L	ND	10				
ANTHRACENE		UG/L	ND	īõ				
BENZIDINE		UG/L	ND	10				
BENZO (A) ANTHRACEN	IE	UG/L	ND	10				
BENZO (A) PYRENE		UG/L	ND	10				
3,4-BENZÓFLUORANTHE	NE	UG/L	ND	10				
BENZO (G,H,I) PERYL		UG/L	ND	10				
BENZO (K) FLUORANTH		UG/L	ND	10				
BIS(2-CHLOROETHOXY)		UG/L	ND	10				
BIS(2-CHLOROETHYL)É		UG/L	ND	10				
BIS (2-CHLOROISOPRÓP		UG/L	ND	10				
BIS(2-ETHYLHEXYL)PH	ITHÁLATE	UG/L	ND	10				
4-BROMOPHENYL PHENY	L ETHER	UG/L	ND	10				
BUTYLBENZYL PHTHALA	TE	UG/L	ND	10				
2-CHLORONAPHTHALENE	,	UG/L	ND	10				
4-CHLOROPHENYL PHEN	IYL ETHER	UG/L	ND	10				
CHRYSENE		UG/L	ND	10				
DIBENZO (A,H) ANTHR		UG/L	ND	10				
1,2-DICHLOROBENZENE		UG/L	ND	10				
1,3-DICHLOROBENZENE		UG/L	ND	10				
1,4-DICHLOROBENZENE		UG/L	ND	10				
3,3'-DICHLOROBENZID	INE	UG/L	ND	50				
DIETHYLPHTHALATE		UG/L	ND	10				
DIMETHYLPHTHALATE		UG/L	ND	10				
1,2,4 TRICHLOROBENZ		UG/L	ND	10				
		UG/L	ND	10				
		52/2						
DI-N-BUTYLPHTHALATE 2,4-DINITROTOLUENE 2,6-DINITROTOLUENE	,	UG/L UG/L	ND ND	10 10				

Accession:

312094

(0) Page 2
Date 14-Dec-93

Client: CHEVRON USA, PRODUCTS CO. Client: CREVRON USA, PRODUCTS CO. Project Number: A04302 Project Name: CHEVRON FACILITY #168506977 Project Location: 10152 LEM TURNER RD., JACKSONVILLE Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625, Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625, Federal Register 40 CFR, Part 136, July 1, 1992 Matrix: GROUNDWATER OC Level: UC QC Level: IIC Lab Id: 001 Sample Date/Time: 02-DEC-93 1110

Client Sample Id: MW-3	Sample Da Received		02-DEC-93 1110 03-DEC-93			
Parameter:	Units:	Results:	Rpt Ln	Lmts: Q:		
Parameter: DI-N-OCTYLPHTHALATE 1,2-DIPHENYLHYDRAZINE FLUORANTHENE FLUORENE HEXACHLOROBENZENE HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCTHANE INDENO (1,2,3-CD) PYRENE ISOPHORONE NAPHTHALENE NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE N-NITROSODIPHENYLAMINE PHENANTHRENE PYRENE	Units: UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	Results: ND ND ND ND ND ND ND ND ND ND ND ND ND	Rpt In 10 10 10 10 10 10 10 10 10 10	nte: Q:		
2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	¥REC/SURR ¥REC/SURR ¥REC/SURR ¥REC/SURR ¥REC/SURR ¥REC/SURR INITIALS	83 76 75 77 75 96 LD	21-100 10-100 10-123 43-116 35-114 33-141			

Comments:

ANALYTICAL TECHNOLOGIES, INC.

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

17.82

4

J

(0) Page 3 Date 14-Dec-93 312094 Accession: Client: CHEVRON USA, PRODUCTS CO. Project Number: Project Name: Project Location: Test: A04302 Project Number: A04302 Project Name: CHEVRON FACILITY #168506977 Project Location: 10152 LEM TURNER RD., JACKSONVILLE Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625, Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625, Federal Register 40 CFR, Part 136, July 1, 1992 Matrix: GROUNDWATER QC Level: IIC Lab Id: 001 Sample Date/Time: 02-DEC-93 1110 Client Sample Id: MW-3 Received Date: 03-DEC-93 "Sample Tic Report" Number of Tics Found: 1 Concentration Units: UG/L Cas Number: Compound Name: RT: Est Conc: Q:

119-61-9

9 Benzophenone

[0) Page 4 Date 14-Dec-93

					Date 14-D)ec-93
Accession: Client: Project Number: Project Name:	312094 CHEVRON USA, PI A04302 CHEVRON FACILIS					
Project Location:	10152 LEM TURNE					
Test:	ACID & BASE EXT	RACTABLES (6	25)			
Analysis Method: Extraction Method:	625, Federal Re	egister 40 CF	R, Part 136,	July 1, 1	.992	
	625, Federal Re	egister 40 CF	R, Part 136,	July 1, 1	.992	
Matrix: QC Level:	GROUNDWATER					
QC Level:	110					
Lab Id:	002		Sample Da	te/Time:		1035
Client Sample Id:	MW-5		Received	Dates	03-DEC-93	
Batch: ALW207		*-	Extractio		03-DEC-93	
Blank: B	Dry Weight %:	N/A	Analysis	Date:	10-DEC-93	
Parameter:		Unite:	Results:	Rpt Lm	ts: Q:	
P-CHLORO-M-CRESOL		UG/L	ND	25		
PENTACHLOROPHENOL		UG/L	ND	30		
PHENOL		UG/L	ND	10		
2,4,6-TRICHLOROPHE	NOL	UG/L	ND	20		
2,4-DICHLOROPHENOL		UG/L	ND	10		
2,4-DIMETHYLPHENOL		UG/L	ND	10		
2,4-DINITROPHENOL		UG/L	ND	30		
2-CHLOROPHENOL		UG/L	ND	15		
2-NITROPHENOL 4,6-DINITROCRESOL		UG/L UG/L	ND ND	10 50		
-NITROPHENOL		UG/L	ND	20		
ACENAPHTHENE		ŬG/L	ND	ĩŏ		
CENAPHTHYLENE		ŬĜ/L	ND	īŏ		
NTHRACENE		UG/L	ND	10		
BENZIDINE		UG/L	ND	10		
BENZO (A) ANTHRACEI	NE	UG/L	ND	10		
BENZO (A) PYRENE		UG/L	ND	10		
3,4-BENZOFLUORANTH	ENE	UG/L	ND	10		
BÉNZO (G,H,1) PERYI	LENE	UG/L	ND	10		
BENZO (K) FLUORANTI	1ENE	UG/L	ND	10		
SIS (2-CHLOROETHOXY)	METHANE	UG/L	ND	10		
BIS(2-CHLOROETHYL) BIS(2-CHLOROISOPRO)		UG/L UG/L	ND ND	10 10		
BIS(2-ETHYLHEXYL)PI		UG/L	ND	10		
-BROMOPHENYL PHENY		UG/L	ND	ĩŏ		
BUTYLBENZYL PHTHAL		ŬG/L	ND	10		
2-CHLORONAPHTHALENI		ŬĠ/L	ND	10		
-CHLOROPHENYL PHEN	NYL ETHER	UG/L	ND	10		
CHRYSENE		UG/L	ND	10		
DIBENZO (A,H) ANTHE		UG/L	ND	10		
1,2-DICHLOROBENZENI		UG/L	ND	10		
1,3-DICHLOROBENZEN		UG/L	ND	10		
		UG/L	ND	10		
			ND			
3,3'-DICHLOROBENZII		UG/L	ND ND	50 10		
1,4-DICHLOROBENZEN 3,3'-DICHLOROBENZII DIETHYLPHTHALATE DIMETHYLPHTHALATE		UG/L UG/L	ND	10		
3,3'-DICHLOROBENZII DIETHYLPHTHALATE DIMETHYLPHTHALATE	DINE	UG/L UG/L UG/L	ND ND	10 10		
3,3'-DICHLOROBENZII DIETHYLPHTHALATE DIMETHYLPHTHALATE 1,2,4 TRICHLOROBEN2	DINE Lene	UG/L UG/L UG/L UG/L	ND ND ND	10 10 10		
3,3'-DICHLOROBENZII DIETHYLPHTHALATE DIMETHYLPHTHALATE	DINE Lene	UG/L UG/L UG/L	ND ND	10 10		

[0) Page 5 Date 14-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	ACID & BASE EX 625, Federal R	TY #168506977 ER RD., JACKSO TRACTABLES (62 egister 40 CFR	5) , Part 136, 4	July 1, 1992 July 1, 1992		
Lab Id: Client Sample Id:	002 MW-5		Sample Da Received	te/Time: 02- Date: 03-	-DEC-93 10 -DEC-93	03
Parameter:		Units:	Results:	Rpt Lmts:	Q:	
DI-N-OCTYLPHTHALATI	—	UG/L	ND	10		
1,2-DIPHENYLHYDRAZ	INE	UG/L	ND	10		
FLUORANTHENE		UG/L	ND	10		
FLUORENE		UG/L	ND	10		
HEXACHLOROBENZENE		UG/L	ND	10		
HEXACHLOROBUTADIENI	C	UG/L	ND	10		
HEXACHLOROCYCLOPENT	TADIENE	UG/L	ND	10		
HEXACHLOROETHANE		UG/L	ND	10		
INDENO (1,2,3-CD) I	PYRENE	UG/L	ND	10		
ISOPHORONE		UG/L	ND	10		
NAPHTHALENE		UG'/L	ND	10		
NITROBENZENE		UG/L	ND	10		
N-NITROSODIMETHYLAN	AINE	UG/L	ND	10		
N-NITROSO-DI-N-PROI	PYLAMINE	UG/L	ND	10		
N-NITROSODIPHENYLAN	INE	UG/L	ND	10		
PHENANTHRENE		ŬG/L	ND	10		
PYRENE		UG/L	ND	10		
2-FLUOROPHENOL		%REC/SURR	5*	21-100		
PHENOL-D6		*REC/SURR	6*	10-100		
2,4,6-TRIBROMOPHENC	DL .	&REC/SURR	4*	10-123		
2-FLUOROBIPHENYL		&REC/SURR	95	43-116		
NITROBENZENE-D5		SREC/SURR	93	35-114		
TERPHENYL-D14		SREC/SURR	105	33-141		

Comments: * SURROGATE RECOVERY OUTSIDE ACCEPTANCE LIMITS. NO EXTRA SAMPLE TO RE-EXTRACT.

- ---

_

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 6 Date 14-Dec-93

.

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONV ACID & BASE EXTRACTABLES (625) 625, Federal Register 40 CFR, 1 625, Federal Register 40 CFR, 1 GROUNDWATER IIC	Part 136, July 1, 199	92 92
Lab Id:	002		D2-DEC-93 1035
Client Sample Id:	MW-5		D3-DEC-93

"Sample Tic Report"

Number of Tics Found: 4 Concentration Units: UG/L

Cas Number:	Compound Name:	RT:	Est Conc:	Q:	
	Unknown Hydrocarbon	3.80	40	J	
	Unknown Hydrocarbon	4.98	20	J	
	Unknown Ketone	10.90	20	J	
	Unknown Hydrocarbon C-6	12.60	10	J	

_

[0) Page 7 Date 14-Dec-93

Annound and	330004				pate.	14-Dec
Accession: Client: Project Number:	312094 CHEVRON USA, PI A04302	RODUCTS CO.				
Project Name: Project Location:	CHEVRON FACILIS 10152 LEM TURNI		NVILLE			
Tesť:	ACID & BASE EXT	TRACTABLES (62	5)			
Analysis Method:	625, Federal Re	egister 40 CFR	, Part 136,	July 1, 1	992	
Extraction Method: Matrix:	WATER	agister 40 CFR	, Part 136,	July 1, 1	992	
QC Level:	lic					
Lab Id:	003		Sample Da		02-DEC	
Client Sample Id:	EQB		Received 1	Date:	03-DEC-	-93
Batch: ALW207			Extractio		03-DEC	
Blank: B	Dry Weight %:	N/A	Analysis	Date:	10-DEC-	-93
Parameter:		Units:	Results:	Rpt Lm	ts: (2:
P-CHLORO-M-CRESOL		UG/L	ND	25		
PENTACHLOROPHENOL		UG/L	ND	30		
PHENOL	NOT	UG/L UG/L	ND	10		
2,4,6-TRICHLOROPHE 2,4-DICHLOROPHENOL		UG/L UG/L	ND ND	20 10		
2,4-DIMETHYLPHENOL		UG/L	ND	10		
2,4-DINITROPHENOL		ŬĠ/L	ND	30		
2-CHLOROPHENOL		UG/L	ND	15		
2-NITROPHENOL		UG/L	ND	10		
4,6-DINITROCRESOL		UG/L	ND	50		
4-NITROPHENOL		UG/L	ND	20		
ACENAPHTHENE		UG/L	ND	10		
ACENAPHTHYLENE		UG/L	ND	10		
ANTHRACENE BENZIDINE		UG/L UG/L	ND ND	10 10		
BENZIDINE BENZO (A) ANTHRACEI	NE	UG/L UG/L	ND ND	10		
BENZO (A) PYRENE	12	ŬĠ/L	ND	10		
3,4-BENZOFLUORANTH	ENE	UG/L	ND	īŏ		
BENZO (G,H,I) PERYI		ŬĠ/L	ND	10		
BENZO (K) FLUORANTI		UG/L	ND	10		
BIS(2-CHLOROETHOXY)		UG/L	ND	10		
BIS(2-CHLOROETHYL)		UG/L	ND	10		
BIS(2-CHLOROISOPROI		UG/L	ND	10		
BIS(2-ETHYLHEXYL)P		UG/L	ND	10		
4-BROMOPHENYL PHEN		UG/L	ND	10	•	
BUTYLBENZYL PHTHAL! 2-CHLORONAPHTHALENI		UG/L UG/L	ND ND	10 10		
4-CHLOROPHENYL PHEN		UG/L UG/L	ND	10		
CHRYSENE		ŬĜ/L	ND	10		
DIBENZO (A,H) ANTHI	RACENE	UG/L	ND	ĩŏ		
1,2-DICHLOROBENZENI		UG/L	ND	10		
1,3-DICHLOROBENZEN		UG/L	ND	10		
1,4-DICHLOROBENZEN		UG/L	ND	10		
3,3'-DICHLOROBENZII	DINE	UG/L	ND	50		
DIETHYLPHTHALATE		UG/L	ND	10		
DIMETHYLPHTHALATE	7 57 1 1 10	UG/L	ND	10		
1,2,4 TRICHLOROBEN2		UG/L	ND	10		
DI-N-BUTYLPHTHALATH 2,4-DINITROTOLUENE	S .	UG/L UG/L	ND ND	10 10		

(0) Page 8 Date 14-Dec-93

-	Accession: Client: Project Number: Project Name:	312094 CHEVRON USA, PRO A04302 CHEVRON FACILITY	#168506977			Ďate 14-D	ec-93
- -	Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	10152 LEM TURNER ACID & BASE EXTR 625, Federal Reg	RD., JACKSON ACTABLES (625 Lister 40 CFR.) Part 136. J	uly 1, 199 uly 1, 199	2 2	
	Lab Id: Client Sample Id:	003 EQB		Sample Dat Received D	e/Time: 0 ate: 0	2-DEC-93 3-DEC-93	1200
	Parameter:		Units:	Results:	Rpt Lmts	: Q:	
-	DI-N-OCTYLPHTHALATI 1,2-DIPHENYLHYDRAZ		UG/L	ND	10		
	FLUORANTHENE FLUORENE		UG/L UG/L UG/L	ND ND ND	10 10 10		
	HEXACHLOROBENZENE HEXACHLOROBUTADIENE		UG/L UG/L	ND ND	10 10		
	HEXACHLOROCYCLOPENT HEXACHLOROETHANE		UG/L UG/L	ND ND	10 10		
	INDENO (1,2,3-CD) E ISOPHORONE NAPHTHALENE	YIRENE	UG/L UG/L UG/L	ND ND ND	10 10		
	NITROBENZENE N-NITROSODIMETHYLAN N-NITROSO-DI-N-PROP	PYLAMINE	UG/L UG/L UG/L	ND ND ND	10 10 10 10		
	N-NITROSODIPHENYLAN PHENANTHRENE PYRENE	line	UG/L UG/L UG/L	ND ND ND	10 10 10		
	2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENC 2-FLUOROBIPHENYL NITROBENZENE-D5	DL.	\$REC/SURR \$REC/SURR \$REC/SURR \$REC/SURR \$REC/SURR	97 87 91 94 99	21-100 10-100 10-123 43-116 35-114		
	TERPHENYL-D1 4 Analyst		<pre>%REC/SURR INITIALS</pre>	104 LD	33-141		

Comments:

--

-___

____ _

-

-

_

_

(0) Page 9 Date 14-Dec-93

Test: Analysis Method:	312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE ACID & BASE EXTRACTABLES (625) 625, Federal Register 40 CFR, Part 136, July 1, 1992 625, Federal Register 40 CFR, Part 136, July 1, 1992 WATER IIC
Lab Id: Client Sample Id:	003Sample Date/Time:02-DEC-931200EQBReceived Date:03-DEC-93

"Sample Tic Report"

Number of Tics Found: 4 Concentration Units: UG/L

Cas Number:	Compound Name:	RT:	Est Conc:	Q:
	Unknown Hydrocarbon	3.83	90	J
	Unknown Ester of Acetic Acid	4.47	8	J
	Unknown Hydrocarbon	4.98	20	J
	Unknown Ketone	10.90	10	J

_ -

.. .

- - -

_

_ .

Quality Control Report

Analysis: Group of Single Metals

Accession: Client: Project Number: Project Name: Project Location: Department:

312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE METALS

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 1 Date 09-Dec-93

Parameter: Batch Id: Blank Result: Anal. Method: Prep. Method: Analysis Date: Prep. Date:	ARSENIC R2W367 <0.005 206.2 EPA 600 06-DEC-93 05-DEC-93	"Metals Q CADMIUM COW296 <0.005 200.7 EPA 600 06-DEC-93 03-DEC-93	uality Cont CHROMIUM HOW296 <0.01 200.7 EPA 600 06-DEC-93 03-DEC-93	rol Report" LEAD P2W367 <0.003 239.2 EPA 600 07-DEC-93 05-DEC-93
Sample Dup	lication			
Sample Dup:	312084-1	312084-1	312084-1	312084-1
Rept Limit:	<0.005	<0.005	<0.01	<0.003
Sample Result:	<0.005	<0.005	<0.01	<0.003
Dup Result:	<0.005	<0.005	<0.01	<0.003
Sample RPD:	N/C	N/C	N/C	N/C
Max RPD:	0.005	0.005	0.01	0.003
Dry Weight%	N/A	N/A	N/A	N/A
Matrix Spi	ke			
Sample Spiked:	312084-1	312084-1	312084-1	312084-1
Rept Limit:	<0.005	<0.005	<0.01	<0.003
Sample Result:	<0.005	<0.005	<0.01	<0.003
Spiked Result:	0.039	2.0	2.0	0.021
Spike Added:	0.040	2.0	2.0	0.020
% Recovery:	98	100	100	105
% Rec Limits:	75-125	75-125	75-125	75-125
Dry Weight%	N/A	N/A	N/A	N/A
ICV		······		 ,
ICV Result:	0.038	5.0	4.8	0.039
True Result:	0.040	5.0	5.0	0.040
% Recovery:	95	100	96	98
% Rec Limits:	90-110	90-110	90-110	90-110
LCS	· · · · · · · · · · · · · · · · · · ·			
LCS Result:	0.040	4.8	4.9	0.039
True Result:	0.040	5.0	5.0	0.040
% Recovery:	100	96	98	98
% Rec Limits:	80-120	80-120	80-120	80-120

____ ----____

_

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 2 Date 09-Dec-93

"Quality Control Comments"

Batch	Id:	Comments:

	R2W367	Spike Source: Plasma Chem, Lot # S2M33N1H for Arsenic.
	R2W367	LCS Source: Plasma Chem, Lot # S2M33N1H for Arsenic.
	COW296	Spike Source: Plasma Chem, Lot # M3M48N10D for Cadmium.
-	COW296	LCS Source: Spex Industries, Lot # 2~329PR for Cadmium.
	HOW296	Spike Source: Plasma Chem, Lot # Y2M24L10P8 for Chromium.
	H0W296	LCS Source: Spex Industries, Lot # 2~192YW for Chromium.
	P2W367	Spike Source: Plasma Chem, Lot # M3M82N11 for Lead.
-	P2W367	LCS Source: Plasma Chem, Lot # M3M82N1I for Lead.

[0] Page 3 Date 09-Dec-93

----- Common Footnotes Metals -----

N/A = NOT APPLICABLE.

- N/S = NOT SUBMITTED. N/C = SAMPLE AND DUPLICATE RESULTS ARE AT OR BELOW ATI REPORTING LIMIT; THEREFORE, THE RPD IS "NOT CALCULABLE" AND NO CONTROL LIMITS APPLY.
- N/D = NOT DETECTED.
- DISS. OR D = DISSOLVED
- T & D = TOTAL AND DISSOLVED R = REACTIVE
- T = TOTALG = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X ATI REPORTING LIMIT AND
- G = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X ATT REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE SAMPLE AND DUPLICATE RESULT IS AT OR BELOW ATT REPORTING LIMIT; THEREFORE, THE RESULTS ARE "IN CONTROL".
 Q = THE ANALYTICAL (POST-DIGESTION) SPIKE IS REPORTED DUE TO PERCENT RECOVERY BEING OUTSIDE ACCEPTANCE LIMITS ON THE MATRIX (PRE-DIGESTION) SPIKE.
 # = ELEVATED REPORTING LIMIT DUE TO INSUFFICIENT SAMPLE.
 + = ELEVATED REPORTING LIMIT DUE TO DILUTION INTO CALIBRATION RANGE.

- * = ELEVATED REPORTING LIMIT DUE TO MATRIX INTERFERENCE. (DILUTION PRIOR TO ANALYSIS)
- @ = ADJUSTED REPORTING LIMIT DUE TO SAMPLE MATRIX. (DILUTION PRIOR TO DIGESTION)
- P = ANALYTICAL (POST DIGESTION) SPIKE.
- I = DUPLICATE INJECTION.
- & = AUTOMATED

- F = SAMPLE SPIKED > 4 X SPIKE CONCENTRATION. N/C+ = NOT CALCULABLE N/C* = NOT CALCULABLE; SAMPLE SPIKED > 4 X SPIKE CONCENTRATION. H = SAMPLE AND/OR DUPLICATE RESULT IS BELOW 5 X ATI REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE ATI REPORTING DUPDODE THE DESCRIPTION OF SOUND AND THE ATI REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL". A = SAMPLE AND DUPLICATE RESULTS ARE "OUT OF CONTROL". Z = THE SAMPLE RESULT FOR THE SPIKE IS BELOW THE REPORTING LIMIT. HOWEVER,
- THIS RESULT IS REPORTED FOR ACCURATE QC CALCULATIONS. NH= SAMPLE AND / OR DUPLICATE RESULT IS BELOW 5 X ATI REPORTING LIMIT AND THE ABSOLUTE DIFFERENCE BETWEEN THE RESULTS EXCEEDS THE ATI REPORTING LIMIT; THEREFORE, THE RESULTS ARE "OUT OF CONTROL". SAMPLE IS NON-HOMOGENEOUS.

RPD= RELATIVE PERCENT DEVIATION. RPT LIMIT= REPORTING LIMIT BASED ON METHOD DETECTION LIMIT STUDIES.

SW-846, 3rd Edition, September 1986 and Revision 1, July 1992. EPA 600/4-79-020, Revised March 1983. NIOSH Manual of Analytical Methods, 3rd Edition.

JP = JAY PEREZ	JRR ≈ JOHN R. ROWE
GL = GENE LANDRUM	JR = JOHN REED
JMP ≈ JACI M. PRICE	GJ = GARY JACOBS
JLH = JAMES L. HERED	

_

Quality Control Report

Analysis: ACID & BASE EXTRACTABLES (625)

Accession: Client: Project Number: Project Name: Project Location: 312094 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY #168506977 10152 LEM TURNER RD., JACKSONVILLE ORGANIC/MS Department:

[0) Page 1 Date 14-Dec-93

	"QC Repor	t"	Date 14-De
Title: Water Bland Batch: ALW207	c .		
Analysis Method: 625, Federa Extraction Method: 625, Federa	al Register 40 al Register 40	CFR, Part 136 CFR, Part 136	, July 1, 1992 , July 1, 1992
Blank Id: B Date Analyzed:	07-DEC-93 D	ate Extracted	: 03-DEC-93
Parameters:	Units:	Results:	Reporting Limits:
BENZOIC ACID	UG/L	ND	10
A-CHLORO-3-METHYLPHENOL 2-CHLOROPHENOL 2,4-DICHLOROPHENOL 2,4-DICHLOROPHENOL 2,4-DINETHYLPHENOL 4,6-DINITRO-2-METHYLPHENOL 2,4-DINITROPHENOL 2-METHYLPHENOL 4-METHYLPHENOL 4-METHYLPHENOL 4-NITROPHENOL 4-NITROPHENOL PENTACHLOROPHENOL PHENOL 2,3,4,6-TETRACHLOROPHENOL	UG/L UG/L	ND	10
2-CHLOROPHENOL	UG/L	ND	10
2,4-DICHLOROPHENOL	UG/L	ND	10
2,6-DICHLOROPHENOL	UG/L	ND	10
2,4-DIMETHYLPHENOL	UG/L	ND	10
, 6-DINITRO-2-METHYLPHENOL	UG/L	ND	10
,4-DINITROPHENOL	UG/L	ND	10
-METHYLPHENOL		ND	10
-METHILPHENOL		ND	10
		ND	10 10
		ND	10
VENTACILOROPHENOL			10
3.4.6~TETRACHLOROPHENOL	UG/L UG/L UG/L UG/L UG/L	ND	10
A.5-TRICHLOROPHENOL		ND	10
4.6-TRICHLOROPHENOL	ŬG/L	ND	10
CENAPHTHENE	UG/L	ND	10
CENAPHTHYLENE	UG/L	ND	10
CETOPHENONE	UG/L UG/L UG/L	ND	10
-AMINOBIPHENYL	ŬĠ/L	ND	10
NILINE	UG/L	ND	10
NTHRACENE	UG/L	ND	10
ENZIDINE	UG/L	ND	10
ENZO (A) ANTHRACENE	UG/L	ND	10
IENZO (A) PYRENE	UG/L	ND	10
ENZO (B) FLUORANTHENE	UG/L	ND	10
BENZO (G,H,I) PERYLENE	UG/L	ND	10
ENZO (K) FLUORANTHENE	UG/L	ND	10
HENOL , 3, 4, 6-TETRACHLOROPHENOL , 4, 5-TRICHLOROPHENOL , 4, 6-TRICHLOROPHENOL , 4, 6-TRICHLOROPHENOL CENAPHTHENE CENAPHTHENE CETOPHENONE -AMINOBIPHENYL NILINE NTHRACENE ENZIDINE ENZO (A) ANTHRACENE ENZO (A) PYRENE ENZO (B) FLUORANTHENE ENZO (G, H, I) PERYLENE ENZO (K) FLUORANTHENE ENZYL ALCOHOL ENZYL ALCOHOL	UG/L	ND	10
IS (2-CHLOROETHOXY) METHANE IS (2-CHLOROETHYL) ETHER	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND	10
SIS(2-CHLOROETHYL)ETHER	UG/L	ND	10
31S (2–CHLOROISOPRÓPYL)ETHER 31S (2–ETHYLHEXYL)PHTHALATE	UG/L UG/L UG/L UG/L UG/L UG/L	ND	10
	UG/L	ND	10
-BROMOPHENYL PHENYL ETHER	UG/L	ND	10
BUTYLBENZYL PHTHALATE			10
-CHLOROANILINE			10
-CHLORONAPHTHALENE		ND	10
2-CHLORONAPHTHALENE 4-CHLOROPHENYL PHENYL ETHER	UG/L UG/L	ND	10 10
CHRYSENE	UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10
DIBENZ(A, J)ACRIDINE	100/L	ND	10
IBENZO (A, H) ANTHRACENE	110/1	ND	10
DIBENZOFURAN	UG/L UG/L	ND	10
, 2-DICHLOROBENZENE	ŬG/L	ND	10
1, 3-DICHLOROBENZENE	UG/L	ND	10

[0) Page 2 Date 14-Dec-93

			"QC R	epoi	et"					1	Date 14-	-1
		Blank										
Batch: P	ALW20	7 Foderal	Donistan	40	ann	Dent	126	T	1	100	`	
Analysis Method: 6 Extraction Method: 6	625,	Federal	Register	40	CFR,	Part	136,	July	i;	1992	2	
<u></u>												-
Parameters:			Unit	8 :		Result	ts:	Repo	ort:	ing I	Limits:	
1,4-DICHLOROBENZENE			UG/L			NNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN		10				
3,3'-DICHLOROBENZIDI	INE		UG/L			ND		10				
DIETHYLPHTHALATE		-	UG/L			ND		10				
P-DIMETHYLAMINOAZOBE	ENZEN	E Di onun	UG/L			ND		10				
7,12-DIMETHYLBENZ(A)	ANTH	RACENE	UG/L			ND		10				
A-, A-DIMETHYLPHENET	HYLAM	INE	UG/L			ND		10				
DIMETHYLPHTHALATE			UG/L			ND		10				
DI~N-BUTYLPHTHALATE			UG/L			ND		10				
A-, A-DIMETHYLPHENETH DIMETHYLPHTHALATE DI~N-BUTYLPHTHALATE 2, 4-DINITROTOLUENE 2, 6-DINITROTOLUENE DI-N-OCTYLPHTHALATE DIPHENYLAMINE 1, 2-DIPHENYLHYDRAZIN			UG/L			ND		10				
2,6-DINITROTOLUENE			UG/L			ND		10				
DI-N-OCTYLPHTHALATE			UG/L			ND		10				
DIPHENYLAMINE			UG/L			ND		10				
	NE		UG/L			ND		10				
FLUORANTHENE			UG/L			ND		10				
FLUORENE			06/1					10				
HEXACHLOROBENZENE								10 10				
HEXACHLOROBUTADIENE HEXACHLOROBUTADIENE HEXACHLOROCYCLOPENTA		P				ND		10				
HEXACHLOROETHANE	DIDN	6				ND		10				
INDENO (1,2,3-CD) PY	DENE					ND		10				
ISOPHORONE	INGNE					ND ND		10				
3-METHYLCHOLANTHRENE	7				:	ND		10				
2-METHVI.NADHTHAI.ENE					1	ND		ĩõ				
2-METHYLNAPHTHALENE NAPHTHALENE			UG/L			ND		ĩŏ				
1-NAPHTHYLAMINE			ŬG/L			ND		ĩŏ				
2-NAPHTHYLAMINE			UG/L			ND		īŏ				
2-NITROANILINE			ŬG/L			ND		īŏ				
3-NITROANILINE			UG/L			ND		ĩõ				
NAPHTHALENE 1-NAPHTHYLAMINE 2-NAPHTHYLAMINE 2-NITROANILINE 3-NITROANILINE NITROBENZENE N-NITROSODIMETHYLAMI N-NITROSODI-N-BUTYLA			ŬG/L		1	ND		ĩõ				
NITROBENZENE			ŬG/L		1	ND		10				
N-NITROSODIMETHYLAMI	INE		ŬG/L		1	ND		ĩõ				
N-NITROSODI-N-BUTYLA	MINE		UG/L		1	ND		10				
N-NITROSODIPHENYLAMI	INE		UG/L		1	ND		10				
N-NITROSO-DI-N-PROPY	LAMI	NE	UG/L		1	ND		10				
N-NITROSOPIPERIDINE			UG/L		1	ND		10				
PENTACHLOROBENZENE			UG/L		1	ND		10				
PENTACHLORONITROBENZ	LENE	(PCNB)	UG/L		1	ND		10				
PHENACETIN			UG/L		1	ND		10				
PHENANTHRENE			UG/L		1	ND		10				
2-PICOLINE			UG/L		1	ND		10				
PRONAMIDE			UG/L		1	ND		10				
PYRENE			UG/L		1	ND		10				
1,2,4,5-TETRACHLOROB	BENZE	NE	UG/L		1	ND		10				
1,2,4 TRICHLOROBENZE	ENE		UG/L		1	ND		10				
2-FLUOROPHENOL			UG/L UG/L UG/L %REC,	SUR	ur i	91		21-1				
PHENOL-D6			*REC/	SOF	KR A	86		10-1				
2,4,6-tribromophenol			%REC	/SUF	R	92		10-1	23			

_ ____ — -____ _ -

_

-

		"QC Report"		[0) Page 3 Date 14-Dec-93
Title: Batch: Analysis Method: Extraction Method:	Water Blank ALW207 625, Federal 625, Federal	Register 40 CFR	, Part 136, , Part 136,	July 1, 1992 July 1, 1992
Parameters:		Units:	Results:	Reporting Limits:
2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST		&REC/SURR &REC/SURR &REC/SURR INITIALS	88 80 100 RW	43-116 35-114 33-141

Comments:

_

[0) Page 4 Date 14-Dec-93

	Title: Wate	r Reagent	"QC	Report"				
	Batch: ALW2	07 Federal Re	egister 40 egister 40	CFR, Part CFR, Part	136, July 136, July	1, 1992 1, 1992	<u></u>	·
	RS Date Analy RSD Date Analy	zed: 09-DE yzed: 09-DE				e Extracted: te Extracted		
-	Parameters: PHENOL 2-CHLOROPHENOL 1,4-DICHLOROBENZENE N-NITRO-DI-N-PROPYLAMINI 1,2,4 TRICHLOROBENZENE 4-CHLORO-3-METHYLPHENOL ACENAPHTHENE 4-NITROPHENOL	100	ded Cond 0 <10 0 <10 0 <10 0 <10 0 <10 0 <10 0 <10 0 <10 0 <10 0 <10 0 <10		%Rec C 80 1 82 1 50 6 44 5 60 6 100 1 70 7	SD RSD conc % Rec .70 85 .80 90 .4 64 .2 52 .4 64 .74 87 .6 18	RPD RPD Lmte 6 42 9 40 25 28 17 38 6 28 14 42 8 31 43 50	Rec Lmts 5-112 23-134 20-124 18-122 44-142 22-118 47-145 1-132
	2,4-DINITROTOLUENE PENTACHLOROPHENOL PYRENE	100 200 100) <10) <50	78 250 84	78 8 125 1	6 86 92 96 04 104	10 38 26 50 21 31	39-139 14-176 52-115
	Surrogates: NITROBENZENE-D5 2-FLUOROBIPHENYL TERPHENYL-D14 PHENOL-D6 2-FLUOROPHENOL 2,4,6-TRIBROMOPHENOL				77 76 97 92 82 118	85 84 113 90 84 92		35-114 43-116 33-141 10-100 21-100 10-123

Comments:

Notes: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

[0) Page 5 Date 14-Dec-93

		"QC Repoi	rt"						
Title: Wat Batch: ALW	er Matrix 207								
	, Federal Registe								
- Dry Weight %: N/A Sample Spiked: 311743-	MS Date	Analyzed: Analyzed:	09-DEC		MS Date MSD Date				2-DEC-93 2-DEC-93
Sample Spiked: 511/45-	UUT MOD Date	Anaryzeu:	03-DEC	- 95	MOD Dati	5 GACI	auci		2-060-33
	Spike	Sample	MS	MS	MSD	MSD		RPD	Rec
Parameters:	Added	Conc	Conc		Conc	%Rec			Lmts
PHENOL	400	<10	152	38	124	31	20	42	5-112
2-CHLOROPHENOL	400	<10	412	103	468	117	13	40	23-134
1,4-DICHLOROBENZENE	200	<10	208	104	212		2	28	20-124
N-NITRO-DI-N-PROPYLAMI		<10	108	54	116	58	7	38	18-122
1,2,4 TRICHLOROBENZENE		<10	212	106	228	114	7	28	44-142
4-CHLORO-3~METHYLPHENO		<10	444	111	464	116	4	42	22-118
acenaphthene	200	<10	248	124	264	132	6	31	47-145
4-NITROPHENOL	400	<50	40	10	56	14	33	50	1-132
2,4-DINITROTOLUENE	200	<10	144	72	156	78	8	38	39-139
PENTACHLOROPHENOL	400	<50	288	72	268	67	7	50	14-176
PYRENE	200	<10	188	94	220	110	16	31	52-115
Surrogates:									
NITROBENZENE-D5				94		102			35-114
2-FLUOROBIPHENYL				104		109			43-116
TERPHENYL-D14				130		118			33-141
PHENOL~D6				31		10			10-100
2-FLUOROPHENOL				30		81			21-100
2,4,6-TRIBROMOPHENOL				41		41			10-123

_ Comments:

Notes:

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

(0) Page 6 Date 14-Dec-93

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUTUG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. MG/M3 = MILLIGRAMS PER CUBIC METER. NG = NANOGRAMS. UG = MICROGRAMS. PPBV = PARTS PER BILLION/VOLUME. < = LESS THAN DETECTION LIMIT. JESS THAN DETECTION DIALITY CONTROL LIMITS
 J = THE REPORTED VALUE IS EITHER LESS THAN THE REPORTING LIMIT BUT GREATER THAN ZERO, OR QUANTITATED AS A TIC; THEREFORE, IT IS ESTIMATED. JJ = REPORTED VALUE IS ESTIMATED DUE TO MATRIX INTERFERENCE. ND = NOT DETECTED ABOVE REPORT LIMIT. RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES. RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION) SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. ORGANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS.

DUE TO THE NATURE OF THE SAMPLE MATRIX, MATRIX SPIKE/MATRIX SPIKE DUPLICATE ANALYSIS CANNOT BE PERFORMED FOR AIR ANALYSIS.

_ ...

LP =	LEVERNE PETERSON	RW =	RITA WINGO
DWB =	DAVID BOWERS	LD =	LARRY DILMORE
DB =	DENNIS BESON	DC =	DAVID CELESTIAL
LL =	LANCE LARSON	BR =	BILL RUBERT

_ _ _ _

CHEVRON QC REPORT

Date: 12/10/93 GC/MS Semivolatiles Data Sheet 1> Determination of the relative response factor (rrf): $RRF = AREA(compound) \times AMOUNT(is)$ AREA(is) x AMOUNT(compound) In daily calibration: AMOUNT(is) = 40 ug/mlAMOUNT(compound) = 50 ug/ml2> Quantitation of sample results: waters: Amount(compound) = AREA(compound) x AMOUNT(is) x DL AREA(is) x RRF soils: Amount(compound) = AREA(compound) x AMOUNT(is) x DF AREA(is) x RRF DL = dilutionDF = dilution factor= 1000/(amount of soil in grams X dry weight) 3> Standards: standard lot # Conc(ug/ml) Manufacturer ------------------------ $\begin{array}{c|ccccc} K - 10083 - 8 & 2,000 & Accustandard \\ \hline 104 - 34B & 10,000 & Supelco \\ \hline 57 \cdot 01 - 06 & 5,840 & Supelco \\ \hline A001999 & 1,500 & Restek \\ \hline 1812 & 1,000 & Restek \\ \hline \end{array}$ 8270 standards mix Pyridine 2,4-Dinitrophenol acid spike base neutral spike A-2525 2,000 acid surrogate Restek A-2790 base neutral surrogate 1,000 Restek internal standard (IS) 1-BNAN-726 2,000 Accustandard 4> Lab QC standard mixes: Lab Identification standard mix 02-BNAW-41-02 8270 standard mix Matrix and Reagent spike mix ______ O2 - BNAW - 36-01 02-BNAW-42-02 A/BN surrogate mix 3+2094 312094 (1-3) 5> Sample lab Identification: LAD 12-10-93

.

бB

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

ab Name: <u>A. l. l.</u>		Conti	ract: <u>N</u> 4	<u>}</u>	nden metalekan send		
ab Code: FINNMAT Case No.	: WCC5	_ SAS	No.: <u>N</u> 4	<u>\</u>	SDG No). : <u>252</u>	
astrument ID: FINN	Cal	ibratio	n Date(s	5): <u>11/</u> 1	7/93	11/17/	93
- Min RRF for SPCC(#) = 0.050				Max %RS	5D for (CC(*) =	= 30. (
AB FILE ID: RRF20	= 020A	1117	RRF5	0 = 050/	1117		
AB_FILE_ID: RRF20 TRRF80 = <u>080A1117</u> RRF12	0= <u>120A</u>	1117	RRF16	50= <u>1604</u>	1117		•
	I IRRF20	I IRRF 50	l IRRF80	RRF120	RRF160	RRF	7 RSD
7 COMPOUND 1 - Composition and an			======				
Pyridine	1 0. 945	0.799	0.962	0.852	0.854	0.8823	7. (
RETHYL METHANESULFONATE	1	;	:	;		0. 000	0 . (
METHYL METHANESULFONATE	1	:	1			0. 000	Ø. (
√-Nitrosodimethulamine	1 0.496	0.378	0.455	0.484	0.4621	0.455	10.
Chennl	* 2.152	1 1.632	1.834	1.661	1. 6661	1.7891	12.2
[Abiline	1 2.475	1.874	2.164	2.103	2.069	2.137	10.1
+bis(2-Chloroethyl)Ether	1.648	1.264	1.410	1.338	1. 263	1. 3851	11.
2-Chlorophenol	1.585	1.233	1.359	1. 260	1. 229	1.333	11.
1/3-Dichlorobenzene	1.729	1.339	1.455	1.312	1.217	1.410	14.
1,4-Dichlorobenzene	* 1.795	1.379	1.431	1.288	1.164	1.411	16.
Benzyl Alcohol	0. 951	0.786	0.876	0.826	0.778	0.843	8 .
_1,2-Dichlorobenzene	1 1.702	1.293	1.343	1. 226	1.118	1. 336	16.
12-Methylphenol	1.494	1.146	1.231	1, 122	1,087	1.216	13.
AGETOPHENDNE N-NITROSOPIPERIDINE						0.000	O . '
N-NITROSOPIPERIDINE						0.000	Q .
This(2-Chloroisopropyl)Ether	2.828	2.236	1 2.396	2.230	2.072	2.352	12.
14-Methylphenol	1 1.544	1.168	1.223	1.132	0.996	1.213	16.
N-Nitroso-Di-n-Propylamine_							
-riexachloroethane	0.754	1 0.590	1 0.650			0.635	11.
INitrobenzene	0.416	0.339	0.376		1 0.3421 1 0.491	0.364	9.0
Isophorone	i U.81¢	1 0.660	; 0.731				8 .
2-Nitrophenol			i 0.191			0.184	6.
12,4-Dimethylphenol "Benzoic Acid	1 0.351		; U. 314. ; O. (EO) U. 2.74			8.1
Benzolt Acid bis(2-Chloroethoxy)Methane) I A RAA	1 0.001 1 0 ADE	I U. 60U I O AZE	0.017	i U.031i I N.4⊐≡I		6.1
	5 U. DEY & 0 D11	1 V.427 1 N.52A	1 0,400 1 0 770	1 V. 44/ 1 0 965	י ט, אטסו ו ה מבמו	0.4001 0.74001	9.1
T2,4-Dichlorophenol 1,2,4-Trichlorobenzene	1 0 007 1 0 011	1 0 200	1 V. E7V	1 0.200 1 0.245	ע געע א רפיכ ה !	0,200 0,270	- 7. - 1/
A, A-DIMETHYLPHENETHYLAMINE_	1 0.330	1 V. 200 1	1 V. E78 1	> V.£40 }	; ∪.జ.3/i	0 000	0.0
- A A-DIMETHYLCHENETHYLAMINE_	.) 	I D DEM	፤ 1. ስ. ወረጥ	0 740	1 1 / LOR		20.1
A-Chloroaniline	1 1.130 1 0 544	1 V.000 1 A 20A	1 V. 003	1 0.740 1 0.947	I V. 0001 I A 9841	0.0071	
in onioroshiiiine	1 0.J14 8 0 176	1 0.070	1 0.410	1 0.307	1 0.000 1 0.115	0.407	1 L I L
lexachlorobutadiene 4-Chloro-3-Methylphenol	- V. 170 * 0 344	1 0, 107 1 0 000	1 0.144	1 V. 187	1 0.1101	0.1401 0.21401	10.
_4-Chioro-3-Methylphenol 12-Methylnaphthalene							
1201 112 611 Y I HOP 11 616 CI MINE 1 1. Mathematica and the same	ji V.770 T	i V.JOD !	F V. 202 !	5 V. JVV !	1 V. 470 1	0.000	ι Ξ <u>Ο</u> .
'1-Methylnaphthalene Hexachlorocyclopentadiene	.' **	1 0 004	1 0 914	, V 3Va			. <u>0</u> .
T22 42 G-Trichlorophenol	ቋ ቆ በ ንንን	1 0.204	1 0.214	1 0.200	1 0.171) ! 0.314	0.204	· · · · ·
20. 0. 5-Trichloronbonol	 	1 0.067	1 0 350	1 0 000	1 0 000 1 0 000	0.004 0.107	, 7. · , 20
<pre>22.4.5-Trichlorophenol 2-Chloronaphthalene</pre>	.) ! 1 500	1 0,000	1 0. DUE	1 0.270	0 975	1 002	
2-Nitroaniline	,i a∖a≊7Ω 1	1 1.VOO 1 1 750	1 0.700	1 0, 731 1 0 744	1 0.0/0/ 1 0 308-	0 745	, 10, ' ; 7
12 IN A FE FOR 11 A A A 11 S	1	1 1. 200	· v. 007	1 U.UTO	$v = v \cdot u \nabla U$. <u></u>	

FORM VI SV-1

- Dimethyl Phthalate	1.3901	1.1191	1.0441	0.8551	0.7101	1.024;	25.41
N-NITROSDDIBUTYLAMINE	1	1	÷	:	:	0.0001	0.01
Acenaphthylene	1.7921	1.3921	1.2721	1.1301	0.9971	1.3171	23.11
2.6-Dinitrotoluene	0.3321	0. 2941	0.3051	0. 2751	0. 2431	0. 2901	11.51
3-Nitroaniline	1	0.3241	0.3281	0. 2721	0. 2231	0.2871	17.31
F and the state of						0.8941	
<pre>'2,4-Dinitrophenol#</pre>							
4-Nitrophenol#	1	0. 2761	0. 2931	0. 2721	0.2131	0.2641	13.2#
i		····· ! .			¹ .		t

- -____

_ —

____ _

—

-

FORM VI SV-1 1/87 Rev.

9G

SEMIVOLATILE ORGANICS INITIAL CALIBRATION DATA

ab Name: <u>A.T.1</u> ,	**************************************	Conti	nact: <u>N</u> A	<u>\</u>			
Lab Code: <u>FINNMAT</u> Case No.:	WCC5	SAS	No.: <u>N</u> #	<u>}</u>	SDG No	.: <u>252</u>	
ostrument ID: <u>FINN</u>	Cali	bration	n Date(s	s): <u>11/1</u>	7/93	11/17/	93
Min RRF for SPCC(#) = 0.050				Max %RS	D for C	CC(*) =	30. 0%
AB FILE ID: RRF20	= <u>020A</u>	117	RRF50	= 050A	1117		
IRREBO = 080A1117 RRE12						ł	
	RRF20	RRF 50	I RRF80	RRF120	RRF1601	RRF 1	% RSD
Dibenzofuran	1.797	1.442	1.350	1.167	1.0601	1.3631	20. 91
. 1. 2. A. 5-TETRACHLOROBENZENE	1		1		i	-0.0001	0.01
12,4-Dinitrotoluene	0.434	0.375	0.369	0.298	0. 2261	0. 340	23. 61
1-CHLORONAPHTHALENE Diethylphthalate	1						0.01
Diethylphthalate 4-Chlorophenyl-phenylether	1.164	1.137	1.034	0.9431	0.8631	1.0323	26.11
HATCHIOPOPAENYITPRERYIEVRET	1 0.714	0.373	1 U. JEE 1	1 0.4471	0.3021	0.0001	0.01
-TENTACHLOROBENZENE	1	l !	1	1			0.01
Tfluorene	1 1 1 27	1 005	: 0 886	0 818	0 808	0 9291	14.6
14-Nitroaniline	1	0 322	0.336	0 290	0.241	0. 297	14.2
	1	1	1	1	1	0.000	0.0
_DIPHENYLAMINE	1	{	1	; ;		0.000	0.01
i-NAPHTHYLAMINE _DIPHENYLAMINE 4,6-Dinitro-2-Methylphenol_	1	0.116	0.125	0. 124	0.1001	0. 116	10.01
—N⊶Nitrosodiphenulamine	* 0,832	0.699	1 0.584	0.664	0.7531	0. 706	⊨ 13. 2×
PHENACETIN	ł	1	:		l 1	0. 000	0.01
PHENACETIN 11,2-Diphenylhydrazine	1.104	0.886	0.874	0.877	0.8521	0. 919	11.4;
la_Dromontonulentonulotton	1 0 229	! 0 187	! N 182	! 0 179:	0 1813	0 1929	11.0:
4AMTNORTPHENVI	1	!	1			0.000	0.01
Triexachlorobenzene	0.273	0.211	0.208	0. 196	0.202	0.218	14.4
Pentachlorophenol PRONAMIDE Phenanthrene	*	0.149	0.152	0.147	0.130	0.144	6.9*
PRONAMIDE	.; 		·			0.000	0.01
Phenanthrene ¦Anthracene	,: 1, 11/ 	1 V. 022 1 A 676	1 U. 700 1 0 784	1 U. 737 1 0 771	1 0.7001 1 0.7401	0.000 0.250	20.01
TOTACHLORONITROBENZENE	ji 1.104. T	i U. 0±7. !	i V.740 !	1 9.771 1	, v. 700) I	0.000	0.0
Carbazole		!	!	•		0.000	
Thrucerb	+	1		:	•	0 000	<u> </u>
LDi-n-Butylphthalate	 1.568	1.225	1.159	1.103	1. 089	1.229	16.01
Gluoranthene	* 1.304	0.938	1 0.882	0.849	0.810	0. 957	20.9
-PDIMETHYLAMINOAZOBENZENE				1		0. 000	
+7 12-DIMETRYL REN7 (A) ANTHRAC	1	1	1	1	:	0.000	0.01
TGenzidine	. !	0.169	0.500	0.214	0.218	0. 200	11.1
- "yrene	1.466	1.210	1.143	1.008	1.067	1.179	15.1
{Butulbenzulphthalate	0.866	1 0.765	1 0.797	1 0.755	; 0.800	0.797	וס.סו
+3,3'-Dichlorobenzidine	1 0.432	: 0.372	; 0.385	1 0.358	(0. 348)	0.379	8.6
3-METHYLCHOLANTHRENE	1	; , , ,,,,	; ,	1			
TBenzo(a)Anthracene <u>1</u> Chrysene	1.323	1.114	1 1.111 1 A 676	1 U. 773 1 A 070	1 U.Y/11 ! 0 7571	1.077	13.0 18.6
<pre>is(2-Ethylhexyl)Phthalate</pre>	1 1.214 1 1.214	1 0.740 ! 1 071	1 004	1 V. 020	1 0.737 1 1 017	1 084	8.91
-STHYL METHANESULFONATE			1 1.074				
THE FRIEDUCTURE CAN BE	. •	: :	•	•	•		

1) Cannot be separated from Diphenylamine FORM VI SV-2

1/87 Rev.

_

⊖j•n-OctylPhthalate*	1,9681	1.5691	1.435;	1.328	1.205	1.501;	19.6*
Benzo(b)Fluoranthenel	1.1841	0. 9601	1.1401	0.9771	0.7551	1.0031	17.0;
Benzo(k)Fluoranthene	1.1331	0.7651	0.9171	0.8171	0.6171	0.8501	22. 61
2, 3, 4, 6 TETRACHLOROPHENOL	1	1	1	1	1	0.0001	0.01
Benzo(a)Pyrene*	1.0661	0.8581	0.8641	0.7471	0.6451	0.8361	18.8*
lindeno(1,2,3-cd)Pyrenel	1.0791	0.9271	0.9521	1.1121	0. 9961	1.0131	7.91
'DIBENZ(a, j)ACRIDINE	1	1	1	1	ł	0.0001	0.01
Dibenz(a,h)Anthracene	0.8781	0.7641	0.8301	0.9171	0.7361	0.8251	9.21
Benzo(g, h, i)Perylene		0.7951	0. 9431	0. 9441	0.8841	0.8951	6.81
<u>l</u> Azobenzene	1	1	1	:	1	0.0001	0.0¦
ない おおお かみ かみ かみ かみ かん かみ かみ かみ かみ かみ うみ うな うか かん うか うか うか うか かん かん うか うか かん かん かん うか しゅう かん かん かん うち しょう	. N.: 72 (25 12 21 22 23 1						
Nitrobenzene-d5	0.4011	0.3301	0.3801	0. 3461	0.3521	0. 3621	7.B;
12-Fluorobiphengl	1.2251	0. 9731	0.9141	0.8611	0.7781	0. 9501	17.81
Terpheny1-d14	1.0401	0.8491	0.8241	0.7061	0. 7521	0.8341	15.41
Phenol-d5l	2. 0331	1.6071	1.8231	1.6881	1.6281	1.7561	10.01
	1.3071	1.0121	1.198;	1.1501	1.1311	1.1601	9.21
12,4,6-Tribromophenoll	0. 2331	0.1941	0.1941	0.161;	0.1451	0.1851	18.41
1 	I .	l,					

(1) Cannot be separated from Diphenylamine

FORM VI SV-3 1/87 Rev.

		OLATILE CONTI								
ab Name	e: <u>A. T. I</u> .	agangan damana (), dam ang	Contra	ict:				<u></u>		
ab Code	e: Case	No.: STAND	SAS N	10.:			. 8	BDG	Np.:	
nstrum	ent ID: FINN	Calibrati	ion dat	e:)	1570	9/93	<u>а</u> т:	ime:	1621	
ab File	P ID: CPA1209	Init. Cal	lib. Da	ate(5):	11/1	7/93	<u>3</u>	11/17/93	
in RRF	50 for SPCC(#) ≈ (Max	7D	fot	· CCC(*) = 2	5. 07
	1		:			50				
			==== ; ====		===		====	===		
	:Pyridine		I O.	882	0.	8221	6.	8 1		
	12-PICOLINE		;		1	1		1		
	12-PICOLINE IMETHYL METHA	NESULFONATE	 	ł	ļ	:		ł		
	IN-Nitrosodin	nethylamine	; O.	455	I O.	4171	8.	4		
	iPhenol		* <u>1</u> .	184	; 1.	7601	1.	6 *	r	
	Aniline		1 2.	137	1.	8451	13.	7		
	Aniline bis(2-Chlore	ethyl)Ether_		385	1 .	510	~9.	0		
	12-Chloropher 11, 3-Dichloro	101	i 1.	333	1 .	3591	~2.	0 1		
	11/3-Dichlord	obenzene	¦ 1.	410	1.	3571	З.	8		
	(1,4-Dichlor(obenzene	* 1.	411	; I.	435	1.	7 \$	ŧ	
	Benzyl Alcot	101		843	I 0.	7981	5.	3		
	11,2-Dichlord	obenzene	1 .	336	1 1.	3541	~1 .	3		
	12-Methylpher	30l	<u> </u>	216	11.	2231	-0.	6 1		
	ACETOPHENONE	PERIDINE			;	;		1		
	INNITROSOPIE	PERIDINE			1	1		l		
		isopropyl)Et#								
	4-Methylpher	1 o 1	1 .	213	1.	2541	-3.	4		
		i-n-Propylamin								
	Hexachloroet	thane		635	(0.	6171	2.	8		
	Nitrobenzene) 	0.	364	0.	3641	0.	0		
	lIsophorone		{ 0.	714	0.	6821	4.	5		
	12-Nitrophend	ol Lphenol	<u> </u> # 0.	184	I O.	1651	10.	3 +	f	
	2,4-Dimethy	lphenol	O.	305	0.	311	-0.	6		
	Benzoic Acid	1	0.	614	; O.	5231	14.	8		
		oethoxy)Metha								
	12,4-Dichlore	ophenol	* O.	268	0.	241	10.	1 *	ŧ	
	1,2,4-Trich	lorobenzene	O.	273	0 .	590	4.	8		
		PHENETHYLAMI								
	Naphthalene		O.	857	0.	8691	-1.	4		
	4-Chloroani	line	i O.	407	0.	3591	11.	8		
	(Hexachiorod)	utadiene	* U.	140	; U.	1291		7 *	•	
	14-UNIOPO-3-1	nevnyipnenoi	<u></u> * 0.	314	; O.	2//3	11.	8 4	÷	
		thalene								
	FI-methylnapi	thalene	i		i 1 A	1011				
•		jclopentadien Lanabanal								
	$i \in 4$ δ^{-1} Γ 1 ch	lorophenol	* U.	334	i 0.	3201	4.	21		
		lorophenol		307	i U.	3531	18.	r⊂`i 		
1	iz-Unioronapt	nthalene	i <u>1</u> .	026	il.	0951	-0.			
	[2-Nitroanil:	ine	i U.	345	i ().	4061	-17.			
	1 Million and Line 19 19 19 19	thalate		~~ *		AAA .				

FORM VII SV-1 1/87 Rev.

N-NITROSODIBUTYLAMINE	1	1 1	ţ
Acenaphthylene	1. 317	1 1.4251	-8.2 1
12,6-Dinitrotoluene	0. 290	0.2891	0.3
3-Nitroaniline	0. 287	1 0.2181	24.0 1
Acenaphthene	* O. 894	0.9691	-8.4 *
<pre>{2,4-Dinitrophenol4</pre>	# O. 244	0.2011	17.6 #
4-Nitrophenol	# 0.264	0.2231	15.5 #
	í <u></u>	. I I	i

--

_

FORM VII SV-1 1/87 Rev.

	A.T.I. Con				
ab Code:	Case No.: <u>STAND</u> SA	S No.:	ال ها ال _{اون} ، بر براید او ای بر و در	_ SDG	No.:
ustrument	ID: <u>FINN</u> Calibration	date: j	12/09/93	3 Time:	1621
_ab file 1	D: <u>CPA1209</u> Init. Calib.	Date(5): <u>11/1</u>	7/93	11/17/93
in RRF50	for SPCC(#) = 0.050		Mai	ND for	$\sim ccc(*) = 25.0$
-					
_			RRF50		
	Dibenzofuran				
	11, 2, 4, 5-TETRACHLOROBENZENE				
-	2,4-Dinitrotoluene	0. 340	0.378	-11.2	
	1-CHLORONAPHTHALENE Diethylphthalate	1,032	1.203	-16.6	
	4-Chlorophenul-phenulether 3	0.522	0.563	-7.9	
	IPENTACHLOROBENZENE		1 :		
<u>-</u>	12-NAPHTHYLAMINE		;	i 1	l
	[Fluorene	0.929	1.085	-16.8	
-	4-Nitroaniline	0. 297	0.217	26.9	
	I 1-NAPHTHYLAMINE		i i		
	4,6-Dinitro-2-Methylphenol_	0 114	י 1071	. 79	
_	N-Nitrosodiphenylamine*	0 706	0 777	-10.1 i	*
_	PHENACET IN	0.700	1		
	1,2-Diphenylhydrazine	0. 919	1.064	-15.8	}
-	4-Bromophenyl-phenylether	0. 192	0. 171	10.9	
	4-AMINOBIPHENYL		t I	l	
	4-AMINOBIPHENYL Hexachlorobenzene	0. 218	0. 185	15.1	1
	Pentachlorophenol *	· 0, 144	0.120	16.7 1	ł
	PRONAMIDE	A 994			
	Anthracene	0.830	I O. 8523		
	Anthracene PENTACHLORONITROBENZENE		i 0.851		
	Carbazole		• !	!	
	DINOSEB		:		
	{Di-n-Butylphthalate	1.229	1. 193	2.9	-
	{Fluoranthene#	0. 957	0.859	10.2 +	*
	P-DIMETHYLAMINDAZOBENZENE			ł	ł
-	<pre>{7,12-DIMETHYLBENZ(A)ANTHRAC</pre>		:	1	1
	Benzidine	0. 200	0. 193	3.5	;
	Pyrene	1.179	1.197	-1.5	1
	Butylbenzylphthalate	0.797	I 0. 794	I 0.4	
	13, 3'-Dichlorobenzidine	0. 379	5 O. 345	i 9.0	i I
	3-METHYLCHDLANTHRENE Benzo(a)Anthracene	1 000	1 1 047	i I K D	i I
-	Chrysene	0 077	1. V44 1. 0. 911	. J.E. 1 9 5 1	
	bis(2-Ethylhexyl)Phthalate	1 094	1 1 147	. <u>.</u>	
-	ETHYL METHANESULFONATE				
_	Di-n-OctylPhthalate*	1.501	1.560	-3.94	*
			1		

(1) Cannot be separated from Diphenylamine FDRM VII SV-2

- -

Benzo(b)Fluoranthene	1.003 1.117	-11.4
	0.8501 0.935	
12, 3, 4, 6-TETRACHLOROPHENOL	1	
	0.8361 0.912	-9.1 *
Indeno(1,2,3-cd)Pyrene	1.0131 0.850	16.1
DIBENZ(a, j)ACRIDINE	1	1
Dibenz(a, h)Anthracene	0.8251 0.710	13.9
Benzo(g,h,i)Perylene	0.8951 0.692	22.7

Nitrobenzene-d5	0.3621 0.3591	0.81
(2-Fluorobiphenyli	0.9501 1.022	-7.6
{Terphenyl-d14	0.8341 0.815	2.3
Phenol-d5	1.7561 1.674	4.7
[2-Fluorophenol]	1.1601 1.026	11.6
<pre>(2, 4, 6-Tribromophenol)</pre>	0.1851 0.143	22.71
 		I I

(1) Cannot be separated from Diphenylamine

FORM VII SV-3

_ - - -

_	SEMIVOLATILE CONTINU	7B Ing Cal:	BRATION	I CHECK	
ab Name:	<u>A. T. I.</u> Con	ntract:			
ab Code:	Case No. : STAND S	AS No.:		SDG	No.:
- _nstrument _	ID: <u>FINN</u> Calibration	date: j	12/10/93	<u>}</u> Time:	503
Lab File 1	(D: <u>CAA1210</u> Init. Calib.	Date()	5): <u>11/1</u>	7/93	11/17/93
in RRF50	for SPCC(#) = 0.050		Max	%D for	r CCC(*) = 25.0
-			RRF50	%D	1
_					
	Pyridine	0.882	0.7731	12.4	1
	12-PICOLINE	1			l
	METHYL METHANESULFONATE	1	I I		1
	IN-Nitrosodimethylamine	0.455	0.4071	10.6	1
-	{Phenol {Aniline	* 1.789	1.696	5.2	*
_	Aniline	2.137	1.855	13.2	\$
	lbis(2-Chloroethul)Ether	1.385	1.454	-5.0	1
-	12-Chlorophenol	1.333	1.304	2.2	ł •
	<pre>(1/3-Dichlorobenzene)</pre>	1.410	1.352	4.1	1
	<pre>[1,4-Dichlorobenzene]</pre>	* 1.411	1.411	0.0	*
	Benzyl Alcohol	0.843	0.851	-0.9	}
	<pre>11,2-Dichlorobenzene</pre>	1.336	1.377	-3.1	;
-	¦2-Methylphenol	1.216	1.210	0.5	:
	IACETOPHENONE	1			1
	IN-NITROSOPIPERIDINE	1			1
	<pre></pre>	2.352	2.549	8.4	
	4-Methylphenol	1.213	1.227	-1.2	1
-	IN-Nitroso-Di-n-Propylamine_	# 0.818	0.831	-1.6	ŧ
	Hexachloroethane	0.635	0.6041	4.9	1
_	Nítrobenzene	0.364	0.356	2.2	ł
-	lIsophorone	0.714	0.6881	3.6	1
	12-Nitrophenol	# 0, 184	0.161	12.5	¥
	12,4-Dimethylphenol	0.309	0.2861	7.4	1
	Benzoic Acid	0.614	0. 473	23.0	1
	lbis(2-Chloroethoxy)Methane_	0.456	0.445	2.4	1
	<pre>(2,4-Dichlorophenol</pre>	* 0.268	0.242	9.7	*
_	<pre>i1,2,4-Trichlorobenzene</pre>	0.273	0.265	2.9	1
-	IA, A-DIMETHYLPHENETHYLAMINE_	ł	; 1	ł	1
	:Naphthalene	0.857	0.887	-3.5	i
-	4-Chloroaniline	: 0.407	0.320	21.4	\$
	Hexachlorobutadiene	* 0.140	0, 129	7.9	*
-	4-Chloro-3-Methylphenol				
-	[2-Methylnaphthalene				
	1-Methylnaphthalene				;
-	Hexachlorocyclopentadiene				#
	12, 4, 6-Trichlorophenol				
-	12, 4, 5-Trichlørophenol	1 0. 307	0.337	-9.8	1
	12-Chloronaphthalene	1.026	1.072	-4.5	1
	2-Nitroaniline	0.345	0.381	-10.4	1
	(Dimethyl Phthalate	1.024	1.086	-6.1	3

FORM VII SV-1 1/87 Rev.

N-NITROSODIBUTYLAMINE	:	ł	1
Acenaphthylene	1.3171	1.4201	-7.8
12,6-Dinitrotoluene	0. 2901	0.2871	1.0 I
3-Nitroaniline	0. 2871	0. 2691	6.3 I
	0.8941		• • • •
2,4-Dinitrophenol#	0. 2441	0.2191	10.2 #
{4-Nitrophenol#	0. 2641	0. 2601	1.5 #
l		f.	l

_

- -

-

_

- -

	SEMIVOLATILE CONTINUI				
ab Name	: <u>A.T.I.</u> Cor	tract:			
Lab Code	Case No.: <u>Stand</u> SA	S No. :		SDG	No.:
กรtาบme	nt ID: <u>FINN</u> Calibration	date: <u>j</u>	2/10/93	3 Time:	503
<u>L</u> ab File	ID: <u>CAA1210</u> Init. Calib.	Date(s): <u>11/1</u>	7/93	11/17/93
_in RRF5	0 for SPCC(#) = 0.050		Max	* %D for	CCC(*) = 25.0%
		Contraction of Contra			
			RRF50		
	Dibenzofuran				
	11,2,4,5-TETRACHLOROBENZENE	1.000	1 1. 4071		
_ ·	1,2,4,5-TETRACHLOROBENZENE_ 2,4-Dinitrotoluene	0.340	0 367	-7.9	
	1-CHLORONAPHTHALENE	1.032	1, 172	-13.6	
	4-Chloronhenul-shenulether	0 522	0 565	-82:	
	PENTACHLOROBENZENE				
<u></u>	12-NAPHTHYLAMINE				
	Fluorene	0. 929	1.081	-16.4	
-	4-Nitroaniline	0.297	0.2831	4.7	1
	L1-NAPHTHYLAMINE				
_	DIPHENYLAMINE		5 1	1	1
	(4,6-Dinitro-2-Methylphenol)	0.116	0.092	20.7	1
	IN-Nitrosodiphenylamine4	* 0.706	0.766	-8.5 +	ŧ
	PHENACETIN		:		
	11,2-Diphenylhydrazine	0. 919	1.020	-11.0	1
_	4-Bromophenul-phenulether	0.192	0.180	6.2	{
-	l4-AMINOBIPHENYL Hexachlorobenzene	;	1		
	Hexachlorobenzene	0.218	0.200	8.3	
	Pentachlorophenol	* 0.144	0.122	15.3 +	ŧ
_	PRONAMIDE	1			
	PRONAMIDE Phenanthrene	0.830	0.861	-3.7	1
	¦Anthracene	0.853	0.857	i -0.5 i	
	PENTACHLORONITROBENZENE	-			
-	{Carbazole				1
	IDINOSEB	1			
_	{Di-n-Buty]phthalate	1.229	1.198	2.5	
			l 0. 907		*
	P-DIMETHYLAMINOAZOBENZENE	1	1		
-	Benzidine	0.200	0. 231	-15.5	
	Pyrene	1.179	1.216	-3.1	
	Butylbenzylphthalate	i U. 797	i U. 770	3.4	l I
	13,3'-Dichlorobenzidine	5 D. 379. 1	i U. 344	i 7.2	
-	3-METHYLCHOLANTHRENE Benzo(a)Anthracene	i 	i 		i
	iBenzo(a)Anthracene	1.099	1.051	4.4	
	Chrysene	5 U. 934	; U. 923	1.2	i N
-	bis(2-Ethylhexyl)Phthalate	i 1.084	; 1.121	-3.4	1
	ETHYL METHANESULFONATE	i 	Е в в м <i>ал</i>		i
	Di-n-OctylPhthalate	× 1.501	1.416	5.74	R-

(1) Cannot be separated from Diphenylamine FORM VII SV-2

(Benzo(b)Fluoranthene	1 0031	1.0961	-9.3 1
	0.8501		
12, 3, 4, 6-TETRACHLOROPHENOL			
patricing and a second s	0.8361	0.9181	-9.8 *
	1.0131	0.8801	13.1
DIBENZ(a, j)ACRIDINE!	:	ł	1
{Dibenz(a, h)Anthracene;	0.8251	0.7571	8.2 /
<pre>{Benzo(g,h,i)Perylene;</pre>	0.8951	0. 6981	22.01
INitrobenzene-d5I	0.3621	0.3471	4.1 ;
(2-Fluorobipheny)l	0. 9501	1.0111	-6.4 1
Terphenyl-d14	0.8341	0.8251	1.1 1
IPhenol-d5I	1.7561	1.6241	7.5
12-Fluorophenoll		0.9771	15.8
12,4,6-Tribromophenoll	0. 1851	0.1581	14.6
	<u> </u>	l	

(1) Cannot be separated from Diphenylamine

FORM VII SV-3

	LVI	1								41 II I		372 (gies, lr
PART 1 - Boltis S	thinment Infor	metion			I I EA	ST QLI	ive ro. Pi		OLA, FI	ORIDA	92514	(904) 474-
CLIENT					CLI		OJECT					
Enura	nerhlG PREBERVATIVE	reuscie	<u>ner</u>	Ero		40	<u>243</u>					
	PREBERVATIVE		77	18TIC CC	NTAINER	7.	+		BLASS C	ONTAINI	AS	
SAMPLE CONTAINERS	1///		///	[]			//	[]				
SHIPPED			2/24/	///	¥ .		e/9/	8/8		///		
¥ 4 2		/.v/.v/s	e"/~~/			/\$/			Re I I			
										_		ļ
╾┼╼┼╌┽╴┤	╶╋╺┽╌┤╾╂	-+	┽╌╄╴	┿╋	╌┾╌┨	_ <u>_</u>	┥┥	_	┽╌╄		┍╺┫╌╍	<u> </u>
╾┼━┼━┼╌┼╴	┿┼┼┽		╋╼╂╸	╶╄╾╁			╉╌╽		┽╌┾			
} }}	┿╌┼╌╂╸	┯╪╍╁╾	╪╼┼╴	╉╾╀	╾┼╾╂	┈┼╼	┿┤	-	╉╼╼┽╸			<u> </u>
RELINQUISHED		TIME	DAT	E	RECEIV	ED					TIME	DATE
PART 2 — Sample	Informetton			Ł					PAESE			
•	E MATRIX	-		1	PA P 	AME	1ERS	ами: /	Рң <u>е</u> ре /	/ /	IVE8	,
DW DRINKINGWATER				/:৬/	<u>~</u> /			/ .		' /		/
WW WASTEWATER GW GROUNDWATER		DGE	/.	x	:/ ,			' /				,
SW SURFACEWATER			. /.	10				/		/ /		
SAMPLE I.D.		E MATRIX	10	<u>/*/</u>		4					101/	LAB UI
MN-3	12129 111		$\left\{ \begin{array}{c} 1 \\ 1 \\ 1 \end{array} \right\}$			·	┣┨			╸┥╌╴	2	
MW-5 EQB	12/293 103	0 6V	+++	·i+-	-	+	}{		-†-		2	•
		<u> </u>										_
·······			$\left \frac{1}{1 - 1} \right $									
			} +	·	-+	┨───	╏──┧				┪━───	•
			1		_	•						
						-	I					
	╺┥───	~	++									·
þ			┨ ──┤			+	<u>}</u>	-+			-+	
			┥──┼		-	·]]				-	
			.l, l.		<u> </u>	-l		!		- -		
·····	.	·		<u> </u>	TAL NU			TLES/	CONTA	NERS		
RELINQUISHED BY:					RECE	IVED 8	1Y: 					DATE T
N. Ach A	nglas	·····	- are	3 1300	K	u	ø	K	Ð	an	4	749
	<u> </u>			+	+							╶┼┷╌┟╴
TELE		~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	_ 	_ _ ,	ارم ا	200						╺╴┤───┼─┙
CLIENT FGE	Regero Ro	. ^{ряо}		WBEA J	409 (m)	1686	3					. 6Y (F
orr Jackson			PLED BY	<u>ج</u> "	H		¥					
STATE FL	ZIP 32211 13-7732		IPLE SITE	Le	m 7	in	5-1	01				ING LEVEL for
PHONE NO. 904			CHASE O		MBER			N	ONE	\odot	2	3
Jin Sin	its							- N	EEO	<u> </u>	EXTRA C	OPIES OF RE
TIIDN I	ROUND TIME	A (chank a		—	8D4	ECIA	INGT	RUCI	TIONS			
					-	AL						
	- 14 YO 21 DAYS				ļ							
0-48 HOURS	- 2 x STO PRICE		П 0.									
	I.5 x STO PRICE EK RUSH - 1.5 x S	TO PRICE	Ă		·							

....

(904) 474-1001

SIGNATURE PAGE

Reviewed by:

an ATI Project Manager

Client:

CHEVRON USA, PRODUCTS CO. MARIETTA, GEORGIA

Project Name: CHEVRON FACILITY # 46863 Project Number: A04302 10152 LEM TURNER RD., JACKSONVILLE Project Location: Accession Number: 311501 JIM SMITH (ENV. GEOSCIENCE & ENG, FL), JOHN MACHEN (CHEVRON) Project Manager: Sampled By: HB, SH

_

Analysis Report

Analysis: POLYNUCLEAR AROMATICS BY 610

Accession: Client: Project Number: Project Name: Project Location: Department:

311501 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE SEMI-VOLATILE FUELS

.

(0) Page 1 Date 03-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	10152 LEM TURNE POLYNUCLEAR ARC 610 / Federal R	Y # 46863 R RD., JACKS MATICS BY 610 eqister. 40 0) SFR. Part 136	, July 1, , July 1,	1992 1992
Lab Id: Client Sample Id:	001 MW-1		Sample Dat Received I		15-NOV-93 1500 16-NOV-93
Batch: PAW302 Blank: A	Dry Weight %:	N/A	Extraction Analysis 1		
Parameter:		Units:	Results:	Rpt Lm	te: Q:
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(a)ANTHRACENE BENZO(b)FLUORANTHEI BENZO(c)FLUORANTHEI BENZO(c)FLUORANTHEI CHRYSENE DIBENZO(c)FLUORANTHEI CHRYSENE DIBENZO(c)FLUORANTHEI FLUORENE INDENO(1,2,3-cd)PYI NAPHTHALENE PHENANTHRENE PHENANTHRENE PYRENE 1-METHYLNAPHTHALENI 2-CHLOROANTHRACENE ANALYST	NE NE CENE RENE E	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 1 24-154	

Comments:

_

_ _ _ _

____ _ _

-

.

[0) Page 2 Date 03-Dec-93

Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix:	POLYNUCLEAR AR 610 / Federal	TY # 46863 ER RD., JACKSC OMATICS BY 610 Register, 40 C	FR, Part 136	, July 1, , July 1,	1992 1992	
	002 MW-2	***************************************	Sample Dat Received I		15-NOV-9 16-NOV-9	
Batch: PAW302 Blank: A	Dry Weight %:	N/A	Extraction Analysis 1		19-NOV-93 24-NOV-93	
Parameter:		Units:	Results:	Rpt Lm	ts: Q:	
ACENAPHTHENE		UG/L	ND	1		
ACENAPHTHYLENE		UG/L	ND	1 1 1		
ANTHRACENE		UG/L	ND	1		
BENZO(a) ANTHRACENE		UG/L	ND	1		
BENZO(a) PYRENE BENZO(b) FLUORANTHEN	4	UG/L UG/L	ND ND	-		
BENZO(g,h,i)PERYLEN		UG/L UG/L	ND	1		
BENZO(k) FLUORANTHEN		UG/L	ND	1 1 1		
CHRYSENE	-	ŬG/L	ND	ī		
DIBENZO(a,h)ANTHRAC	ENE	UG/L	ND	ī		
FLUORANTHENÉ		ŬĠ/L	ND	ī		
FLUORENE		ŪG/L	ND	ī		
INDENO(1,2,3-cd)PYR	ENE	UG/L	ND .	1 1 1 1		
NAPHTHALENE		UG/L	ND	1		
PHENANTHRENE		UG/L	ND	1		
PYRENE		UG/L	ND	1		
1-METHYLNAPHTHALENE		UG/L	ND	Ĩ		
2-METHYLNAPHTHALENE		UG/L	ND	1		
2-CHLOROANTHRACENE		&REC/SURR	71	24-154		

Comments:

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

.

[0] Page 3 Date 03-Dec-93

	Accession: Client: Project Number: Project Name: Project Location: Test:	311501 CHEVRON USA, PR A04302 CHEVRON FACILIT 10152 LEM TURNE POLYNUCLEAR ARC	Y # 46863 R RD., JACKSC			Date 03-D	ec-93
	Analysis Method: Extraction Method: Matrix: QC Level:		egister, 40 C egister, 40 C	FR, Part 136 FR, Part 136	, July 1, , July 1,	1992 1992	
	Lab Id: Client Sample Id:	004 MW-4		Sample Dat Received 1		15-NOV-93 16-NOV-93	1510
	Batch: PAW302 Blank: A	Dry Weight %:	N/A	Extraction Analysis		19-NOV-93 24-NOV-93	
	Parameter:		Units:	Results:	Rpt Lm	ts: Q:	
	ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE		UG/L UG/L UG/L	ND ND ND ND	1 1 1		
-	BENZO (a) ANTHRACENE BENZO (a) PYRENE BENZO (b) FLUORANTHEI	NE	UG/L UG/L UG/L	ND ND	1 1 1 1		
	BENZO (g, h, i) PERYLEI BENZO (k) FLUORANTHEI CHRYSENE		UG/L UG/L UG/L	ND ND ND	1 1 1		
	DIBENZO(a, h) ANTHRAG FLUORANTHENE FLUORENE	CENE	UG/L UG/L UG/L	ND ND ND	1 1 1		
_	INDENO(1,2,3-cd)PYI NAPHTHALENE	RENE	UG/L UG/L	ND ND	1 1		
_	PHENANTHRENE Pyrene 1-Methylnaphthaleni	3	UG/L UG/L UG/L	ND ND ND	1 1 1		
-	2-METHYLNAPHTHALENI 2-CHLOROANTHRACENE ANALYST	2	UG/L %REC/SURR INITIALS	ND 71 DGH	1 24-154		

Comments:

(0) Page 4 Date 03-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	POLYNUCLEAR ARC 610 / Federal F	CY # 46863 CR RD., JACKSO DMATICS BY 610 Register, 40 0) SFR, Part 136		
Lab Id: Client Sample Id:	006 FIELD BLANK		Sample Da Received		15-NOV-93 16-NOV-93
Batch: PAW302 Blank: A	Dry Weight %:	N/A	Extractio Analysis		19-NOV-93 24-NOV-93
Parameter:		Units:	Results:	Rpt Lm	ts: Q:
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(a)ANTHRACENE BENZO(a)PYRENE BENZO(b)FLUORANTHEN BENZO(c)FLUORANTHEN BENZO(c)FLUORANTHEN CHRYSENE DIBENZO(c,h)ANTHRAC FLUORANTHENE FLUORENE INDENO(1,2,3-cd)PYF NAPHTHALENE PHENANTHRENE PHENANTHRENE PYRENE 1-METHYLNAPHTHALENE 2-CHLOROANTHRACENE ANALYST	ne Ne Cene Rene	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	1 1 1 1 1 1 1 1 1 1 1 1 1 24-154	

- -

.

Comments: SURROGATE FAILED. NO EXTRA SAMPLE AVAILABLE TO RE-EXTRACT.

ANALYTICAL TECHNOLOGIES, INC.

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

Analysis Report

Analysis: TOTAL PETROLEUM HYDROCARBONS (418.1)

Accession: Client: Project Number: Project Name: Project Location: Department:

- ----

311501 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE SEMI-VOLATILE FUELS

(0) Page 1 Date 03-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:		Y # 46863 R RD., JACKS HYDROCARBON / 04-79-020	5 (418.1) , Rev. March .			
Lab Id: Client Sample Id:	003 MW-3		Sample Da Received		15-NO 16-NO	V-93 1425 V-93
Batch: TPW400 Blank: A	Dry Weight %:	N/A	Extractio Analysis		18-NO 19-NO	
Parameter:		Units:	Results:	Rpt Ln	ntø:	Q:
TOTAL PETROLEUM HY ANALYST	DROCARBON	MG/L INITIALS	ND MV	1		

Comments:

...

(0) Page 2 Date 03-Dec-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	311501 CHEVRON USA, PR A04302 CHEVRON FACILIT 10152 LEM TURNE TOTAL PETROLEUM 418.1 / EPA 600 418.1 / EPA 600 WATER I	Y # 46863 R RD., JACKSO HYDROCARBONS / 04-79-020,	6 (418.1) Rev. March 1	1983 1983		
Lab Id: Client Sample Id:	005 MW-5		Sample Dat Received I		15-NOV-93 16-NOV-93	1405
Batch: TPW400 Blank: A	Dry Weight %:	N/A	Extraction Analysis I		18-NOV-93 19-NOV-93	
Parameter:		Units:	Results:	Rpt Lm	its: Q:	
TOTAL PETROLEUM HY Analyst	DROCARBON	MG/L Initials	ND MV	1		

Comments:

_

[0) Page 3 Date 03-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:		Y # 46863 R RD., JACKSO HYDROCARBONS / 04-79-020,	; (418.1)	1983 1983	Date 03-De	
Lab Id: Client Sample Id:	006 FIELD BLANK		Sample Dat Received 1		15-NOV-93 16-NOV-93	•
Batch: TPW400 Blank: A	Dry Weight %:	N/A	Extraction Analysis 1		18-NOV-93 19-NOV-93	
Parameter:		Units:	Results:	Rpt Lm	its: Q:	
TOTAL PETROLEUM HY Analyst	DROCARBON	MG/L INITIALS	ND MV	1		

Comments:

_

_....

-

_ . ____

_

-

Analysis Report

Analysis: AROMATIC VOLATILES

311501 CHEVRON USA, PRODUCTS CO. Accession: Client: Project Number: Project Name: Project Location: Department: A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE GC/VOA

_

-

_ _ _

---_

...

_

_

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 1 Date 02-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	10152 LEM TURNE AROMATIC VOLATI 602 / Federal R	Y # 46863 R RD., JACKSO LES		, July 1,		e 02-De	
Lab Id: Client Sample Id:	001 MW-1		Sample Dat Received I			OV-93 19 OV-93	500
Batch: JOW176 Blank: A	Dry Weight %:	N/A	Extraction Analysis 1	•	N/A 23-N	OV-93	
Parameter:		Units:	Results:	Rpt Lm	t s:	Q:	
BENZENE CHLOROBENZENE 1,2-DICHLOROBENZENI 1,3-DICHLOROBENZENI 1,4-DICHLOROBENZENI ETHYLBENZENE TOLUENE XYLENES (TOTAL) METHYL T-BUTYL ETHI TRIFLUOROTOLUENE (I ANALYST	e e er	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND SF	1 2 2 1 5 2 70-130)		

Comments:

[0) Page 2 Date 02-Dec-93

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	10152 LEM TURNE AROMATIC VOLATI 602 / Federal R	Y # 46863 R RD., JACKSC LES		, July 1,	1992	2
Lab Id: Client Sample Id:	002 MW-2		Sample Da Received			IOV-93 1445 IOV-93
Batch: JOW176 Blank: A	Dry Weight %:	N/A	Extraction Analysis		N/A 23-N	IOV-93
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:
BENZENE CHLOROBENZENE 1,2-DICHLOROBENZEN 1,3-DICHLOROBENZEN 1,4-DICHLOROBENZEN ETHYLBENZENE TOLUENE XYLENES (TOTAL) METHYL T-BUTYL ETH TRIFLUOROTOLUENE (TANALYST	E E Er	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND 108 GF	1 2 2 2 1 5 2 70-130	I	

Comments:

____ _

-

ANALYTICAL TECHNOLOGIES, INC.

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

70-130

[0) Page 3 Ďate OŽ-Dec-93 Accession: 311501 Client: CHEVRON USA, PRODUCTS CO. Project Number: Project Name: A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE Project Location: Test: Analysis Method: 602 / Extraction Method: N/A WATER AROMATIC VOLATILES 602 / Federal Register, 40 CFR, Part 136, July 1, 1992 QC Level: IIC Sample Date/Time: Received Date: 004 Lab Id: 15-NOV-93 1510 Client Sample Id: MW-416-NOV-93 Batch: JOW176 Extraction Date: N/A Blank: A Dry Weight %: N/A 23-NOV-93 Analysis Date: Parameter: Units: Results: Rpt Lmts: Q: BENZENE UG/L ND 1 UG/L UG/L CHLOROBENZENE ND 1222152 1,2-DICHLOROBENZENE ND 1,3-DICHLOROBENZENE UG/L UG/L UG/L ND 1,4-DICHLOROBENZENE ETHYLBENZENE ND ND UG/L TOLUENE ND XYLENES (TOTAL) METHYL T-BUTYL ETHER UG/L UG/L ND ND 5

104

GF

%REC/SURR

INITIALS

Comments:

ANALYST

TRIFLUOROTOLUENE (PID)

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 4 Date 02-Dec-93

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	AROMATIC VOLATI 602 / Federal F	TY # 46863 CR RD., JACKSC		, July 1,		2
Lab Id: Client Sample Id:	006 FIELD BLANK		Sample Da Received	te/Time: Date:		10V-93 10V-93
Batch: JOW176 Blank: A	Dry Weight %:	N/A	Extractio Analysis		N/A 23-1	10V-93
Parameter:		Units:	Results:	Rpt Lm	ts:	Qı
BENZENE CHLOROBENZENE 1,2-DICHLOROBENZENH 1,3-DICHLOROBENZENH 1,4-DICHLOROBENZENE TOLUENE XYLENES (TOTAL) METHYL T-BUTYL ETHH TRIFLUOROTOLUENE (F ANALYST	SR	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND 104 GF	1 2 2 1 5 70-130	,	

Comments:

_

_

Analysis Report

Analysis: VOLATILES (624)

Client: 311501 Client: CHEVRON USA, PRODUCTS CO. Project Number: A04302 Project Name: CHEVRON FACILITY # 46863 Project Location: 10152 LEM TURNER PR ORGANIC/MC CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE ORGANIC/MS

_ - -

_

_ -- -

___ ----

----- --

___ - ---

- -

_

-

_

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

(0) Page 1 Date 03-Dec-93

					Dat	10 A1-D5	
Accession:	311501						
Client:	CHEVRON USA, PF	CODUCTS CO.					
Project Number:	A04302 CHEVRON FACILIT	W # 16063					
Project Name: Project Location:	10152 LEM TURNE	P PD JACKSC	NVILLE				
Test:	VOLATILES (624)						
Analysis Method:	624, Federal Re	aister 40 CFR	. Part 136.	Julv 1. 1	992		
Extraction Method:		gibtor 40 011	() IUIO 100/				
Matrix:	WATER						
QC Level:	IIC						
Lab Id:	003		Sample Da			10V-93 1	425
Client Sample Id:	MM-3		Received 1	Date:	10-1	10V-93	
Batch: VIW151			Extraction	n Date:	N/A		
Blank: C	Dry Weight %:	N/A	Analysis 1	Date:		10V-93	
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:	
DENZENE		UG/L	15	1			
BENZENE BROMODICHLOROMETHA	VF	UG/L	ND	1			
BROMOFORM		UG/L	ND	2			
BROMOMETHANE		UG/L	ND	1			
CARBON TETRACHLORI	Э Р	UG/L	ND	2			
CHLOROBENZENE	2	UG/L	ND				
CHLOROETHANE		UG/L	ND	1 1			
2-CHLOROETHYLVINYL	RTHER	UG/L	ND	5			
CHLOROFORM		UG/L	ND	2			
CHLOROMETHANE		UG/L	ND	2			
DIBROMOCHLOROMETHAN	1E	UG/L	ND	ī			
1,2-DICHLOROBENZENI		ŪG/L	ND	2 2 1 3 5 1 1 2			
1,3-DICHLOROBENZENI		ŬĜ/L	ND	3			
1,4-DICHLOROBENZENI		UG/L	ND	5			
TETRACHLOROETHENE	_	ŬĠŹĹ	ND	1			
1,1-DICHLOROETHANE		UG'/L	ND	1			
1,2-DICHLOROETHANE		UG'/L	ND	2			
TOLUENE		UG/L	ND	5			
1,1,1-TRICHLOROETH	ANE .	UG/L	ND	5 1 2 5 2			
1,1-DICHLOROETHENE		UG/L	ND	1			
1,1,2-TRICHLOROETH	ANE	UG/L	ND	2			
TOTAL 1,2-DICHLORON		UG'/L	ND	5			
1,2-DICHLOROPROPANI		UG/L	ND	2			
TRICHLOROETHENE		UG/L	ND	1			
CIS-1, 3-DICHLOROPRO	OPENE	UG/L	ND	1 1 1 1			
TRICHLOROFLUOROMETI		UG/L	ND	1			
TRANS-1, 3-DICHLOROI	PROPENE	UG/L	ND	1			
VINYL CHLORIDE		UG/L	ND	1			
ETHYL BENZENE		UG/L	8	1			
XYLENES		UG/L	4	2			
METHYLENE CHLORIDE		UG/L	ND	3			
1,1,2,2-TETRACHLORO	DETHANE	UG/L	ND	2			
BROMOFLUOROBENZENE		%REC/SURR	100	86-115			
	-n4	<pre>%REC/SURR</pre>	98	76-114			
1,2-DICHLOROETHANE-	- D 4						
1,2-DICHLOROETHANE- TOLUENE-D8 ANALYST		%REC/SURR INITIALS	99 LP	88-115			

Comments:

ANALYTICAL TECHNOLOGIES, INC.

[0] Page 2 Date 03-Dec-93 311501 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: Project Location: A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE VOLATILES (624) Test: Analysis Method: 624, 1 Extraction Method: N/A WATER Tesť: 624, Federal Register 40 CFR, Part 136, July 1, 1992 QC Level: IIC Sample Date/Time: Received Date: 15-NOV-93 1425 003 Lab Id: 16-NOV-93 Client Sample Id: MW-3 "Sample Tic Report" ξ. ~ Number of Tics Found: 0 Concentration Units: UG/L RT: Est Conc: Q: Cas Number: Compound Name:

[0) Page 3 Date 03-Dec-93

					Date 03-D	ec-93
Accession: Client:	311501 CHEVRON USA D	PODUCTS CO				
Project Number:	CHEVRON USA, P A04302	RODUCIS CO.				
Project Name:	CHEVRON FACILI	TV # 46863				
Project Location:	10152 LEM TURN		NVILLE			
Test:	VOLATILES (624					
Analysis Method:	624, Federal R	égister 40 CFF	R, Part 136,	July 1, 1	.992	
Extraction Method:						
Matrix:	WATER					
QC Level:	IIC					
Lab Id:	005		Sample Da	te/Time:	15-NOV-93	1405
Client Sample Id:	MW-5		Received		16-NOV-93	
Batch: VIW151			Extractio	n Date:	N/A	
Blank: C	Dry Weight %:	N/A	Analysis		18-NOV-93	
Parameter:		Units:	Results:	Rpt Lm	ts: Q:	
DENGENE		UG /T	ND	1	-	
BENZENE	10	UG/L	ND ND	1		
BROMODICHLOROMETHAN		UG/L		2		
BROMOFORM		UG/L UG/L	ND ND	í		
BROMOMETHANE	\ P		ND	2		
CARBON TETRACHLORID		UG/L	ND	4		
CHLOROBENZENE		UG/L	ND	1 1		
CHLOROETHANE	EQUED	UG/L		Ě		
2-CHLOROETHYLVINYL	EINER	UG/L	ND ND	5 2 2 1 3 3		
CHLOROFORM		UG/L	ND	2		
CHLOROMETHANE DIBROMOCHLOROMETHAN	T 10	UG/L UG/L	ND	2		
,2-DICHLOROBENZENE		UG/L	ND	2		
1,3-DICHLOROBENZENE		UG/L	ND	3		
4-DICHLOROBENZENE		UG/L	ND	Š		
TETRACHLOROETHENE	•	ŬĠ/Ĺ	ND	ĩ		
1,1-DICHLOROETHANE		UG/L	ND	1 1		
1,2-DICHLOROETHANE		UG/L	ND			
TOLUENE		UG/L	ND	25512521111123		
1,1,1-TRICHLOROETHA	NE	UG/L	ND	š		
1,1-DICHLOROETHENE		UG/L	ND	ī		
1,1,2-TRICHLOROETHA	NE	ŬĠ/Ĺ	ND	2		
TOTAL 1,2-DICHLOROE		UG/L	ND	5		
1,2-DICHLOROPROPANE		ŬĠ/L	ND	2		
TRICHLOROETHENE		UG/L	ND	ī		
CIS-1, 3-DICHLOROPRO	PENE	ŬĠ/L	ND	ī		
TRICHLOROFLUOROMETH		UG/L	ND	ī		
TRANS-1, 3-DICHLOROP		ŬĠ/Ĺ	ND	ī		
VINYL CHLORIDE		ŪG/L	ND	ī		
THYL BENZENE		ŬG/L	ND	ī		
YLENES		ŬG/L	ND	2		
ETHYLENE CHLORIDE		ŬG/L	ND	3		
1,1,2,2-TETRACHLORO	ETHANE	UG'L	ND	2		
BROMOFLUOROBENZENE		%RÉC/SURR	98	86-115		
1,2-DICHLOROETHANE-	D4	%REC/SURR	96	76-114		
				88-115		
roluene-d8		&REC/SURR	101	00-110		

Comments:

_

_

ANALYTICAL TECHNOLOGIES, INC.

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 4 Date 03-Dec-93 Accession: Client: 311501 CHEVRON USA, PRODUCTS CO. Project Number: Project Name: A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE VOLATILES (624) Project Location: Tesť: 624, Federal Register 40 CFR, Part 136, July 1, 1992 Analysis Method: Extraction Method: N/A Matrix: WATER QC Level: IIC Sample Date/Time: Received Date: 005 15-NOV-93 1405 Lab Id: 16-NOV-93 Client Sample Id: MW-5 "Sample' Tic/Report" Number of Tics Found: 0 Concentration Units: UG/L RT: Est Conc: Compound Name: QI Cas Number:

(0) Page 5 Date 03-Dec-93

					Date 03-De	C-A
Accession:	311501					
Client:	CHEVRON USA, PR	ODUCTS CO.				
Project Number:	A04302					
Project Name:	CHEVRON FACILIT					
Project Location:		R RD., JACKSO	NVILLE			
Test:	VOLATILES (624)				000	
Analysis Method:	624, Federal Re	gi ste r 40 CFR	, Part 136,	outh 1, 1	992	
Extraction Method:						
Matrix:	WATER					
QC Level:	IIC					
Lab Id:	006		Sample Da	te/Time:	15-NOV-93	
Client Sample Id:			Received		16-NOV-93	
citenc pumpie iai						
Batch: VIW151			Extractio	n Date:	N/A	
Blank: C	Dry Weight %:	N/A	Analysis	Date:	18-NOV-93	
			•			
Parameter:		Units:	Results:	Rpt Lm	its: Q:	
SONGONO		UG/L	ND	1		
BENZENE BROKORIOU ODOVERUN	NT ET	UG/L	ND	ī		
BROMODICHLOROMETHA		UG/L	ND	5		
BROMOFORM		UG/L	ND	1		
BROMOMETHANE CARBON TETRACHLORI	DF	UG/L	ND	5		
CHLOROBENZENE		UG/L	ND	1		
CHLOROETHANE		UG/L	ND	2 1 2 1 1		
2-CHLOROETHYLVINYL	THER	UG/L	ND			
CHLOROFORM		UG/L	ND	52213351125512521		
CHLOROMETHANE		UG/L	ND	2		
DIBROMOCHLOROMETHA	NE	UG/L	ND	ī		
1,2-DICHLOROBENZEN		UG/L	ND	3		
1,3-DICHLOROBENZEN		ŬG/L	ND	3		
1,4-DICHLOROBENZEN		ŪG/L	ND	5		
TETRACHLOROETHENE	-	ŪĠ/L	ND	1		
1,1-DICHLOROETHANE		UG/L	ND	1		
1,2-DICHLOROETHANE		ŬĠ/L	ND	2		
TOLUENE		UG/L	ND	5		
1,1,1-TRICHLOROETH	IANE	ŪĠ/Ĺ	ND	5		
1,1-DICHLOROETHENE		UG/L	ND	1		
1,1,2-TRICHLOROETH		UG/L	ND	2		
TOTAL 1,2-DICHLORO		UG/L	ND	5		
1,2-DICHLOROPROPAN		UG/L	ND	2		
TRICHLOROETHENE		UG'/L	ND	1		
CIS-1, 3-DICHLOROPR	OPENE	UG'/L	ND	1		
TRICHLOROFLUOROMET		UG/L	ND	1		
TRANS-1, 3-DICHLORO		UG/L	ND	1		
VINYL CHLORIDE		UG/L	ND	1		
ETHYL BENZENE		ŬG/L	ND	1 1 1 2 3		
XYLENES		ŬG/L	ND	2		
METHYLENE CHLORIDE		ŬG/L	ND			
1,1,2,2-TETRACHLOR		UG/L	ND	2		
BROMOFLUOROBENZENE		&REC/SURR	95	86-115		
1,2-DICHLOROETHANE		&REC/SURR	100	76-114		
TOLUENE-D8	_	%REC/SURR	100	88-115		
ANALYST		INITÍALS	LP			

Comments:

_

_

_

. -

...

.

RT:

[0] Page 6 Date 03-Dec-93

Est Conc: Q:

			DATE UJ-DEC-9.
Accession:	311501		
Client:	CHEVRON USA, PRODUCTS	co.	
Project Number:	A04302		
Project Name:	CHEVRON FACILITY # 468	63	
	10152 LEM TURNER RD.,		
Test:	VOLATILES (624)		
Analysis Method: Extraction Method: Matrix: QC Level:	624, Federal Régister	40 CFR, Part 136, July 1, 1	.992
Lab Id:	006	Sample Date/Time:	15-NOV-93
Client Sample Id:	FIELD BLANK	Received Date:	16-NOV-93
	"Sample	Tic Report"	
Number of Tics Four	nd: 0		
Concentration Unit	e: UG/L		

Compound Name: Cas Number:

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

(0) Page 7 Date 03-Dec-93

"Method Report Summary"

Project Name:	CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE VOLATILES (624)	
Client Sample Id:	Parameter:	1

Client Sample Id:	Parameter:	Unit:	Result:
MW-3	BENZENE	UG/L	15
	Ethyl Benzene	UG/L	8
	Xylenes	UG/L	4

Quality Control Report

Analysis: POLYNUCLEAR AROMATICS BY 610

Accession: Client: Project Number: Project Name: Project Location: Department:

311501 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE SEMI-VOLATILE FUELS ----

-

-

_

_

.....

_ -

[0] Page 1 Date 03-Dec-93

		"QC Repor	t"	Date 03-
Title: Batch: Analysis Method: Extraction Method:	Water Blank PAW302 610 / Federal 610 / Federal	Register, 4	0 CFR, Part 1	36, July 1, 1992
	010 / FOUDILL		o orny rure r	
Blank Id: A Date	e Analyzed: 24-	NOV-93 D	ate Extracted	: 19-NOV-93
Parameters:		Units:	Results:	Reporting Limits:
ACENAPHTHENE ACENAPHTHYLENE ANTHRACENE BENZO(a)ANTHRACENE BENZO(b)FLUORANTHEN BENZO(c)FLUORANTHEN BENZO(c)FLUORANTHEN CHRYSENE DIBENZO(a, h)ANTHRAC FLUORANTHENE FLUORENE INDENO(1,2,3-cd)PYH NAPHTHALENE	ve Ne Cene	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	nd Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd Nd	1 1 1 1 1 1 1 1 1 1 1 1
PHENANTHRENE PYRENE 1-METHYLNAPHTHALENE 2-METHYLNAPHTHALENE 2-CHLOROANTHRACENE ANALYST		UG/L UG/L UG/L UG/L %REC/SUR INITIALS		1 1 1 24-154

Comments:

(0) Page 2 Date 03-Dec-93

			"QC Repo	ort"						
Batch: _ Analysis Method:	Water Read PAW302 610 / Fedd 610 / Fedd	gent eral Regie eral Regie	ter, 40 Cl ter, 40 Cl	FR, Part FR, Part	136, Ju 136, Ju	ily 1, ily 1,	1992 1992			<u> </u>
- RS Date A - RSD Date	nalyzed: Analyzed:	22-NOV-93 22-NOV-93					racted: tracted		-NOV- NOV-	
Parameters: _ ACENAPHTHYLENE BENZO(k)FLUORANTHEN CHRYSENE PHENANTHRENE PYRENE	E	Spike Added 80 4.0 4.0 4.0 4.0	Sample Conc <1 <1 <1 <1 <1 <1	RS Conc 70 3.8 5.2 3.6 3.8	RS &Rec 88 95 130 90 95	RSD Conc 61 3.8 4.1 3.3 3.7	RSD %Rec 76 95 103 83 93	RPD 15 0 23 8 2	RPD Lmts 46 36 28 43 24	Rec Lmts 27-143 51-148 63-168 41-144 33-158
Surrogates: 2-CHLOROANTHRACENE					113		87			24-154

Comments: NOT ENOUGH SAMPLE SUBMITTED TO EXTRACT MATRIX SPIKE/MATRIX SPIKE DUPLICATE.

Notes:

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

(0) Page 3 Date 03-Dec-93

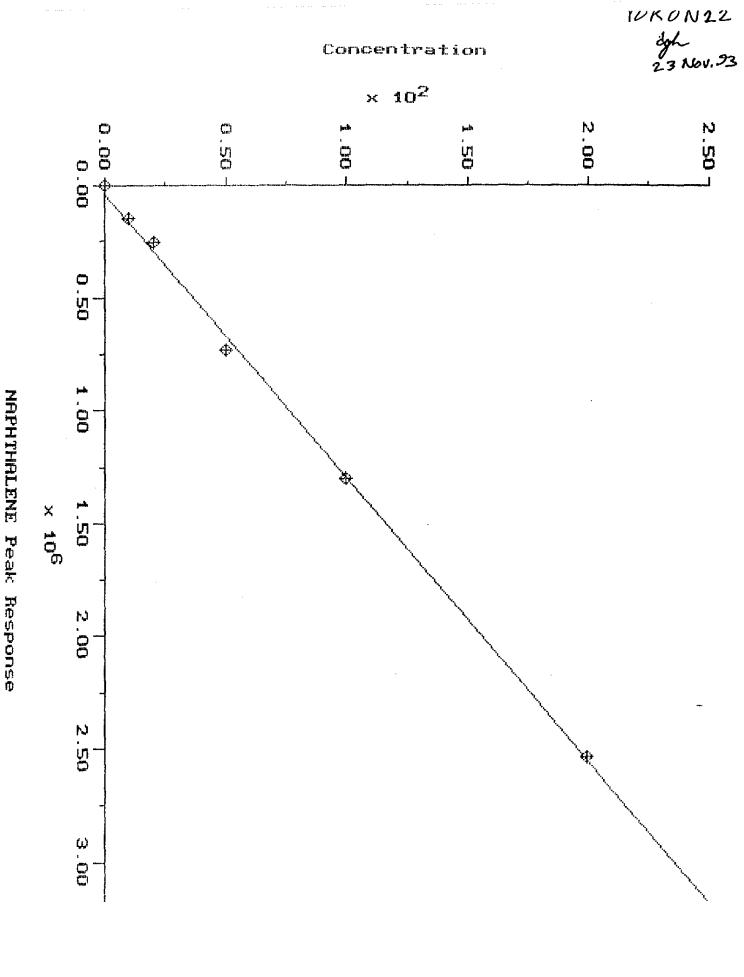
Common notation for Organic reporting

N/S = NOT SUBMITTEDN/A = NOT APPLICABLED = DILUTED OUTUG = MICROGRAMS UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/M3 = MILLIGRAM PER CUBIC METER. PPMV = PART PER MILLION BY VOLUME. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION.< = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS. ND = NOT DETECTED ABOVE REPORTING LIMIT. RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES. RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION) ATI/GC/FID ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID). ATI/GC/FIX ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID). ATI/GC/FPD ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE. ATI/GC/PID ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID). ATI/GC/TCD ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD). LJT = LISA THOMASON CD = CHRISTY DRAPER IP = INGRID PITTMAN RP = ROB PEREZ SKR = SVETLANA RODKINA DGH = DARREL HALSELL KW = KAREN WADSWORTH = PAMELA BREWTON PB = MONIQUE VERHEYDEN MV

Chevron Level I Supplementary Information for Method 610 (PAH)

- 1. A five (5) point curve is analyzed on a daily basis (this replaces a continuing calibration).
- 2. The curve passes all criteria, if a coefficient of determination (r²) greater than 0.995 is calculated.
- 3. The concentration of the sample is calculated as follows:

amt(compound) = (area of compound) (compound generated R.F.) \pm (C.F.)


- A. R.F. = Response Factor
- B. The computer generated R.F. is calculated from calibration runs using the least squares method.

ŕ

- C. C.F. = Correction Factor to bring y-intercept to zero.
- 4. Original sample concentration (water) = [amt(compound)] x dilution

5. Original sample concentration (soil) = $[amt(compound)] \times dilution$ (dry weight of sample x 10⁻²)

Spike Source: Soil - AXACT Stds Lot #010593, Exp. 1-95 Water - Accustandard Lot #023-137 Surrogate Source: Aldrich Lot #00117TX

HLENE FEAK NES

NAPHTHALENE Calibration Report

Printed: 23-NOV-1993 16:02:05

Quant Basis: AreaRejection Tolerance: NoneCurve Type: LinearWeighting: NoneY-axis Label: ConcentrationCorr. Coef. (r): 0.9985534

Internal Standard: None Forced Through Origin: No

Equation: Conc = -3.199060E+00 + 7.962975E-05 * B

Sample	File Name	<u>Valid</u>	Concentration	Response	Calc'd Concentration	<u> </u>	Response Factor
 STD1 2-ORG¥38-2 STD2 2-ORG¥38-2 STD3 2-ORG¥38-2	YN22W11	Y Y Y	1.000000E+01 2.000000E+01 5.000000E+01	1.5080133E+05 2.5606989E+05 7.2960544E+05	8.809212E+00 1.719172E+01 5.489924E+01	1.35E+01 1.63E+01 -8.92E+00	6.631241E-05 7.810368E-05 6.853019E-05
 STD4 2-ORGW38-2 STD5 2-ORGW38-2 COMP 2-ORGW38-1		Y Y Y	1.000000E+02 2.000000E+02 0.000000E+00	1.2999726E+06 2.5365072E+06 0.0000000E+00	1.003174E+02 1.987824E+02 -3.199060E+00	-3.16E-01 6.13E-01 -1.00E+02	7.692470E-05 7.884858E-05 Invalid

•

· ·]

Quality Control Report

Analysis: TOTAL PETROLEUM HYDROCARBONS (418.1)

Accession: Client: Project Number: Project Name: Project Location: Department: 311501 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE SEMI-VOLATILE FUELS ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

.

(0) Page 1 Date 03-Dec-93

		"QC Report"		
Title: Batch:	Water Blank TPW400	-		
Analysis Method: Extraction Method:	418.1 / EPA 60 418.1 / EPA 60	00 / 04 - 79 - 020, 00 / 04 - 79 - 020, 00 / 04 - 79 - 020, 000 - 000, 000, 000 - 000,	Rev. March	1983 1983
Blank Id: A Dat	e Analyzed: 19-	-NOV-93 Date	Extracted:	18-NOV-93
Parameters:		Units:	Results:	Reporting Limits:
TOTAL PETROLEUM HY ANALYST	DROCARBON	MG/L INITIALS	ND LJT	1

Comments:

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 2 Date 03-Dec-93

	Title: Water Reage	nt	"QC Rep	ort"			pa	ITE ()3-De(C-A3
_	Batch: TPW400 Analysis Method: 418.1 / EPA Extraction Method: 418.1 / EPA	600 / 04	-79-020, -79-020,	Rev.) Rev.)	arch 1983 Arch 1983	} 	, ex,			
	RS Date Analyzed: 1 RSD Date Analyzed: 1					ite Extr Jate Ext			-Nov-9 -Nov-9	
	Parameters: PET. HYDROCARBON/OIL & GREASE	Spike Added 1.9	Sample Conc <1	RS Conc 2.2	RS %Rec 116		RSD %Rec 111	RPD 4	+ - + -	Rec Lmts 50-143
	Surrogates:									
- -	Comments: NOT ENOUGH SAMPLE SUBMITT MATRIX SPIKE/MATRIX SPIKE									
_	Notes: N/S = NOT SUBMITTED N/A MG/L = PARTS PER MILLION. * = VALUES OUTSIDE OF QUA SOURCES FOR CONTROL LIMIT PROGRAM AND REFERENCED ME	LITY CONT S ARE INT	SS THAN	REPORTI TS.	DILUTED C ING LIMIT. NY QUALITY		NCE			

[0] Page 3 Date 03-Dec-93

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUTUG = MICROGRAMS UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/M3 = MILLIGRAM PER CUBIC METER. PPMV = PART PER MILLION BY VOLUME. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. ORGANIC SOILS ARE REPORTED ON A DRYWEIGHT BASIS. ND = NOT DETECTED ABOVE REPORTING LIMIT. RPT LIMIT = REPORTING LIMITS BASED ON METHOD DETECTION LIMIT STUDIES. RPD = RELATIVE PERCENT DIFFERENCE (OR DEVIATION) ATI/GC/FID ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME IONIZATION DETECTOR (FID). ATI/GC/FIX ATI GAS CHROMATOGRAPHIC METHOD FOR ANALYSIS OF FIXED GASES EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD) AND FLAME IONIZATION DETECTOR (FID). ATI/GC/FPD ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH FLAME PHOTOMETRIC DETECTOR (FPD) IN SULFUR-SPECIFIC MODE. ATI/GC/PID ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH PHOTOIONIZATION DETECTOR (PID). ATI/GC/TCD ATI GAS CHROMATOGRAPHIC METHOD EMPLOYING DIRECT INJECTION ON COLUMN WITH THERMAL CONDUCTIVITY DETECTOR (TCD). LJT = LISA THOMASON = CHRISTY DRAPER = INGRID PITTMAN CD IP RP = ROB PEREZSKR = SVETLANA RODKINA DGH = DARREL HALSELL KW = KAREN WADSWORTH PB = PAMELA BREWTON MV = MONIQUE VERHEYDEN

Chevron Level I Supplementary Information for Method 418.1 (TPH)

- 1. A five (5) point curve is analyzed on a daily basis (this replaces a continuing calibration).
- 2. The curve passes all criteria, if a coefficient of determination (r^2) greater than 0.995 is calculated.
- 3. The concentration of the sample is calculated as follows:

amt(compound) = (area of compound) (compound generated R.F.) \pm (C.F.)

- A. R.F. = Response Factor
- B. The computer generated R.F. is calculated from calibration runs using the least squares method.
- C. C.F. = Correction Factor to bring y-intercept to zero.

4. Original sample concentration (water) = [amt(compound)] x dilution

5. Original sample concentration (soil) = $[amt(compound)] \times dilution$ (dry weight of sample x 10⁻²)

Spike Source: Hunt, Wesson, Inc. Lot #M28A1 and Phillip Diesel 01-ORGN01-08

TPH Calibration Curve 11-19-93 295/MV. POOR ORIGINAL ь. Test Method for Dil and Grease and Petroleum Hydrocarbons X . . in Water and Spil Perkin-Elmer Model 1600 FT-IR Calibration Report 93/11/19 09:18 Concentrations of standards, mg/100 ml 41.000 31.000 20.000 1.000 0.900 Net absorbance of standards 0.754 0.576).375).164 0.017 LSF: slope 0.018; y-intercept 0.002; correlation 0.99992 -1.0 Y

_

Quality Control Report

Analysis: AROMATIC VOLATILES

311501 Accession: Accession: Client: Project Number: Project Name: Project Location: Department: CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE GC/VOA

•

[0) Page 1 Date 02-Dec-93

		"QC Report"		
Title: Batch: Analysis Method: Extraction Method:		cal Register, 40 C	SFR, Part 13	36, July 1, 1992
Blank Id: A Dat	e Analyzed:	22-NOV-93 Date	Extracted	: N/A
Parameters:		Units:	Results:	Reporting Limits:
BENZENE		UG/L	ND	1
CHLOROBENZENE		UG/L	ND	1
1,2-DICHLOROBENZEN		UG/L	ND	2 2
1,3-DICHLOROBENZEN	E	UG/L	ND	2
1,4-DICHLOROBENZEN	Е	UG/L	ND	2
ETHYLBENZENE		UG/L	ND	1
TOLUENE		UG/L	ND	5 2
XYLENES (TOTAL)		UG/L	ND	2
METHYL T-BUTYL ETH	ER	UG/L	ND	5
TRIFLUOROTOLUENE (&REC/SURR	103	70-130
	,	INITIALS	JA	

Comments:

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 2 Date 02-Dec-93

Title: Water R Batch: JOW176 Analysis Method: 602 / F Extraction Method: N/A	eagent ederal Regie	"QC Rep ster, 40 C		136, J	uly 1,	_	ate	02-De	c-93
RS Date Analyzed RSD Date Analyzed						racted: tracted			
Parameters: BENZENE TOLUENE	Spike Added 50 50	Sample Conc <1 <5	RS Conc 48 49	RS %Rec 96 98	RSD Conc 46 48	RSD %Rec 92 96	RPD 4 2	RPD Lmts 11 14	Rec Lmts 82-120 77-125
Surrogates: TRIFLUOROTOLUENE (PID)				103		102			70-130

Comments:

Notes: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

[0) Page 3 Date 02-Dec-93

			"QC Repo	ort"						
Title: Batch: Analysis Method: Extraction Method:			ter, 40 CH	'R, Part	136, Ju	uly 1, 1	1992			
- Dry Weight %: N/A Sample Spiked: 311			Analyzed: e Analyzed				te Extra ate Exti			/A /A
- Parameters: - BENZENE TOLUENE		Spike Added 50 50	Sample Conc <1 <5	MS Conc 48 49	MS %Rec 96 98	MSD Conc 51 53	MSD %Rec 102 106	RPD 6 8	RPD Lmts 11 14	Rec Lmts 82-120 77-125
	PID)				98		101			70-130
	OUND LOT #05 NDARD LOT #0									
- Notes:		- 107								

B: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

ANALYTICAL TECHNOLOGIES, INC.

[0] Page 4 Date 02-Dec-93

Common notation for Organic reporting

N/S = NOT SUBMITTEDN/A = NOT APPLICABLED = DILUTED OUT UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. - < = LESS THAN DETECTION LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS - SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. AND ADDRALLOS ARE REPORTED ON A DRY WEIGHT BASIS. ** COMPOUNDS FLAGGED IN METHOD ARE NOT WITHIN THE FIVE POINT CURVE. THEY ARE SEARCHED FOR QUALITATIVELY. ND = NOT DETECTED ABOVE REPORTING LIMIT. SR-SHELLEY REAMSMA MLP-MELISSA POPE TSH-TRICIA HOLSTON LKD-LEIGH DUVALL MM-MIKE MCKENZIE KWS-KENDALL SMITH RY-RON YOKUM KKS-KIMBERLY SMITH GF-GREG FOOTE - CEF-CLAIRE FORNSEL ALM-AMY LEE MILLER NC-NICOLE CALL JP-JOSEPH POPE JA-JENNIFER ALEXANDER HB-HEATHER BIANCALANA PAM-PENNY A. MALOUIN

CHEVRON LEVEL I SUPPLEMENTARY INFORMATION

INTERPETATION OF DATA

Maxima RF = <u>Internal Standard Area x concentration of analyte</u> Analyte area

The Maxima RF is a response factor calculated by the Maxima data system for all initial and continuous calibration data. It does not take into account the concentration of the internal standard which is 20 PPB.

The EPA RF takes the concentration of the internal standard into consideration and is calculated in the lotus spreadsheet by the following formula:

 $EPA RF = \frac{20}{Maxima RF}$

Solution concentration = <u>analyte area</u> x Maxima RF Internal Standard Area

The Original concentration takes into account the dilution factor and the dry weight for soil samples.

Original concentration = Solution concentration x dilution (water samples)

Original concentration = <u>Solution concentration x dilution</u> (soil samples) dry weight (in decimal form)

1

The internal standard calibration procedure is utilized.

C:\WP5I\CHEVRON\CHEVQ

METH	10D 602/8020 C	CONTINUOUS	CALIBRATIO	N TABLE	MACHINE JUAN
		CJ01122	. PRN		
1D#	COMP	MAX RP	EPA RE	% DIFF	AVG
2	MTBE	36.823	0.543	-2.647	0.529
З	BENZENE	10.999	1.818	-5.452	1.724
4	FLUOROBENZ*19	6 1.000	•		
6	TRIFLTOL*SURF	39.394	0.508	1.741	Ø. 517
7	TOLUENE	11.551	1.731	-5.549	1.640
8	CHLOROBENZ	10.897	/ 1.835	-6.069	1.730
10	ETHYL BENZENE	E 13.177	7 1.518	-5.858	1.434
i 1	M-XYLENE	16.273	1.229	5.023	1.294
12	OP-XYLENE	12.194	1.640	0.666	1.651
13	1,3-DICLBENZE	ENE 14.234	1.405	-5.007	1.338
14	1, 2-DICLBENZE	ENE 18.077	7 1.106	-6.449	1.039
15	1,4-DICLBENZE	ENE 14.194	1.409	-11.914	1.259

MAX %D = 15.0%

R

-

- MAXIMA (c)1990 Dynamic Solutions, Division of Millipore

MAXIMA 820 CUSTOM REPORT

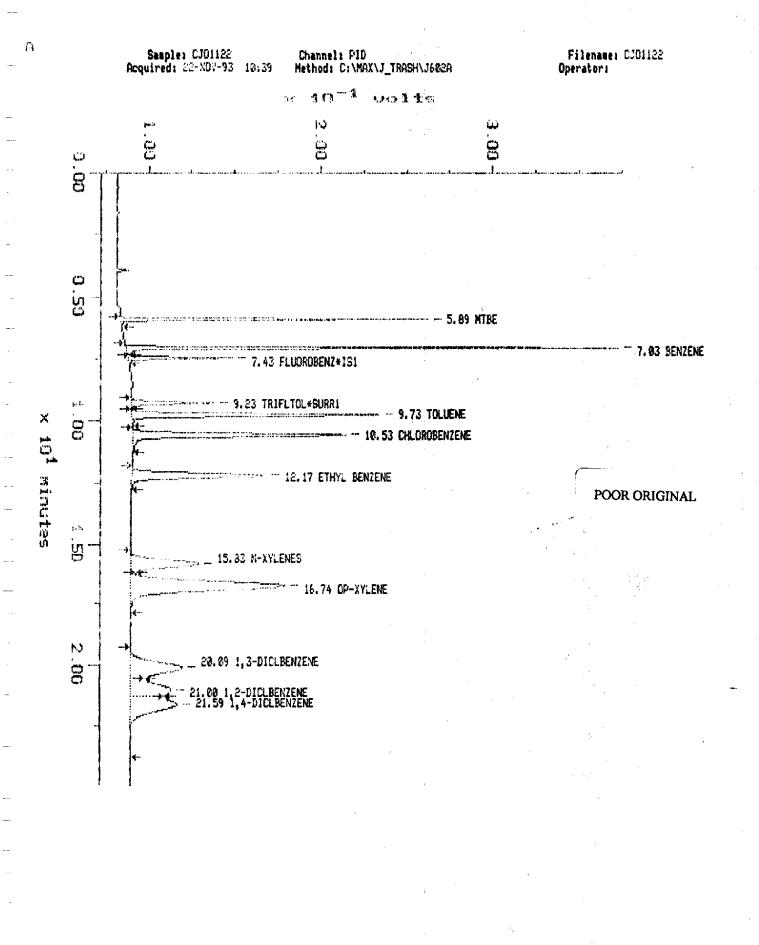
Printed: 24-NOV-1993 9:04:25

SAMPLE: CJ01122 #2 in Nethod: JOAN 602 Acquired: 22-NOV-1993 10:39 Rate: 2.0 points/sec Duration: 25.000 minutes

Operator:

Type: STND Instrument: JOAN Filename: CJO1122 Index: Disk

DETECTOR: PID


-	100	Retention Time (minutes)	Peak Area	Response Factor	Cosponent Name	Solution Conc	Original Conc
-					***********		
_	- 1	5.892	781035	36.823	MTBE	100.00	100.00
_	2	7.033	1307467	10,999	BENZENE	58.00	50.00
-	7	7.433	2876041		FLUOROBENZ+ISI		
	ĩ	9,233	365032	39.394	TRIFLTOL+SURRI	50.00	50.00
	5	9,725	1244910	11.551	TOLUENE	50.00	50,00
	-	10.525	1319673	10,897	CHLOROBENZENE	50,00	58.00
-	5	12.167	1091310	13.177	ETHYL BENZENE	50.09	50.00
	, 8	15.825	883662	16.273	M-XYLENES	50.00	50.00
	0 A	15.742	2358575	12, 194	OP-XYLENE	160.60	100.00
	2	20.092	1010218	14.235	1, 3-DICLBENZENE	50.00	58.00
	10		•••	18.077	1, 2-DICLBENZENE	58, 80	58.00
-	:1	21.030	795504		1,4-DICLBENZENE	50.00	58.00
	15	21.592	1013123	14.194	1,4-DIDEDENIENC	50.00	
	TOTAL		12170510			650.00	650.00

Value not included in TOTAL calculation.

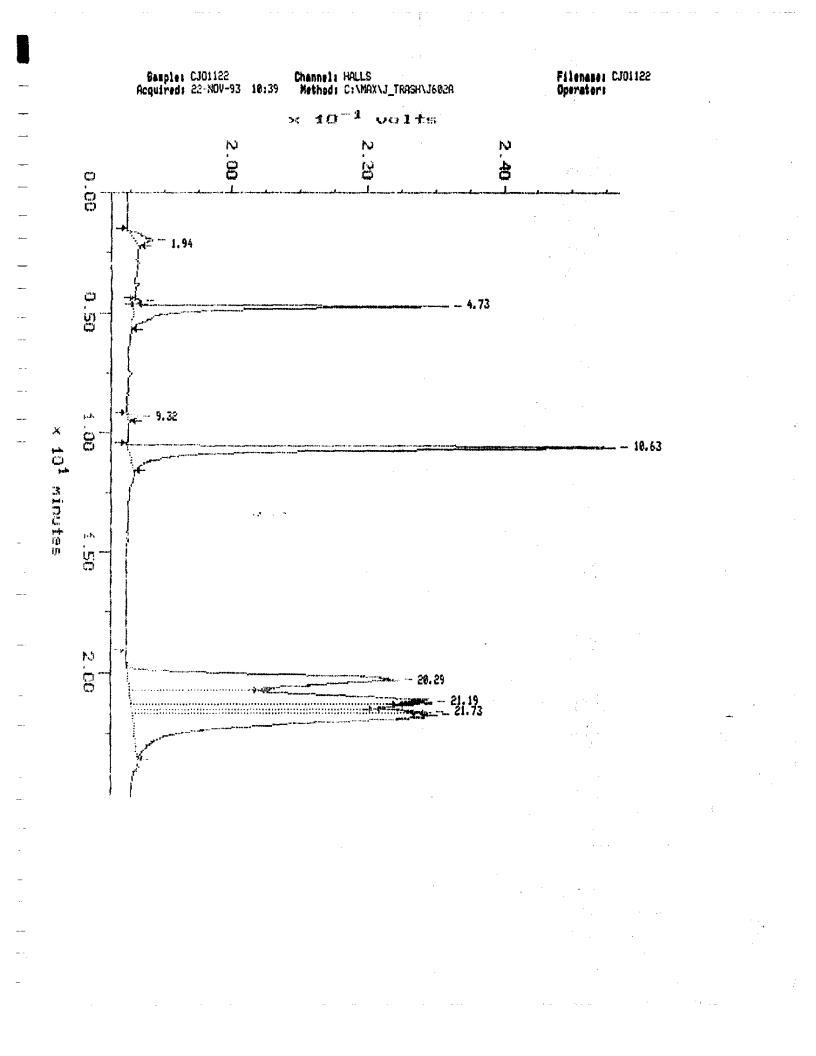
DETECTOR: HALLS

10#	Retention Time	Peak Area	Response Factor	Component Name	Solution Conc	Original Conc
—	(minutes) 		보 # # # # # # # # # # # # # # # # # # #	هد نا ۵ ۶ ۶ ۶ ۳ ۳ ^ی ۱ ۵ ۸ ۸ ۸ ۸		날은 위식 유가 정말라 같은 해
-						
TOTAL		0			0.00	0.00

_ # Value not included in TOTAL calculation.

.

IMAGE QUALITY


AS YOU REVIEW THE NEXT GROUP OF IMAGES, PLEASE NOTE THAT THE ORIGINAL DOCUMENTS WERE OF POOR QUALITY.

1

.

• • •

.

	METI	30D 602/8020 C	ONTINUOUS (CALIBRATIO	NTABLE	JOAN
			CJ01123	. PRN		
	ID井	COMF	MAX RE	EPA RF	% DIFF	AVG
	8	MTBE	33. 586	0.595	-12.476	0. 529
•	З	DENZENE	11.193	1.788	-3.712	1.724
	4	FLUOROBENZ*IS	1.000			
	6	TRIFLTOL*SURF	37.654	0.531	-2.708	0.517
	7	TOLUENE	11.772	1.699	-3.598	1.640
	8	CHLOROBENZ	11.397	1.755	-1.445	1.730
	10	ETHYL BENZENE	13.384	1.494	-4.184	1.434
	11	M-XYLENE	16.461	1.215	6.105	1.294
	12	OPHXYLENE	12.391	1.614	2.241	1.651
	13	1,3-DICLBENZE	NE 14.776	1.354	-1.196	1.338
	14	1,2-DICLBENZE	NE 18,236	1.097	-5.582	1.030
	15	1, 4-DICLBENZE	NE 15.226	1.314	-4.369	1.259

MAX %D = 15.0%

- R

R

-

MAXIMA (c)1998 Dynamic Solutions, Division of Millipore

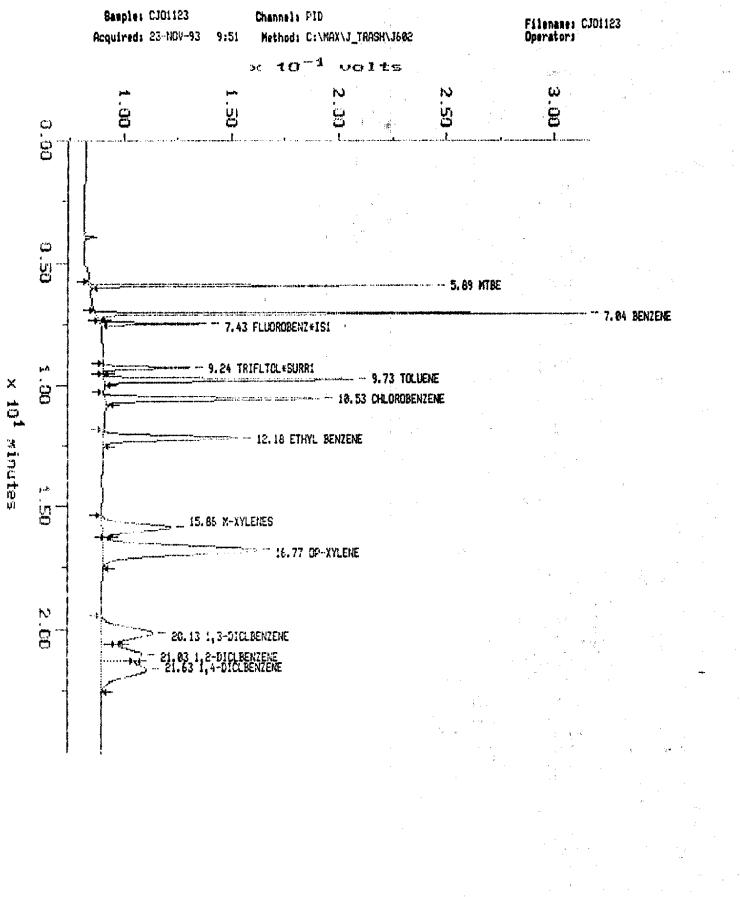
MAXIMA 820 CUSTOM REPORT

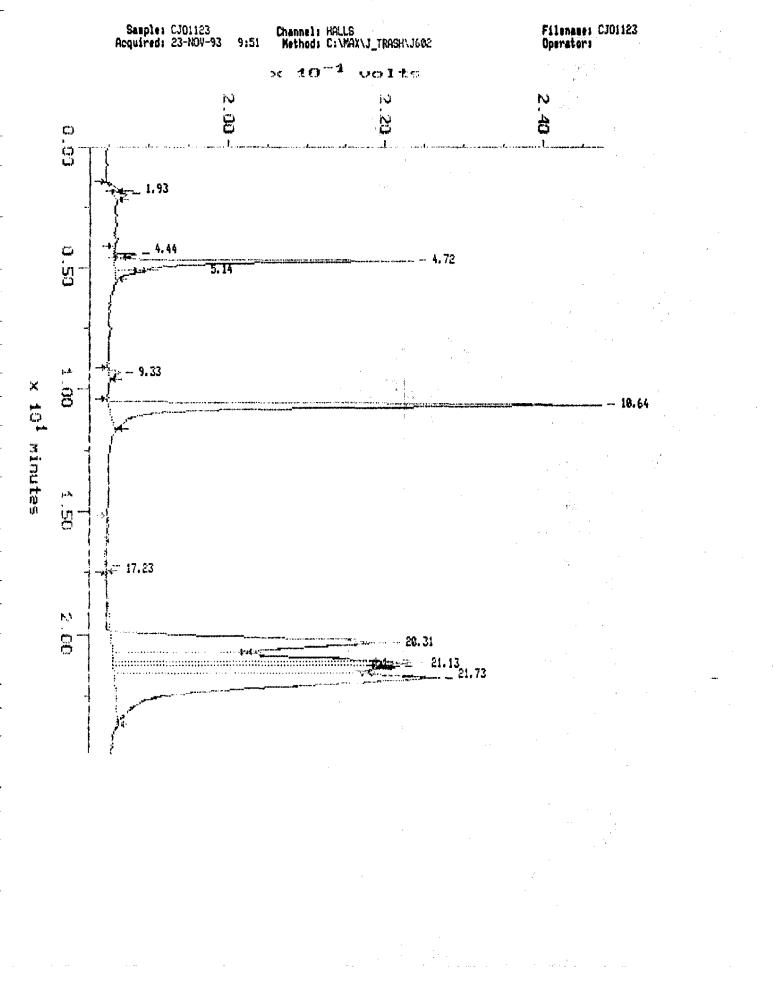
Printed: 23-NOV-1993 18:43:53

SAMPLE: CJ01123

#4 in Method: JOAN 602 Acquired: 23-NOV-1993 9:51 Rate: 2.0 points/sec Duration: 25.000 minutes Operator: Type: STND Instrument: JOAN Filename: CJ01123 Index: Disk

DETECTOR: PIC


	ID#	Retention Time (minutes)	Peak Area	Response Factor	Component Name	Solution Conc	Original Conc
_						*****	*****
	1	5.892	691844	33.586	MTBE	166.00	168.88
_	2	7.342	1038874	11.183	BENZENE	50.00	50.00
_	3	7.433	232361#		FLUOROBENZ#1S1		
	4	9.242	308551	37.654	TRIFLTOL*SURR1	50.00	50.00
	5	9.733	986914	11.772	TOLUENE	50.00	56, 66
	6	10.525	1019351	11,397	CHLOROBENZENE	58, 99	50.00
_	7	12.175	353347	13.384	ETHYL BENZENE	58.88	58.00
	8	15.858	705813	16.461	M-XYLENES	58.60	58.00
	ŝ	16.767	1875217	12, 391	OF-XYLENE	100.00	100.00
-	12	22,133	786235	14,777	1, 3-DICLBENZENE	50.60	50. 88
	11	21.025	637108	16.236	1,2-DICLBENZENE	58.88	50. 63
_	12	21.625	763029	15.226	1, 4-DICLBENZENE	50.00	58, 68
- 71	otal.		9530992			650.00	650.00


Value not included in TOTAL calculation.

DETECTOR: HALLS

- ID#	Retention Time (minutes)	Peak Area	Response Factor	Component Name	Bolution Conc	Original Conc

-						*************
- TOTAL		C			0.00	0.00

- # Value not included in TOTAL calculation.

-

I

Quality Control Report

Analysis: VOLATILES (624)

Accession: Client: Project Number: Project Name: Project Location: Department: 311501 CHEVRON USA, PRODUCTS CO. A04302 CHEVRON FACILITY # 46863 10152 LEM TURNER RD., JACKSONVILLE ORGANIC/MS

(0) Page 1 Date 03-Dec-93

"QC Report"

"QC Report" Title: Water Blank Batch: VIW151 Analysis Method: 624, Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: N/A

Blank Id: C Date Analyzed: 18-NOV-93 Date Extracted: N/A

Parameters: ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHANE BROMODICHLOROMETHANE BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORIDE CHLOROBENZENE CHLOROETHANE 2-CHLOROETHYLVINYL ETHER CHLOROFTHANE 2-CHLOROETHANE DICHLORODIFLUOROMETHANE DICHLORODIFLUOROMETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROPENE TRANS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE 1,4-DICHLOROPZ-BUTENE ETHYL BENZENE ETHYL METHACRYLATE 2-HEXANONE IODOMETHANE METHYLENE CHLORIDE 4-METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 1,2,3 TRICHLOROPTOPANE VINYL ACETATE VINYL CHLORIDE 1,2-DICHLOROPROPANE VINYL ACETATE VINYL CHLORIDE 1,2-DICHLOROBENZENE 1,2-DICHLOROPENE 1,2-DICHLOROPROPANE VINYL ACETATE VINYL CHLORIDE TOTAL XYLENES BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4	Units:	Results:	Reporting Limits:
ACETONE	UG/L	ND	10
ACBIONE	UG/L	ND	100
ACROMENT ACTION AND A A A A A A A A A A A A A A A A A		ND	100
BENZENE	10/1	ND	1
DENDENE DRAVADICUI ARAVETUNNE		ND	
BROMODICHLOROMEINANE BROMOEORM		ND	1 2 1 3
BROMOFORM		ND	1
BROMOMETHANE		ND	2
2-BUTANONE (MEK)			3 1
CARBON DISULFIDE		ND	1 2 1 5 2 2 5 5 5 5 1 2 1 2 1 5 2 1
CARBON TETRACHLORIDE		ND	2
CHLOROBENZENE	UG/L	ND	4
CHLOROETHANE	UG/L	ND	±
2-CHLOROETHYLVINYL ETHER	UG/L	ND	5
CHLOROFORM	UG/L	ND	2
CHLOROMETHANE	UG/L	ND	2
CHLOROD I BROMOMETHANE	UG/L	ND	5
DIBROMOMETHANE	UG/L	ND	5
DICHLORODIFLUOROMETHANE	UG/L	ND	5
1.1-DICHLOROETHANE	UG'/L	ND	1
1.2-DICHLOROETHANE	UG/L	ND	2
1 1-DICHLOROETHENE	UG/T.	ND	ī
TOTAL 1.2-DICHLOROETHYLENE	UG/I.	ND	5
1 2-DICHLOROPROPANE	UG/L	ND	2
CIS-1 3-DICHLOROPROPENE	UG/T.	ND	1
TONNE-1 3-DICHLOPODPODENE		ND	1
1 A_DICUIODO_2_DUTENT		ND	5
T,4-DICHLORO-2-DUIENE		ND	1
ETHIL BENZENE Druvi Merulo odvi dre		ND	1 5 3 3 2 2 1 5 5 2 1
ETHIL METHACKILATE			2
2-HEXANONE		ND	3
IODOMETHANE	UG/L	ND	5
METHYLENE CHLORIDE	UG/L	ND	3
4-METHYL-2-PENTANONE	UG/L	ND	3
STYRENE	UG/L	ND	2
1,1,2,2-TETRACHLOROETHANE	UG/L	ND	2
TETRACHLOROETHENE	UG/L	ND	1
TOLUENE	UG/L	ND	5
1,1,1-TRICHLOROETHANE	UG/L	ND	5
1,1,2-TRICHLOROETHANE	UG/L	ND	2
TRICHLOROETHENE	UG/L	ND	1
TRICHLOROFLUOROMETHANE	UG/L	ND	1
1.2.3 TRICHLOROPROPANE	UG/L	ND	5
VINYL ACETATE	UG/L	ND	5 2
VINVI. CHLORIDE		ND	ī
TOTAL YYLENES	ũc/L	ND	2
DDONOFT HODORFNZENE	&REC/SURR		86-115
DI DI CUI CUCENSENE 1 DI CUI CUCENSENE	ADEC/ SURK	103	76-114
1,2-DICUPOKOFILAWE-D4	<pre>%REC/SURR</pre>	102	10-114

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

(0) Page 2 Date 03-Dec-93

"QC Report"							
Title: Batch: Analysis Method; Extraction Method:		Register 40 CFF	R, Part 136,	July 1, 1992			
Parameters:		Units:	Results:	Reporting Limits:			
TOLUENE-D8 ANALYST		<pre>%REC/SURR INITIALS</pre>	101 LP	88-115			

Comments:

RS Date Extracted: N/A RSD Date Extracted: N/A

[0] Page 3 Date 03-Dec-93

"QC Report"

Water Reagent Title: VIW151 624, Federal Register 40 CFR, Part 136, July 1, 1992 Batch: Analysis Method: Extraction Method: N/A

RS Date Analyzed: 17-NOV-93 RSD Date Analyzed: 17-NOV-93

Parameters: 11-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE	Spike Added 50 50 50 50 50 50	Sample Conc O O O O O	RS Conc 49 50 49 51 50	RS %Rec 98 100 98 102 100	RSD Conc 53 50 52 55 55 54	RSD %Rec 106 100 104 110 108	RPD 8 0 6 8 8	RPD Lmts 14 14 11 13 13	Rec Lmts 94-129 78-117 85-113 47-150 81-118
Surrogates: 1,2-DICHLOROETHANE-D4 TOLUENE-D8 BROMOFLUOROBENZENE				98 101 92		103 101 86			76-114 88-115 86-115

Comments:

Notes:

" N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

[0) Page 4 Date 03-Dec-93

"OC Report"

	"Uc Report"										
	Title: Batch: Analysis Method: Extraction Method:	Water Matri; VIW151 624, Federal N/A		er 40 CFR,	Part 136	, July	y 1, 1992				
	Dry Weight %: N/A Sample Spiked: 3114			Analyzed: Analyzed:			MS Date MSD Date				
-	Parameters: 11-DICHLOROETHENE TRICHLOROETHENE BENZENE TOLUENE CHLOROBENZENE		Spike Added 50 50 50 50 50	Sample Conc 0 0 0 0 0	MS Conc 48 50 52 52 52 54	MS %Rec 96 100 104 104 108	MSD Conc 55 52 53 56 57	MSD %Rec 110 104 106 112 114	14 4 2	RPD Lmts 14 14 11 13 13	Rec Lmts 94-129 78-117 85-113 47-150 81-118
_	Surrogates: 1,2-DICHLOROETHANE TOLUENE-D8 BROMOFLUOROBENZENE	-D4				108 100 94		106 101 87			76-114 88-115 86-115

Comments:

Notes:

B: N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. < = LESS THAN REPORTING LIMIT. * = VALUES OUTSIDE OF QUALITY CONTROL LIMITS. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD.

[0) Page 5 Date 03-Dec-93

Common notation for Organic reporting

N/S = NOT SUBMITTED N/A = NOT APPLICABLE D = DILUTED OUT UG/L = PARTS PER BILLION. UG/KG = PARTS PER BILLION. MG/KG = PARTS PER MILLION. MG/L = PARTS PER MILLION. MG/M3 = MILLIGRAMS PER CUBIC METER. NG = NANOGRAMS. UG = MICROGRAMS. PPBV = PARTS PER BILLION/VOLUME. < = LESS THAN DETECTION LIMIT. * = VALUES UNTSIDE OF QUALITY CONTROL LIMITS
 J = THE REPORTED VALUE IS EITHER LESS THAN THE REPORTING LIMIT BUT GREATER THAN ZERO, OR QUANTITATED AS A TIC; THEREFORE, IT IS ESTIMATED. JJ = REPORTED VALUE IS ESTIMATED DUE TO MATRIX INTERFERENCE. ND = NOT DETECTED ABOVE REPORT LIMIT. SOURCES FOR CONTROL LIMITS ARE INTERNAL LABORATORY QUALITY ASSURANCE PROGRAM AND REFERENCED METHOD. ORGANIC SOILS ARE REPORTED ON A DRY WEIGHT BASIS. DUE TO THE NATURE OF THE SAMPLE MATRIX, MATRIX SPIKE/MATRIX SPIKE DUPLICATE ANALYSIS CANNOT BE PERFORMED FOR AIR ANALYSIS. RW = RITA WINGO LD = LARRY DILMORE LP = LEVERNE PETERSON DWB = DAVID BOWERS DB = DENNIS BESON LL = LANCE LARSON DC = DAVID CELESTIAL BR = BILL RUBERT

CHEVRON QC REPORT

.

•••

_--

-) Determination of the	relative resp	oonse factor (rr	f):				
	RRF = <u>AREA(compound) X CONC.(is)</u> AREA(is) X CONC.(compound)						
_ In daily calibration: CONC.(is) = 50´úg/l CONC.(compound) = 50 ug/l							
7 Quantitation of sampl	e results:						
CONC. (compound) = \underline{ARE}	A(compound) } AREA(is) >						
Standards:		· · · · · · · · · · · · · · · · · · ·					
- <u>Standard</u>	Lot #		<u>Manufacturer</u>				
- 8240 Standards Mix	01-VS07-01 A002483, A00 A002868, A00, A002868, A00, A002199, A00,		Restek Restek Restek Restek				
- 502.2	A 00 2442		Restek				
⁻ Internal Standard Mix	A002625		Restek				
Surrogate Mix	A002623 LA36015		Restek				
Matrix and Reagent Spike Mix 	LA 36015		Supelco				
Lab Standard Mix ID #	's:						
Standard Mix		Lab Identific	ation				
8240 Standard Mix		02-15630	9-02				
Matrix and Reagent Sp.	ike Mix	.02-msv26	-02				
IS/Surrogate Mix		O2-MSW24	9-03				
-502.2 Mix 1		02-115W24 02-115W24	5-03				
-							
Lab Sample Id:		3/1501 (3	5,6)				
_							

7A VOLATILE CONTINUING CALIBRATION CHECK

	Lab Name: <u>A.T.I.</u>	Contract:	1
_	_ Lab Code: Case No.: §	STAND SAS No. :	SDG No.:
	Instrument ID: <u>FINN</u> Ca	alibration date: <u>11/18/93</u>	Time: <u>1220</u>
_	- Lab File ID: <u>CAV1118</u> In	nit. Calib. Date(s): <u>11/16/</u>	93 11/17/93
_	Matrix:(soil/water) <u>WATER</u> Leve	el:(low/med) <u>LOW</u> Column:	(pack/cap) <u>PACK</u>
	Min RRF50 for SPCC(#) = 0.300 ((O.250 for Bromoform) Max %	D for CCC(*) = 25.0%

COMPOUND Chloromethane Chloromethane Chloroethane /inyl Chloride Chloroethane Chloroethane Inyl Chloride Chloroethane Inyl Chloride Chloroethane Inyl Chloroethane Chlorofluoromethane Interference the second se	1. 4581 1. 5531 1. 7051 1. 1291 1. 5811 0. 4731 3. 1281 3. 6991 1. 3811 2. 7761	1.2951 1.3771 1.4521 0.9581 1.2391 0.4081 2.1931	21.9 # 11.3 14.8 * 15.2 21.6 13.7 29.9 13.2
Bromomethanei Vinyl Chloride Chloroethanei Acthylene Chloridei Acetonei Carbon Disulfidei Frichlorofluoromethanei L, 1-Dichloroethene#	1, 553 1, 705 1, 129 1, 581 0, 473 3, 128 3, 699 1, 381 2, 776	1.377 1.4521 0.9581 1.2391 0.4081 2.1931 3.2091	11.3 14.8 15.2 21.6 13.7 29.9
/inyl Chloride* Chloroethane Acthylene Chloride Carbon Disulfide Frichlorofluoromethane L, 1-Dichloroethane#	1,705 1,129 1,581 0,473 3,128 3,699 1,381 2,776	1.4521 0.9581 1.2391 0.4081 2.1931	14.8 * 15.2 21.6 13.7 29.9
Carbon Disulfidei Carbon Disulfidei Trichlorofluoromethanei L,1-Dichloroethene* L,1-Dichloroethane#	0. 4731 3. 1281 3. 6991 1. 3811 2. 7761	2.1931	29.91 13.21
Ceronei Carbon Disulfidei Trichlorofluoromethanei 1,1-Dichloroethene* 1,1-Dichloroethane#	0. 4731 3. 1281 3. 6991 1. 3811 2. 7761	2.1931	29.91 13.21
Carbon Disulfidei Carbon Disulfidei Trichlorofluoromethanei L,1-Dichloroethene* L,1-Dichloroethane#	0. 4731 3. 1281 3. 6991 1. 3811 2. 7761	2.1931	29.91 13.21
l,1-Dichloroethene* L,1-Dichloroethane#	1. 381 2. 7761	2. 1931 3. 2091 1. 0671	29.9 13.2
l,1-Dichloroethene* L,1-Dichloroethane#	1. 381 2. 7761	3.2091	13.2
l,1-Dichloroethene* L,1-Dichloroethane#	1. 381 2. 7761	1.0671	
1. 1-Dichloroethane#	2. 776		22 7 4
T = T + T + T + T + T + T + T + T + T +		2 148!	21.9 #
	1 371	1 0831	21 0 1
"blopoform *	3 350	2.0001	19 2 4
Chloroform* L,2-Dichloroethane	2 591	2.1011	18.9
-Butanona !	0 6091	0 470!	22 8 1
2-Butanone 1, 1, 1-Trichloroethane	0.813	0 6451	20 7 9
Carbon Tetrachloride	0.8561	0.6981	19 . 1
inyl Acetate	0,000, 0 492!	0.5871	15.2 1
romodichloromethane	0.0721	0,0071	18 2 1
2-Dichloropropage	0 427	0.3341	21 8 4
<pre>x 2-Dichloropropane * is-1,3-Dichloropropene /</pre>	0.4271	0.5041	20 9 1
nichlonoethene	0.5401	0.4491	20.1
richloroethene	0.9561	0.744	20.1
1, 1, 2-Trichloroethane	0. 433!	0 3401	21 5 1
Benzene	0.936	0 7341	21.01
rans-1,3-dichloropropene	0 5621	0 4111	26 9 1
ana 170 dienioropropene	0.761	0 5761	24 7 #
Promoform# H-Methyl-2-Pentanone{	0 4601	0 3611	21 5 1
2-Hexanonei	0.305	0. 2331	23. A
fetrachloroethene	0. 625	0. 5001	20.0
1, 1, 2, 2-Tetrachloroethane#	0.783	0.626	20.0 #
foluene*	0.7311	0. 5761	21.2 *
hlarahenzene #	1 0691	0 8811	- 17.A #
thulbenzene *	0. 4831	0, 4001	17.2 *
thylbenzene*	0. 9431	0.775	17.8
(YLENE (total)	1		
p Xylene	0.5551	0.448	19.3
-Xylene	0.4161	0.3521	15.4
. 3-Dichlorobenzene	1.345!	1.1981	10.9
2-Dichlorobenzene			9.91
, 4-Dichlorobenzene			

ı.

***************************************	******************
Toluene-d8	
Bromofluorobenzene	0.8101 0.8531 -5.3 1
11,2-Dichloroethane-d41	1.9881 1.9091 4.0 1
1	I

- -

-

-

_

1/87 Rev.

.

SEP 0 3 1998 NFA REQUEST AND 1995 ANNUAL STATUS REPT GROUNDWATER MONITORING PROJE MAY 1, 1995 TO JULY 31, 1995

GROUNDWATER MONITORING PROJECT CHEVRON FACILITY NO. 46836 10163 LEM TURNER ROAD, JACKSONVILLE, FLORIDA FDEP FACILITY NO. 168506977

August 30, 1995

Bureau of Waste Cleanup

Prepared For

SEP 1.8 1995

CHEVRON U.S.A., INC<u>Petroleum Oleanup Section</u> 2300 Windy Ridge Parkway, Suite 800 Atlanta, Georgia 30339-5673

Prepared By

Environmental Geoscience & Engineering, Inc. P.O. Box 8687 Jacksonville, Florida 32239 (904) 724-9300

Environmental Geoscience & Engineering, Inc. Consulting Services

P. O. Box 8687 Jacksonville, FL 32239 (904) 724-9300

August 30, 1995

EG

Ms. Allene G. McIntosh Water Quality Division Department of Regulatory & Environmental Services 421 West Church Street, Suite 412 Jacksonville, FL 32202-4111

Re: NFA Request and Report of Annual Monitoring Program Chevron Facility No. 46863 10162 Lem Turner Road, Jacksonville, Florida FDEP Facility No. 168506977, EGE Project No. A004304

Dear Ms. McIntosh:

This letter has been prepared on behalf of Chevron U.S.A., Inc. to comply with the monitoring only proposal (MOP) approved in the letter from the Florida Department of Environmental Protection (FDEP) dated August 1, 1994. A copy of the FDEP letter is included in Appendix A.

Wells MW-3, MW-6, and MW-7 were sampled for EPA Methods 624 and 625 (including tics) parameters during each of the first three quarters. The sampling dates were October 10, 1994, December 13, 1994, and March 27, 1995. Each sampling event showed that Benzene and total BETX concentrations met the requirements outlined in the monitoring program. Wells MW-3, MW-6, and MW-7 were sampled for EPA Methods 624 and 625 (including tics) parameters and MW-1, MW-2, MW-4, and MW-5 were sampled for EPA Method 602 parameters by EGE on June 29, 1995. The results of the sampling are presented in Table 1 and illustrated in Figure 1. The laboratory reports are be included in Appendix B. The June sampling event showed that the Benzene and total BETX concentrations met the requirements outlined in the monitoring program. Groundwater elevations for the life of the monitoring action have been measured and are presented in Table 2. Figure 2 illustrates the groundwater contours measured in June 1995.

August 30, 1995 Ms. Allene McIntosh Chevron 46863 NFA Request Page Two

The historical data which have been collected for this site indicates that there is a small area of slightly impacted groundwater in the vicinity of the previous used oil tank. Based on the low concentrations, limited areal extent, and the fact that the hydrocarbons do not appear to be migrating, Chevron and EGE request that No Further Action be approved for this site.

Please contact the undersigned with any questions concerning this project.

Sincerely,

D. J. of Mighto

G. Scott Hughes Staff Scientist

m ON

James O. Smith, Jr., P.E. Senior Engineer/President

cc: John Machen, Chevron U.S.A.

TABLES

Table 1 - Groundwater Analytical Results

Chevron Facility No. 46863, 10162 Lem Turner Road, Jacksonville, Florida

Well #	Date	Benzene	Ethyl Benzene	Toluene	Xylenes	Total VOA	MTBE	Total Naphthalenes
MW-1	12/5/88	BDL	BDL	BDL	BDL	BDL	13	NS
	11/15/93	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	4/27/94	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	6/29/95	BDL	BDL	BDL	BDL	BDL	BDL	NS
MW-2	12/5/88	BDL	BDL	BDL	BDL	BDL	BDL	NS
	11/15/93	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	4/27/94	BDL	BDL	BDL	BDL	BDL	10	BDL
	6/29/95	BDL	BDL	BDL	BDL	BDL	BDL	NS
MW-3	12/5/88	BDL	BDL	BDL	BDL	BDL	BDL	NS
	11/15/93	15	8	BDL	4	27	NS	NS
	4/27/94	13	BDL	BDL	2	15	NS	BDL
	10/10/94	34	4	BDL	BDL	38	BDL	BDL
	12/13/94	19	3	BDL	BDL	22	NS	BDL
	3/27/95	14	1	BDL	BDL	15	NS	BDL
	6/29/95	14	2	BDL	BDL	16	NS	BDL
MW-4	12/5/88	BDL	BDL	BDL	BDL	BDL	BDL	NS
	11/15/93	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	4/57/94	BDL	BDL	BÐL	BDL	BDL	BDL	BDL
	6/29/95	BDL	BDL	BDL	BDL	BDL	BDL	NS

Table 1 - Groundwater Analytical Results

Chevron Facility No. 46863, 10162 Lem Turner Road, Jacksonville, Florida

Well #	Date	Benzene	Ethyl Benzene	Toluene	Xylenes	Total VOA	MTBE	Total Naphthalenes
MW-5	12/5/88	BDL	BDL	BDL	BDL	BDL	BDL	NS
	11/15/93	BDL	BDL	BDL	BDL	BDL	NS	NS
	4/27/94	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	6/29/95	BDL	BDL	BDL	BDL	BDL	BDL	NS
MW-6	4/27/94	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	10/10/94	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	12/13/94	BDL	BDL	BDL	BDL	BDL	NS	BDL
	3/27/95	BDL	BDL	BDL	BDL	BDL	NS	BDL
	6/29/95	BDI.	BDL	BDL	BDL	BDI.	NS	BDL
MW-7	4/27/94	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	10/10/94	BDL	BDL	BDL	BDL	BDL	BDL	BDL
	12/13/94	BDL	BDL	BDL	BDL	BDL	NS	BDL
	3/27/95	BDL	BDL	BDL	BDL	BDL	NS	BDL
	6/29/95	BDL	BDL	BDL	BDL	BDL	NS	BDL

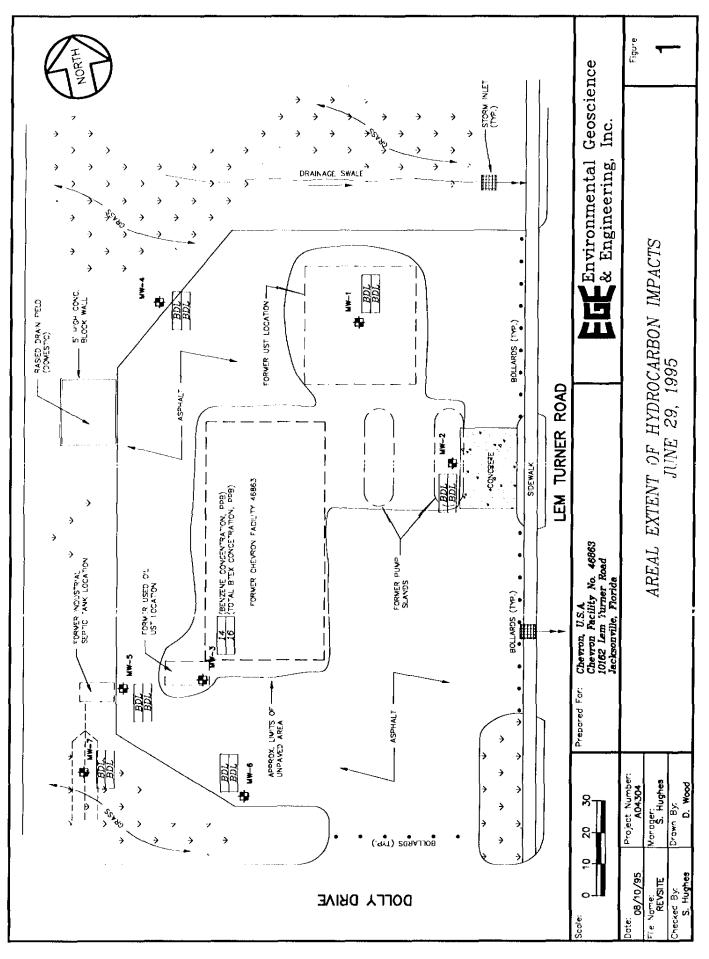
BDL Below Detection Limit

NS Not Sampled

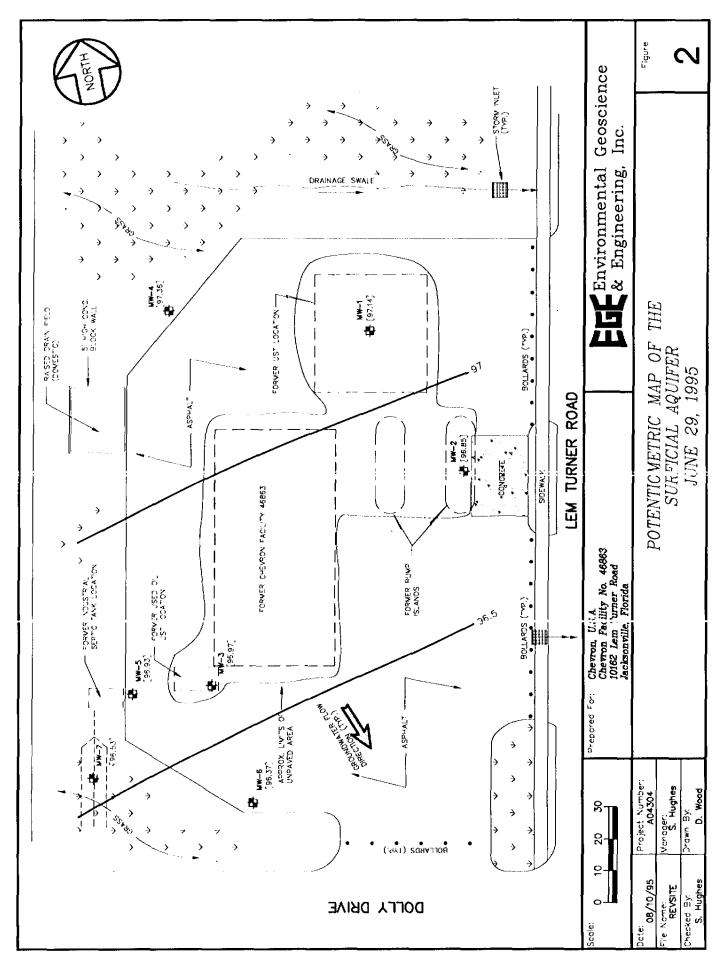
Table 2 - Groundwater Elevations

Chevron Facility No. 46863, 10162 Lem Turner Road, Jacksonville, Florida

Date	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7
тос	99.51	99.61	100.11	100.61	100.06	99.39	99.32
12/2/88	96.88	96.44	96.48	97.15	96.18	NP	NP
12/5/88	96.70	96.19	96.31	96.99	96.04	NP	NP
1/11/89	96.79	96.07	96.25	97.02	96.14	NP	NP
11/15/93	98.03	97.89	98.34	99.36	98.47	NP	NP
11/17/93	97.84	97.55	97.98	98.35	97.98	NP	NP
4/27/94	99.64	96.67	96.66	97.12	96.61	96.01	96.11
5/31/94	96.61	96.25	96.09	96.58	96.04	95.67	95.57
10/10/94	97.93	97.87	98.23	98.28	97.94	97.42	97.15
3/27/95	97.36	97.24	97.33	97.66	97.45	96.55	96.74
6/29/95	97.14	96.85	96.97	97.36	96.93	96.37	96.53


TOC Top of Casing

NP Not Present


Elevations are in feet based on an arbitrary datum.

FIGURES

Environmental Geoscience & Engineering, Inc.

.

. .

APPENDIX B

LABORATORY ANALYTICAL REPORT

RST 895-132 CHAIN OF CUSTODY

CLIENT: ChevRun	, L	12	A.	Pr	2021	it	15	Ū	5	Ci	IEN	T P	ROJ	EC1	r Nu	JMB	ER:	f	10	रुप	3	0	Ч					43
					ATIVI					ric (CON	ITAI	NE	1S		GL	ASS	CO	NTA	INE	RS			[<u> </u>		
QUANTITY OF SAMPLE CONTAINERS SHIPPED	H ₂ SO,	HNC3	ц Ч	Zn Acetate	Na ₇ S,O ₃	Unpreserved	NaOH	8 oz.	16 02.	32 oz.	∕s gallon	1 gallon	Whirl-pak	100-ML Cup	120 ml (A)	t liter (A)	f liter (C)	40 ml Vial	4 02. WTT	8 oz. wm	16 oz. wm	32 oz. wm	D.I. Trip Btank			NO	res	5
- <u></u> <u></u> 			77			4	- 7									~		111										
_4			<u> </u>		┝──┽╸ ┝──╅╸	- 1	_											-				[~					
Relinquished By:	. D		I		LL	 []	i //me 29 !] 		Dat	3-'	ل ۵۲	Re	celve	ed By) y:	l	I		l1		I	I	I	Tim	6	Т	Date
thattoria lat						l	11	50		2	<u> </u>	10	L	- 1							D		0.5			0 DE		
PART 2 - Sample/Pro					n aix C(c			···	.				<u>.</u> 1				EHS		יע	PRE	SE	HVA	IIVE	S HE	UC T	ESTE
DW DRINKING WATER WW WASTEWATER GW GROUNDWATER	•	et mir	AI St		R Dil		.ə	·	SL	. S	LUDG	CE W SE IWAT		R ۲		0 2 t	25971					ĺ		ł				TOTA OF BOTT
SAMPLE I.D.			SAN	IPLE	DAT	E	SAN		_	IE		MATI			Ê.		$\widetilde{\mathscr{O}}$				_							
MW-7 MW-3 MW-6 Eguipment Blan			3	27	175	_	13	5	2			<u>6-1</u>			₩!	1-	1				_					\downarrow		3
<u>MW-3</u>			2/	17	194	\downarrow		10			-	5-11				2									4	\downarrow		3
<u>MW-6</u>	. r	-	24	27	177		<u> </u>	10	<u> </u>			5-11 5-1		1		ᅱ		\rightarrow		-+	-					$\left - \right $	4	3
Equipment play	<u> </u>	-	51	7/	193		14	1/	U		(<u>, , , , , , , , , , , , , , , , , , , </u>	•	_	<u>'\ </u>	-	-	-					_			┼╌┧		د
		{								{			··			-			{			{		-+-		╁─┽	-{	
									.					-				-		-+		—	-			┨─┤	-	
						-								†	-+					-+				+	-1	╀╌╂	\rightarrow	·····
										- 1							-		-†	-+					+		-	<u> </u>
									2									_										
																				Tola	Nu	mbe	r of I	Botlie	/Con	tainers	:	10
	Relin	quisi	hed I	Зу								Date			Tim	e	_			Rece	lvec	d By				Date		Tin
A		.											+	ļ.,		1.7	T	Ŋ.	1		D		++	·	17			
Jess	2	B	U	H	17-	7					2/	27	119	L'	7-7	+2	A)	m	da	20,),	ħν	U		-1/9	28/4	ŝS	10:
						<u></u>						<i>.</i>					4								-[-	
Client Environments	it G	20	050	ier	110	7	5 /	t h	4 ·					1	Pur	chas	ie O	der	Num	nber		18	3	0:	38	0		
	800				d										Pro	ject	Nun	nber	,	A	2	4-	3 (24	•			
city Jacksonvi					State	7	=1		Zi	p 5	32	2	11		Pro	ject	Nam	e C	h د	νr	0 1	オ	F I	t61	86	3		
Phone Number (90%)		3-7	17:	เวโ	Fax N	lum	ber	90						55				tion		01			1					x P
	m				th										San	nple	d By		T	<u> </u>		50		<u></u>			-	
TURNAROUN	ID T	IME	S		•	c	hec	< be	low	T								SPE	CIA		STF	iUC	тю	NS	-			• <u> </u>
Standard (14)21 days						2	1	Nh	5	+																		
RUSH (mus	t be i	ippi	0.000	l In a	advan					+															~			
<- 48 hours - 2x standard		<u> </u>				r ·				+												···			<u>-</u>	,		••••
3-7 days - 1.5x standard p										-†-						- -							,		<u> </u>			
TCLP - 1 week rush 1.5x s		ard c	- price					-,		+																		
								~		-+-								ð~										

1

____ -

SIGNATURE PAGE

ATI Proje ct Manager

Reviewed by:

Client:

CHEVRON USA, PRODUCTS CO. MARIETTA, GEORGIA

Project Name:	CHEVRON FACILITY #46863
Project Number:	A04304
Project Location:	10163 LEM TURNER ROAD., JACKSONVILLE, FL
Accession Number:	503A43
Project Manager:	JIM SMITH/SCOTT HUGHES (EGE, FL), JOHN MACHEN (CHEVRON)
Sampled By:	JESSE

ANALYTICAL TECHNOLOGIES, INC.

Analysis Report

Analysis: VOLATILES (8240)

Accession: Client: Project Number: Project Name: Project Location: Department: 503A43 CHEVRON USA, PRODUCTS CO. A04304 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL ORGANIC/MS ANALYTICAL TECHNOLOGIES, INC.

TRICHLOROETHENE

TRICHLOROFLUOROMETHANE

(0) Page 1 Date 31-Mar-95 "FINAL REPORT FORMAT - SINGLE" 503743 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: A04304 Project Name: CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL VOLATILES (8240) Project Location: Test: 8240 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992 Analysis Method: Extraction Method: N/AGROUNDWATER Matrix: QC Level: IIC Lab Id: 001 Sample Date/Time: 27-MAR-95 1355 MW-7 Client Sample Id: Received Date: 28-MAR-95 Batch: NAW031 Extraction Date: N/A Dry Weight %: N/A Analysis Date: 31-MAR-95 Blank: C Parameter: Units: Results: Rpt Lmts: Q: ACETONE UG/L ND 10 ŬĞ/L UG/L ACROLEIN ND 100 ND ACRYLONITRILE 100 UG/L ND BENZENE 1 ŪĠ/L UG/L BROMODICHLOROMETHANE ND 1 ND 2 BROMOFORM BROMOMETHANE UG/L ND 1 2-BUTANONE (MEK) UG/L ND 3 CARBON DISULFIDE CARBON TETRACHLORIDE UG/L ND 1 2 UG/L ND CHLOROBENZENE UG/L 2 1 CHLOROETHANE UG/L ND 1 UG/L UG/L 2-CHLOROETHYLVINYL ETHER ND 52255 CHLOROFORM ND CHLOROMETHANE UG/L ND UG/L UG/L CHLOROD I BROMOMETHANE ND DIBROMOMETHANE ND DICHLORODIFLUOROMETHANE UG/L ND 5 1,1-DICHLOROETHANE ŬĞ/L UG/L ND 1 1,2-DICHLOROETHANE $\overline{2}$ ND 1,1-DICHLOROETHENE UG/L ND 1 ŬG/L UG/L TOTAL 1,2-DICHLOROETHYLENE 1,2-DICHLOROPROPANE 5 ND 2 ND CIS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE 1, 4-DICHLORO-2-BUTENE UG/L ND 1 UG/L ND 1 ŬĠ/L ND 5 ETHYL BENZENE UG/L ND 1 ETHYL METHACRYLATE UG/L ND 5 2-HEXANONE UG/L 3 ND ND 5 IODOMETHANE UG/L METHYLENE CHLORIDE 4-METHYL-2-PENTANONE 3 UG/L ND UG/L ND 3 2 2 2 STYRENE UG/L ND 1, 1, 2, 2-TETRACHLOROETHANE TETRACHLOROETHENE UG/L ND UG/L ND 1 55 UG/L ND TOLUENE 1, 1, 1 - TRICHLOROETHANE 1, 1, 2 - TRICHLOROETHANE ND UG/L 2 UG/L ND

UG/L

UG/L

ND

ND

1

1

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

	"FI	NAL REPORT FOR	MAT - SINGLE	81) Page te 31-	
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	503A43 CHEVRON USA, PF A04304 CHEVRON FACILIT 10163 LEM TURNE VOLATILES (8240 8240 / SW-846, N/A GROUNDWATER IIC	Y #46863 R ROAD., JACK		86 and Re	e v. 1.	, July	1992
Lab Id: Client Sample Id:	001 MW-7	,, ¹⁴ -1-14 (1997)	Sample Dat Received 1			4AR-95 4AR-95	1355
Parameter:		Units:	Results:	Rpt Lm	nts:	Q:	
1,2,3 TRICHLOROPRO VINYL ACETATE VINYL CHLORIDE TOTAL XYLENES BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8		UG/L UG/L UG/L %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND 97 105 102	5 2 1 2 82-115 76-114 88-115			

Comments:

_

-

-

-

_ - -

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 3 Date 31-Mar-95 "FINAL REPORT FORMAT - SINGLE" 503A43 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: A04304 Project Name: Project Location: CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL VOLATILES (8240) 8240 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992 Test: Analysis Method: Extraction Method: N/A GROUNDWATER Matrix: OC Level: IIC Sample Date/Time: 27-MAR-95 1400 Lab Id: 002 Received Date: 28-MAR-95 Client Sample Id: MW-3 Extraction Date: N/A Batch: NAW031 Dry Weight %: N/A Analysis Date: 31-MAR-95 Blank: C Units: Results: Rpt Lmts: 0: Parameter: UG/L 10 ACETONE 16 UG/L ND 100 ACROLEIN UG/L ND 100 ACRYLONITRILE UG/L 14 1 BENZENE BROMODICHLOROMETHANE UG/L ND 1 2 UG/L ND BROMOFORM UG/L ND 1 BROMOMETHANE 3 2-BUTANONE (MEK) UG/L ND CARBON DISULFIDE CARBON TETRACHLORIDE UG/L UG/L ND 1 2 ND CHLOROBENZENE UG/L 4 1 CHLOROETHANE UG/L ND 1 UG/L 2-CHLOROETHYLVINYL ETHER ND 5 2 2 UG/L ND CHLOROFORM CHLOROMETHANE UG/L ND ŬG/L 5 CHLOROD I BROMOME THANE ND 5 5 ND DIBROMOMETHANE UG/L DICHLORODIFLUOROMETHANE UG/L ND 1,1-DICHLOROETHANE UG/L ND 1 2 UG/L ND 1,2-DICHLOROETHANE 1,1-DICHLOROETHENE UG/L ND 1 TOTAL 1,2-DICHLOROETHYLENE 1,2-DICHLOROPROPANE 5 2 UG/L ND ND UG/L CIS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE 1, 4-DICHLORO-2-BUTENE 1 UG/L ND UG/L ND 1 ŬG/L UG/L 5 ND 1 ETHYL BENZENE 1 ND ETHYL METHACRYLATE UG/L 5 UG/L UG/L ND 353322 2-HEXANONE ND IODOMETHANE METHYLENE CHLORIDE 4-METHYL-2-PENTANONE UG/L ND UG/L UG/L ND ND STYRENE 1,1,2,2-TETRACHLOROETHANE UG/L ND UG/L UG/L TETRACHLOROETHENE ND 1 ND 5 TOLUENE 1,1,1-TRICHLOROETHANE 5 ND UG/L 1, 1, 2 - TRICHLOROETHANE UG/L ND 2 UG/L TRICHLOROETHENE ND 1 ND 1 TR1CHLOROFLUOROMETHANE UG/L

	"FIN?	AL REPORT FORM	MAT - SINGLE"			Page 4 31-Mar-95	č
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	503A43 CHEVRON USA, PRO A04304 CHEVRON FACILITY 10163 LEM TURNEF VOLATILES (8240) 8240 / SW-846, 3 N/A GROUNDWATER IIC	(#46863 R ROAD., JACKS		; and Re	v. 1,	July 1992	
Lab Id: Client Sample Id:	002 MW-3		Sample Date Received Da				
Parameter:		Units:	Results:	Rpt Lm	ts:	Q:	
1,2,3 TRICHLOROPRO VINYL ACETATE VINYL CHLORIDE TOTAL XYLENES BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		UG/L UG/L UG/L %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND 103 106 103 DWB	5 2 1 2 82-115 76-114 88-115			

Comments:

-

-

- --

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

	"FIN	AL REPORT FO	ORMAT - SINGLE	· #1	[0) Pa Date 3	ge 5 1-Mar-95
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	503A43 CHEVRON USA, PR A04304 CHEVRON FACILIT 10163 LEM TURNE VOLATILES (8240 8240 / SW-846, N/A GROUNDWATER IIC	Y #46863 R ROAD., JAC)			ev. 1, Ju	ly 1992
Lab Id: Client Sample Id:	003 MW-6		Sample Da Received		27-MAR- 28-MAR-	
Batch: NAW031 Blank: C	Dry Weight %;	N/A	Extractio Analysis	n Date: Date:	N/A 31-MAR-	95
Parameter:		Units:	Results:	Rpt Lm	nts: Q	:
ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHAN BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON DISULFIDE CARBON TETRACHLORII CHLOROBENZENE CHLOROETHANE 2-CHLOROETHANE 2-CHLOROETHANE CHLOROFORM CHLOROFORM CHLORODI BROMOMETHAN DIBROMOMETHANE DICHLORODI FLUOROMET 1, 1-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROETHANE 1, 2-DICHLOROPROPANH CIS-1, 3-DICHLOROF TRANS-1, 3-DICHLOROF 1, 4-DICHLORO-2-BUTE ETHYL BENZENE ETHYL METHACRYLATE 2-HEXANONE IODOMETHANE METHYL-2-PENTANON STYRENE 1, 1, 2, 2-TETRACHLOROETHANE TOLUENE 1, 1, 1-TRICHLOROETHANE	DE ETHER NE THANE THYLENE DPENE ROPENE NE NE	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	10 100 1 1 2 1 3 1 2 1 1 5 2 2 5 5 5 1 2 1 5 2 1 1 5 1 5		

TRICHLOROETHENE TRICHLOROFLUOROMETHANE

	"FIN	AL REPORT FOR	MAT - SINGLE"		[0] Pac Date 3	ge 6 1-Mar-95
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	VOLATILES (8240 8240 / SW-846,	Y #46863 R ROAD., JACKS)		5 and Rev	7. 1, Ju:	ly 1992
Lab Id: Client Sample Id:	003 MW-6		Sample Date Received Da		27-MAR-9 28-MAR-9	
Parameter:		Units:	Results:	Rpt Lmt	s: Q:	:
1,2,3 TRICHLOROPRO VINYL ACETATE VINYL CHLORIDE TOTAL XYLENES BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		UG/L UG/L UG/L VG/L %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND 100 103 105 LD	5 2 1 2 82-115 76-114 88-115		

Comments:

_ ____

_

_. ----

------___

	"FII	NAL REPORT F	FORMAT - SINGLE	11) Page te 31-N	
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	VOLATILES (8240 8240 / SW-846,	ГY #46863 SR ROAD., J⊉			ev. 1	, July	1992
Lab Id: Client Sample Id:	004 EQUIPMENT BLANK	ς	Sample Dat Received			MAR-95 MAR-95	1410
Batch: NAW031 Blank: C	Dry Weight %:	N/A	Extraction Analysis 1		N/A 31-1	MAR-95	
Parameter:		Units:	Results:	Rpt Lm	ts;	Q:	
ACETONE ACROLEIN ACRYLONITRILE BENZENE BROMODICHLOROMETHAN BROMOFORM BROMOMETHANE 2-BUTANONE (MEK) CARBON DISULFIDE CARBON TETRACHLORIN CHLOROBENZENE CHLOROETHANE 2-CHLOROETHANE 2-CHLOROETHANE 2-CHLOROETHANE CHLORODIBROMOMETHANE DICHLORODIFLUOROMET 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,2-DICHLOROETHANE 1,4-DICHLOROFTHANE CHS-1,3-DICHLOROP TRANS-1,3-DICHLOROP TRANS-1,3-DICHLOROP TRANS-1,3-DICHLOROP TRANS-1,3-DICHLOROP THYL BENZENE ETHYL METHACRYLATE 2-HEXANONE IODOMETHANE METHYLENE CHLORIDE 4-METHYLE 2-PENTANON STYRENE 1,1,2-TETRACHLOROETHENE TOLUENE 1,1,2-TRICHLOROETHENE	DE ETHER NE THANE ETHYLENE SOPENE PROPENE ENE NE	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	22 ND ND ND ND ND ND ND ND ND ND ND ND ND	10 100 1 1 2 1 3 1 2 1 5 2 2 5 5 5 1 2 1 5 2 1 5 2 1 5 5 3 3 2 2 1 5 5 2 1 5 2 1 5 5 2 1 5 5 2 1 5 5 5 1 2 1 5 5 5 5			

	"FINI	AL REPORT FOR	MAT - SINGLE"		[0) Page 8 Date 31-Mar-95
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	CHEVRON FACILITY 10163 LEM TURNER VOLATILES (8240) 8240 / SW-846, 3	446863 R ROAD., JACKS		5 and Re	v. 1, July 1992
Lab Id: Client Sample Id:	004 EQUIPMENT BLANK		Sample Date Received Da		27-MAR-95 1410 28-MAR-95
Parameter:		Units:	Results:	Rpt Lm	its: Q:
1,2,3 TRICHLOROPRO VINYL ACETATE VINYL CHLORIDE TOTAL XYLENES BROMOFLUOROBENZENE 1,2-DICHLOROETHANE TOLUENE-D8 ANALYST		UG/L UG/L UG/L %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND 100 105 102 DWB	5 2 1 2 82-115 76-114 88-115	

Comments:

- -

- --

_

_ --------

I

--

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

	"Method Report Summary"		[0) Page 9 Date 31-Mar-95
Project Number: Project Name:	CHEVRON USA, PRODUCTS CO.		
Client Sample Id:	Parameter:	Unit:	Result:
MW-7 MW-3 EQUIPMENT BLANK	CHLOROBENZENE ACETONE BENZENE CHLOROBENZENE ETHYL BENZENE ACETONE CHLOROFORM	UG/L UG/L UG/L UG/L UG/L UG/L UG/L	2 16 14 4 1 22 3

Analysis Report

Analysis: ACID & BASE EXTRACTABLES (8270)

Accession: Client: Project Number: Project Name: Project Location: Department:

503A43 CHEVRON USA, PRODUCTS CO. A04304 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL ORGANIC/MS

4 - CHLOROPHENYL PHENYL ETHER

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 1 Date 05-Apr-95 "FINAL REPORT FORMAT - SINGLE" Accession: 503A43 CHEVRON USA, PRODUCTS CO. Client: Project Number: A04304 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: GROUNDWATER OC Level: IIC 001 Sample Date/Time: 27-MAR-95 1355 Lab Id: Client Sample 1d: MW-7 Received Date: 28-MAR-95 Batch: ALW051 Extraction Date: 29-MAR-95 Blank: C Dry Weight %: N/A Analysis Date: 31-MAR-95 Parameter: Units: Results: Rpt Lmts: Q: UG/L BENZOIC ACID ND 50 4 - CHLORO - 3 - METHYLPHENOL UG/L ND 10 2 - CHLOROPHENOL UG/L ND 10 UG/L UG/L 2,4-DICHLOROPHENOL 10 ND 2,6-DICHLOROPHENOL ND 10 2,4-DIMETHYLPHENOL UG/L ND 10 4,6-DINITRO-2-METHYLPHENOL 2,4-DINITROPHENOL UG/L ND 50 50 UG/L ND 2-METHYLPHENOL UG/L ND 10 4 - METHYLPHENOL UG/L ND 10 UG/L UG/L 2-NITROPHENOL ND 10 4 - NITROPHENOL ND 50 PENTACHLOROPHENOL UG/L \mathbb{ND} 50 PHENOL UG/L ND 10 2,3,4,6-TETRACHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL ACENAPHTHENE UG/L ND 10 UG/L ND 50 UG/L ND 10 UG/L ND 10 ACENAPHTHYLENE ACETOPHENONE UG/L ND 10 UG/L ND 10 4 - AMINOBIPHENYL UG/L ND 10 ANILINE UG/L ND 10 UG/L ANTHRACENE ND 10 BENZIDINE UG/L ND 10 BENZO (A) ANTHRACENE BENZO (A) PYRENE UG/L ND 10 UG/L ND 10 BENZO (B) FLUORANTHENE UG/L ND 10 BENZO (G, H, I) PERYLENE BENZO (K) FLUORANTHENE UG/L ND 10 UG/L ND 10 BENZYL ALCOHOL UG/L ND 10 BIS (2-CHLOROETHOXY) METHANE UG/L ND 10 BIS (2-CHLOROETHYL) ETHER UG/L ND 10 BIS (2-CHLOROISOPROPYL) ETHER BIS (2-ETHOYLHEXYL) PHTHALATE 4-BROMOPHENYL PHENYL ETHER BUTYLBENZYL PHTHALATE UG/L ND 1.0 UG/L ND 10 UG/L ND 10UG/L ND 10 4 - CHLOROANTLINE UG/L ND 10 UG/L UG/L 1 - CHLORONAPHTHALENE ND 10 2 - CHLORONAPHTHALENE ND 10

UG/L

ND

10

PHENANTHRENE

[0) Page 2 Date 05-Apr-95 "FINAL REPORT FORMAT - SINGLE" 503A43 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: A04304 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Project Name: Project Location: Test: Analysis Method: Extraction Method: GROUNDWATER Matrix: QC Level: IIC Lab 1d: 001 Sample Date/Time: 27-MAR-95 1355 MW-7 Received Date: Client Sample Id: 28-MAR-95 Units: Results: Rpt Lmts: Parameter: Q: CHRYSENE UG/L ND 10 DIBENZ(A, J) ACRIDINE UG/L ND 10 DIBENZO (A, H) ANTHRACENE UG/L ND 10 DIBENZOFURAN UG/L UG/L ND 10 1,2-DICHLOROBENZENE ND 10 1,3-DICHLOROBENZENE UG/L ND 10 1,4-D1CHLOROBENZENE UG/L ND 10 3,3'-DICHLOROBENZIDINE UG/L ND 50 DIETHYLPHTHALATE UG/L ND 10 P-DIMETHYLAMINOAZOBENZENE 7,12-DIMETHYLBENZ (A) ANTHRACENE UG/L ND 10 UG/L ND 10 A-, A-DIMETHYLPHENETHYLAMINE UG/L ND 10 DIMETHYLPHTHALATE UG/L ND 10 UG/L D1 - N - BUTYLPHTHALATE ND 10 2,4-DINITROTOLUENE UG/L ND 10 2,6-DINITROTOLUENE UG/L ND 10 D1 - N - OCTYLPHTHALATE UG/L ND 10 DIPHENYLAMINE UG/L ND 10 1,2-DIPHENYLHYDRAZINE UG/L ND 10 **FLUORANTHENE** UG/L ND 10 FLUORENE UG/L ND 10 HEXACHLOROBENZENE UG/L ND 10 HEXACHLOROBUTADI ENE UG/L ND 10 **HEXACHLOROCYCLOPENTADIENE** UG/L ND 10 HEXACHLOROETHANE UG/L ND 10 INDENO (1,2,3-CD) PYRENE ISOPHORONE ŪG/L ND 10 UG/L ND 10 3 - METHYLCHOLANTHRENE UG/L ND 10 2 - METHYLNAPHTHALENE UG/L ND 10 NAPHTHALENE UG/L ND 10 1-NAPHTHYLAMINE UG/L ND 10 2 - NAPHTHYLAMINE UG/L ND 10 2-NITROANILINE UG/L ND 10 3-NITROANILINE UG/L ND 10 4-NITROANILINE UG/L ND 10 NITROBENZENE UG/L ND 10 N-NITROSODIMETHYLAMINE UG/L ND 10 N-NITROSODI-N-BUTYLAMINE UG/L ND 10 N-NITROSODI PHENYLAMINE ŪG/L ND 10 N-NITROSO-DI-N-PROPYLAMINE N-NITROSOPIPERIDINE UG/L ND 10 UG/L ND 10 PENTACHLOROBENZENE UG/L ND 10 PENTACHLORONITROBENZENE (PCNB) UG/L ND 10 PHENACETIN UG/L ND 10

UG/L

ND

10

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

		"FIN7	AL REPORT FORM	AT - SINGLE"		[0] Page 3 Date 05-Apr-95
	Accession: Client:	503A43 CHEVRON USA, PRO	DUCTS CO.			
~	Project Number: Project Name: Project Location:	A04304 CHEVRON FACILITY 10163 LEM TURNER		SONVILLE, FL		
	Test:	ACID & BASE EXTR	ACTABLES (827	'0)	_	_
	Analysis Method: Extraction Method: Matrix: QC Level:	8270 / SW-846, 3 3520 / SW-846, 3 GROUNDWATER IIC	Ird Edition, S Ird Edition, S	eptember 1986 eptember 1986	and Rev. and Rev.	1, July 1992. 1, July, 1992.
	Lab Id: Client Sample Id:	001 MW-7	-,	Sample Date Received Da		-MAR-95 1355 -MAR-95
-	Parameter:		Units:	Results:	Rpt Lmts:	Q:
	2-PICOLINE PRONAMIDE		UG/L UG/L	ND ND	10 10	
-	PYRENE 1,2,4,5-TETRACHLOR	OBENZENE	UG/L UG/L	ND ND	10 10	
-	1,2,4 TRICHLOROBEN 2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHEN		UG/L %REC/SURR %REC/SURR %REC/SURR	ND 97 100 119	10 21-100 10-100 10-123	
-	2 - FLUOROBIPHENYL NITROBENZENE - D5 TERPHENYL - D14 ANALYST		%REC/SURR %REC/SURR %REC/SURR INITIALS	82 78 116 RB	$\begin{array}{r} 10 & 123 \\ 43 - 116 \\ 35 - 114 \\ 44 - 124 \end{array}$	
	Emilit 01		7117 1 TUHO	ND .		

Comments:

-----------------------_ ----------_ ---____ _ ----_ -____ ____ -----

-

-.

--

-

~--

_

-.

_.

. -

- ---

_ _.

ANALYTICAL TECHNOLOGIES, INC. 11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

1

	"FINAL REPORT FORMA	NT - SINGLE"	[0) Page Date 05-,	
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	503A43 CHEVRON USA, PRODUCTS CO. A04304 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSC ACID & BASE EXTRACTABLES (8270 8270 / SW-846, 3rd Edition, Se 3520 / SW-846, 3rd Edition, Se GROUNDWATER IIC) ptember 1986 and R		
Lab Id: Client Sample Id:	001 MW-7	Sample Date/Time: Received Date:		1355
	"Sample Tic Repo	ort"		
Number of Tics Fou Concentration Unit				
	mpound Name:	RT:	Est Conc:	Q:

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 5 Date 05-Apr-95

"FINAL REPORT FORMAT - SINGLE"

Accession: 503A43 CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: A04304 A04304 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Project Location: Test: Analysis Method: Extraction Method: Matrix: GROUNDWATER IIC OC Level: 002 Sample Date/Time: 27-MAR-95 1400 Lab Id: Client Sample Id: MW-3 Received Date: 28-MAR-95 Batch: ALW051 Extraction Date: 29-MAR-95 Blank: C Dry Weight %: N/A Analysis Date: 31-MAR-95 Units: Parameter: Results: Rpt Lmts: Q: BENZOIC ACID UG/L ND 50 4 - CHLORO- 3 - METHYLPHENOL UG/L ND 10 2 - CHLOROPHENOL UG/L ND 10 2,4-D1CHLOROPHENOL UG/L ND 10 2,6-DICHLOROPHENOL UG/L ND 10 2,4-DIMETHYLPHENOL UG/L ND 10 4,6-DINITRO-2-METHYLPHENOL UG/L ND 50 2,4-DINITROPHENOL UG/L ND 50 2-METHYLPHENOL UG/L ND 10 4 - METHYLPHENOL UG/L ND 10 UG/L UG/L 2-NITROPHENOL ND 10 4-NITROPHENOL ND 50 PENTACHLOROPHENOL UG/L ND 50 UC/L PHENOL ND 10 2,3,4,6-TETRACHLOROPHENOL 2,4,5-TRICHLOROPHENOL ŪG/L ND 10 UG/L ND 50 2,4,6-TRICHLOROPHENOL ACENAPHTHENE UG/L UG/L ND 10 ND 10 ACENAPHTHYLENE UG/L ND 10 ACETOPHENONE UG/L ND 10 4-AMINOBIPHENYL UG/L ND 10 ANILINE UG/L ND 10 ANTHRACENE UG/L ND 10 UG/L BENZIDINE ND 10 BENZO (A) ANTHRACENE BENZO (A) PYRENE UC/L ND 10 UG/L ND 10 BENZO (B) FLUORANTHENE UG/L ND 10 BENZO (G,H,I) PERYLENE BENZO (K) FLUORANTHENE UG/L ND 10 UG/L ND 10 BENZYL ALCOHOL UG/L ND 10 BIS (2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHYL) ETHER BIS (2 - CHLOROISOPROPYL) ETHER UG/L UG/L ND 10 ND 10 UG/L ND10 BIS (2-ETHYLHEXYL) PHTHALATE UG/L ND 10 4-BROMOPHENYL PHENYL ETHER UG/L ND 10 BUTYLBENZYL PHTHALATE UG/L ND 10 4 - CHLOROAN1LINE UG/L ND 10 1 - CHLORONAPHTHALENE UG/L ND 10 2 - CHLORONAPHTHALENE UG/L ND 104 - CHLOROPHENYL PHENYL ETHER UG/L ND 10

[0) Page 6 Date 05-Apr-95

"FINAL REPORT FORMAT - SINGLE"

503A43 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: A04304 CHEVRON FACILITY #46863 Project Name: 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Project Location: Test: Analysis Method: Extraction Method: GROUNDWATER Matrix: OC Level: IIC Lab ld: 002 Sample Date/Time: 27-MAR-95 1400 Client Sample Id: MW-3 Received Date: 28-MAR-95 Units: Results: Rpt Lmts: Parameter: Q: UG/L ND 10 CHRYSENE DIBENZ (A, J) ACRIDINE UG/L ND 10 DIBENZO (A, H) ANTHRACENE UG/L ND 10 **DIBENZOFURAN** UG/L ND 10 1,2-DICHLOROBENZENE UG/L ND 10 1,3-DICHLOROBENZENE UG/L ND 10 1,4-DICHLOROBENZENE UG/L ND 10 3,3'-DICHLOROBENZIDINE UG/L ND 50 UG/L DIETHYLPHTHALATE ND 10 P-DIMETHYLAMINOAZOBENZENE UG/L ND 10 7,12-DIMETHYLBENZ (A) ANTHRACENE UG/L ND 10 A-, A-DIMETHYLPHENETHYLAMINE UG/L ND 10 DIMETHYLPHTHALATE UG/L ND 10 UG/L DJ-N-BUTYLPHTHALATE ND 10 2,4-DINITROTOLUENE UG/L ND 10 UG/L10 2,6-DINITROTOLUENE ND DI-N-OCTYLPHTHALATE UG/L ND 10 DIPHENYLAMINE UG/L ND 10 1,2-DIPHENYLHYDRAZINE UG/L ND 10 FLUORANTHENE UG/L ND 10 FLUORENE UG/L ND 10 HEXACHLOROBENZENE UG/L ND 10 UG/L **HEXACHLOROBUTADIENE** ND 10 UG/L **HEXACHLOROCYCLOPENTADIENE** ND 10 HEXACHLOROETHANE UG/L ND 10 INDENO (1,2,3-CD) PYRENE UG/L ND 10 ISOPHORONE UG/L ND 10 3 - METHYLCHOLANTHRENE UG/L ND 102 - METHYLNAPHTHALENE UG/L ND 10 UG/L NAPHTHALENE ND 10 ND 1 - NAPHTHYLAMINE UG/L 10 2-NAPHTHYLAMINE UG/L ND 10 2-NITROANILINE UG/L ND 10 3-NITROANILINE UG/L ND 10 ND 4 - NITROANILINE UG/L 10 NITROBENZENE UG/L ND 10 N-NITROSODIMETHYLAMINE UG/L ND 10N-NITROSODI-N-BUTYLAMINE N-NITROSODIPHENYLAMINE UG/L ND 10 UG/L ND 10 N-NITROSO-DI-N-PROPYLAMINE UG/L ND 10 N-NITROSOPIPERIDINE UG/L ND 10 PENTACHLOROBENZENE UG/L ND 10 PENTACHLORONITROBENZENE (PCNB) UG/L ND 10PHENACETIN UG/L ND 10 PHENANTHRENE UG/L ND 10

----~ ---

l

	"FINA	AL REPORT FORM	AT - SINGLE"		[0) Page Date 05-	
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	CHEVRON FACILITY 10163 LEM TURNER ACID & BASE EXTR 8270 / SW-846, 3	(#46863 R ROAD., JACKS RACTABLES (827 Ind Edition, S	0) September 1986	and Rev and Rev	7. 1, July 7. 1, July	1992. , 1992.
Lab Id: Client Sample Id:			Sample Date Received Da		27-MAR-95 28-MAR-95	
Parameter:		Units:	Results:	Rpt Lmt	s: Q:	
2-PICOLINE PRONAMIDE PYRENE 1,2,4,5-TETRACHLORO 1,2,4 TRICHLOROBENS 2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENO 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	ZENE	UG/L UG/L UG/L UG/L UG/L %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND 98 97 119 99 86 99 86 99	$ \begin{array}{c} 10\\ 10\\ 10\\ 21-100\\ 10-123\\ 43-116\\ 35-114\\ 44-124\\ \end{array} $		

Comments:

	"FINAL REPORT FORMA	T - SINGLE"	[0) Page 8 Date 05-Apr-95
	503A43 CHEVRON USA, PRODUCTS CO. A04304 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSO ACID & BASE EXTRACTABLES (8270 8270 / SW-846, 3rd Edition, Se 3520 / SW-846, 3rd Edition, Se GROUNDWATER JIC) ptember 1986 and R	ev. 1, July 1992. ev. 1, July, 1992.
Lab Id: Client Sample Id:	002 MW-3	Sample Date/Time: Received Date:	
	"Sample Tic Repo	rt"	
Number of Tics Fou Concentration Unit			
Cas Number: Co	npound Name:	RT:	Est Conc: Q:

(0) Page 9 Date 05-Apr-95

"FINAL REPORT FORMAT - SINGLE"

503A43 Accession: Client: CHEVRON USA, PRODUCTS CO. Project Number: Project Name: A04304 CHEVRON FACILITY #46863 Project Location: 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Test: Analysis Method: Extraction Method: GROUNDWATER Matrix: QC Level: TIC Lab Id: 003 Sample Date/Time: 27-MAR-95 1405 Received Date: Client Sample Id: MW-6 28-MAR-95 Batch: ALW051 Extraction Date: 29-MAR-95 Blank: C Dry Weight %: Analysis Date: 31-MAR-95 N/A Parameter: Units: Results: Rpt Lmts: 0: BENZOIC ACID UG/L ND 50 4 - CHLORO - 3 - METHYLPHENOL UG/L ND 10 2 - CHLOROPHENOL UG/L ND 10 2,4-DICHLOROPHENOL UG/L ND 10 UG/L UG/L 2,6-DICHLOROPHENOL ND 10 2,4-DIMETHYLPHENOL ND 10 4,6-DINITRO-2-METHYLPHENOL UG/L ND 50 2,4-DINITROPHENOL UG/L ND 50 UG/L 2-METHYLPHENOL ND 104-METHYLPHENOL UG/L ND 10 2-NITROPHENOL UG/L ND 10 4-NITROPHENOL UG/L ND 50 UG/L PENTACHLOROPHENOL ND 50 PHENOL UG/L ND 10 2,3,4,6-TETRACHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL ACENAPHTHENE UG/L ND 10 UG/L ND 50 UG/L ND 10 UG/L ND 10 ACENAPHTHYLENE UG/L ND 10 ACETOPHENONE UG/L ND 10 4 - AMINOBIPHENYL ANILINE UG/L ND 10 UG/L ND 10ANTHRACENE UG/L ND 10 BENZIDINE UG/L ND 10 BENZO (A) ANTHRACENE UG/L ND 10 BENZO (A) PYRENE BENZO (B) FLUORANTHENE UG/L ND 10 UG/L ND 10 BENZO (G, H, I) PERYLENE BENZO (K) FLUORANTHENE BENZYL ALCOHOL UG/L ND 10 UG/L UG/L ND 10 ND 10 BIS (2-CHLOROETHOXY) METHANE UG/L ND 10 BIS (2-CHLOROETHYL) ETHER UG/L ND 10 BIS (2-CHLOROISOPROPYL) ETHER UG/L ND 10 BIS (2-ETHYLHEXYL) PHTHALATE UG/L ND 10 4-BROMOPHENYL PHENYL ETHER UG/L ND 10 BUTYLBENZYL PHTHALATE UC/L ND 10 4 - CHLOROANILINE UG/L ND 10 1 - CHLORONAPHTHALENE UG/L ND 10 2 - CHLORONAPHTHALENE UG/L ND 10 UG/L 4 - CHLOROPHENYL PHENYL ETHER ND 10

PHENANTHRENE

[0] Page 10 Date 05-Apr-95 "FINAL REPORT FORMAT - SINGLE" Accession: 503A43 CHEVRON USA, PRODUCTS CO. Client: Project Number: A04304 Project Name: CHEVRON FACILITY #46863 Project Location: 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Test: Analysis Method: Extraction Method: GROUNDWATER Matrix: QC Level: IIC 003 Sample Date/Time: 27-MAR-95 1405 Lab Id: Client Sample Id: MW-6 Received Date: 28-MAR-95 Units: Rpt Lmts: Parameter: Results: Q: 10 CHRYSENE UG/L ND DIBENZ(A, J) ACRIDINE UG/L ND 10 DIBENZO (A, H) ANTHRACENE UG/L ND 10 DIBENZOFURAN UG/L ND 10 1,2-DICHLOROBENZENE UG/L ND 101, 3-DICHLOROBENZENE UG/L ND 10 1,4-DICHLOROBENZENE UG/L ND 10 3,3'-DICHLOROBENZIDINE UG/L ND 50 DIETHYLPHTHALATE ND UG7L 10 P-DIMETHYLAMINOAZOBENZENE UG/L ND 10 7, 12 - DIMETHYLBENZ (A) ANTHRACENE UG/L ND 10 A-, A-DIMETHYLPHENETHYLAMINE UG/L ND 10 DIMETHYLPHTHALATE UG/L ND 10 DI-N-BUTYLPHTHALATE UG/L ND 10 2,4-DINITROTOLUENE UG/L ND 10 2,6-DINITROTOLUENE DI-N-OCTYLPHTHALATE UG/L NÐ 10 10 UG/L ND DIPHENYLAMINE UG/L ND 10 1,2-DIPHENYLHYDRAZINE UG/L ND 10 FLUORANTHENE UG/L ND 10 FLUORENE UG/L ND 10 HEXACHLOROBENZENE UG/L ND 10 HEXACHLOROBUTADIENE UG/L ND 10 HEXACHLOROCYCLOPENTAD1ENE UG/L ND 10 HEXACHLOROETHANE UG/L ND 10 INDENO (1,2,3-CD) PYRENE UG/L ND 10 ISOPHORONE UG/L ND 10 UG/L . UG/L 3-METHYLCHOLANTHRENE ND 10 2-METHYLNAPHTHALENE ND 10 NAPHTHALENE UG/L ND 10 1 - NAPHTHYLAMINE UG/L ND 10 UG/L S-NAPHTHYLAMINE ND 10 ŪG/L ND 10 2-NITROANILINE UG/L 3 - NITROANILINE ND 10 4-NITROANILINE UG/L ND 10 UG/L UG/L NITROBENZENE ND 10 N-NITROSODIMETHYLAMINE ND 10 N-NITROSODI-N-BUTYLAMINE UG/L ND 10 N-NITROSODIPHENYLAMINE UG/L ND 10 N-NITROSO DI - N- PROPYLAMINE UG/L ND 10 UG/L N-NITROSOPIPERIDINE ND10 UG/L ND PENTACHLOROBENZENE 10 PENTACHLORONITROBENZENE (PCNB) UG/L ND 10 UG/L UG/L PHENACETIN ND 10

ND

10

_

_

_

[0) Page 11 Date 05-Apr-95

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	CHEVRON FACIL: 10163 LEM TURN ACID & BASE EX 8270 / SW-846,	ITY #46863 NER ROAD., JACH KTRACTABLES (82 3rd Edition,	270) September 19	86 and Rev.	1, July 1992. 1, July, 1992.
Lab Id: Client Sample Id:	003 MW-6			te/Time: 27 Date: 28	-MAR-95 1405 -MAR-95
Parameter:		Units:	Results:	Rpt Lmts:	Q:
2-PICOLINE PRONAMIDE PYRENE 1,2,4,5-TETRACHLORO 1,2,4 TRICHLOROBENZ 2-FILUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENO 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	SENE	UG/L UG/L UG/L UG/L %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR INITIALS	ND ND ND 99 121 94 97 121 RB	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 21-100\\ 10-123\\ 43-116\\ 35-114\\ 44-124\\ \end{array} $	

Comments:

_

_---

-

-

	"FINAL REPORT FORMA	T - SINGLE"	(0) Page Date 05- <i>H</i>	
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSO ACID & BASE EXTRACTABLES (8270 8270 / SW-846, 3rd Edition, Se) ptember 1986 and R		
Lab Id: Client Sample Id:	003 MW-6	Sample Date/Time: Received Date:		1405
	"Sample Tic Repo	rt"		
Number of Tics Fou Concentration Unit				
Cas Number: Co	mpound Name:	RT:	Est Conc:	Q:

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 13 Date 05-Apr-95

"FINAL REPORT FORMAT - SINGLE"

503A43 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: A04304 Project Name: CHEVRON FACILITY #46863 Project Location: 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Test: Analysis Method: Extraction Method: WATER Matrix: QC Level: IIC 0.04 Sample Date/Time: 27-MAR-95 1410 Lab Id: EQUIPMENT BLANK Client Sample Id: Received Date: 28-MAR-95 Batch: ALW051 Extraction Date: 29-MAR-95 Blank: C Dry Weight %: N/A Analysis Date: 31-MAR-95 Parameter: Units: Results: Rpt Lmts: Q: BENZOIC ACID UG/L ND 50 4 - CHLORO - 3 - METHYLPHENOL UG/L ND 10 2 - CHLOROPHENOL UG/L ND 10 2,4-DICHLOROPHENOL UG/L ND 10 2,6-D1CHLOROPHENOL UG/L ND 10 2,4-DIMETHYLPHENOL UG/L ND 10 ŬG/L 4,6-DIN1TRO-2-METHYLPHENOL ND 50 2,4-DINITROPHENOL UG/L ND 50 2-METHYLPHENOL UG/L ND 10 4 - METHYLPHENOL UG/L ND 10 2-NITROPHENOL UG/L ND 10 4-NITROPHENOL UG/L ND 50 PENTACHLOROPHENOL UG/L ND 50 PHENOL UG/L ND 10 2,3,4,6-TETRACHLOROPHENOL 2,4,5-TRICHLOROPHENOL 2,4,6-TRICHLOROPHENOL UG/L ND 10 UG/L ND 50 UG/L ND 10ACENAPHTHENE UG/L 10 ND ACENAPHTHYLENE UG/L ND 10 ACETOPHENONE UG/L ND 10 4-AMINOBIPHENYL UG/L ND 10 ANILINE ŬG/L ND 10 ANTHRACENE UG/L ND 10 BENZIDINE UG/L ND 10 BENZO (A) ANTHRACENE UG/L ND 10 BENZO (A) PYRENE UG/L ND 10 BENZO (B) FLUORANTHENE UG/L ND 10 BENZO (G,H,I) PERYLENE UG/L ND 10 BENZO (K) FLUORANTHENE UG/L ND 10 BENZYL ALCOHOL UG/L ND 10 UG/L BIS (2 - CHLOROETHOXY) METHANE ND 10 BIS (2-CHLOROETHYL) ETHER UG/L ND 10 BIS (2 - CHLOROISOPROPYL) ETHER UG/LND 10 BIS (2-ETHYLHEXYL) PHTHALATE UG/L ND 10 4-BROMOPHENYL PHENYL ETHER UG/L ND 10UG/L BUTYLBENZYL PHTHALATE ND 10 4 · CHLOROANILINE UG/L ND 101 - CHLORONAPHTHALENE UG/L ND 10 2 - CHLORONAPHTHALENE UG/L ND 10 4 CHLOROPHENYL PHENYL ETHER UG/L ND 10

PHENANTHRENE

[0) Page 14 Date 05-Apr-95 "FINAL REPORT FORMAT - SINGLE" Accession: 503A43 Client: CHEVRON USA, PRODUCTS CO. A04304 Project Number: CHEVRON FACILITY #46863 CHEVRON FACILITY #46863 10163 LEM TURNER ROAD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (8270) 8270 / SW-846, 3rd Edition, September 1986 and Rev. 1, July 1992. 3520 / SW-846, 3rd Edition, September 1986 and Rev. 1, July, 1992. Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix WATER QC Level: IIC Lab Id: Sample Date/Time: 004 27-MAR-95 1410 Client Sample Id: EQUIPMENT BLANK Received Date: 28-MAR-95 Parameter: Units: Results: Rpt Lmts: 0: CHRYSENE UG/L ND 10 DIBENZ(A, J) ACRIDINE UG/L ND 10 DIBENZO (A, H) ANTHRACENE UG/L ND 10 DIBENZOFURAN UG/L ND 10 1,2-DICHLOROBENZENE UG/L ND 10 1, 3-DICHLOROBENZENE UG/L ND 10 1,4-DICHLOROBENZENE UG/L ND 10 3,3'-DICHLOROBENZIDINE UG/L ND 50 DIETHYLPHTHALATE UG/L ND 10 P-DIMETHYLAMINOAZOBENZENE UG/L ND 10 7, 12-DIMETHYLBENZ (A) ANTHRACENE UG/L ND 10 A - , A - DIMETHILBENZ (A) ANI HRACH A - , A - DIMETHYLPHENETHYLAMINE DIMETHYLPHTHALATE DI - N - BUTYLPHTHALATE 2, 4 - DINITROTOLUENE UG/L UG/L ND 10 ND 10 UG/L ND 10UG/L ND 10 2,6-DINITROTOLUENE UG/L ND 10 D1-N-OCTYLPHTHALATE UG/L ND 10 DIPHENYLAMINE UG/L ND 10 1,2-DIPHENYLHYDRAZINE UG/L ND 10 **FLUORAN'THENE** UG/L ND 10 FLUORENE UG/L ND 10 HEXACHLOROBENZENE UG/L ND 10 HEXACHLOROBUTADIENE UG/L ND 10 **HEXACHLOROCYCLOPENTADIENE** UG/L ND 10 HEXACHLOROETHANE INDENO (1,2,3-CD) PYRENE ISOPHORONE UG/L ND 10 UG/L ND 10 UG/L ND 10 3-METHYLCHOLANTHRENE UG/L ND 10 2-METHYLNAPHTHALENE UG/L ND 10 NAPHTHALENE UG/L ND 10 1-NAPHTHYLAMINE UG/L ND 10 2 - NAPHTHYLAMINE UG/L ND 10 2-NITROANILINE UG/L ND 10 3-NITROANILINE UG/L ND 10 4-NITROANILINE UG/L ND 10 NITROBENZENE UG/L ND 10 N-NITROSODIMETHYLAMINE UG/L ND 10 N-NITROSODI-N-BUTYLAMINE UG/L ND 10 N-NITROSODIPHENYLAMINE UG/L ND 10 N-NITROSO-DI-N-PROPYLAMINE UG/L UG/L ND 10 N-NITROSOPIPERIDINE ND 10 PENTACHLOROBENZENE UG/L ND 10 PENTACHLORON1TROBENZENE (PCNB) UG/L ND 10 PHENACETIN UG/L ND 10

UG/L

ND

10

_

_

_--

_

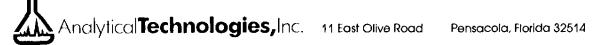
_

[0) Page 15 Date 05-Apr-95

"FINAL REPORT FORMAT - SINGLE"

	10163 LEM TURNER ACID & BASE EXTR 8270 / SW-846, 3	#46863 ROAD., JAC ACTABLES (8 Ind Edition,	270) September 198	6 and Rev. 1 6 and Rev. 1	1, July 1992. 1, July, 1992.
Lab Id: Client Sample Id:	004 EQUIPMENT BLANK		Sample Dat Received I		-MAR-95 1410 -MAR-95
Parameter:		Units:	Results:	Rpt Lmts:	Q:
2-PICOLINE PRONAMIDE PYRENE 1,2,4,5-TETRACHLORO 1,2,4 TRICHLOROBENZ 2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENO 2-FLUOROBIPHENYL NITROBENZENE-D5 TERPHENYL-D14 ANALYST	ZENE	UG/L UG/L UG/L VG/L %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR NITIALS	ND ND ND 99 95 118 83 75 103 RB	$ \begin{array}{c} 10\\ 10\\ 10\\ 10\\ 21-100\\ 10-100\\ 10-123\\ 43-116\\ 35-114\\ 44-124\\ \end{array} $	

Comments:


_

	"FINAL REPORT FORMA	AT - SINGLE"	[0) Page 16 Date 05-Apr-95
Accession: Client: Project Number: Project Name: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	ACID & BASE EXTRACTABLES (8270 8270 / SW-846, 3rd Edition, Se)) eptember 1986 and Re	v. 1, July 1992. v. 1, July, 1992.
Lab Id: Client Sample Id:	004 EQUIPMENT BLANK	Sample Date/Time: Received Date:	27-MAR-95 1410 28-MAR-95
	"Sample Tic Repo	ort"	
Number of Tics Four Concentration Units			
Cas Number: Con	npound Name:	RT:	Est Conc: Q:

RST B95-1209 CHAIN OF CUSTODY

CLIENT: ENVIRONA	t	<u> </u>	3	24			a۶	AX	2	CI	LIEN	IT P	RO	EC	TN	UME	BER	A	00	4:	20	ų						
							<u> </u>			TIC					Γ			6 C O	-			-	ſ	Γ	- <u> </u>			
OUANTITY OF SAMPLE CONTAINERS SHIPPED	H ₂ SO,	HNO3	HCL	Zn Acetate	Na ₂ S ₂ O ₃	Unpreserved	NaOH	8 oz.	16 oz.	32 oz.	% gaiton	1 galion	Whirl-pak	100-ML Cup	120 ml (A)	1 liter (A)	liter (C)	40 ml Vial	4 DZ. WM	8 oz. wm	16 oz. wm	32 oz. wm	D.I. Trip Blank			N	DTE	S
- L9			トレ			-	-	-		e7	~	, a	~					V				- -						
	1_					4	2									1-	P						_					
- 22			V											 			 	1-	E.				2	Ł				
Relinguished By:		اا م ب			L		Time }{2			Dat			Re	celv	d B	4 1 1	K	1	h	al	e)	L	1	The L3	ne ZoD		Date 6/14/9
PART 2 - Sample/Pro	ject	Info	mð	itio	n											PAF		IET	ERS	AN	D	RE	SE	RVA.	TIVE	SR	EQL	JESTED
DW DRINKING WATER WW WASTEWATER GW GROUNDWATER	S	AMP	AI SC	AI AI SC OI	JIL	DE	ES		SV SL ST		UDG			- {i			25 -775											TOTAL OF BOTTLI
SAMPLE I.D.			SAM	PLE	DATE	Ţ	SAM			IE	·	ATI		_[2	200	0	-		_	-				-	-	_	<u> </u>
EQBL		-	61	29	17	4		15		-+	_ <u>(</u>	<u>_</u>	<u> </u>		(Z	2	4		-	-+	-	-		-+-		+	{−	5
MW-5 MW-7			44	14 2 G	15-	+		120 940			-teh			-+		2	7		+		-†	+			-†	+	╂	3
MW-6		-6	$\frac{1}{2}$	94 74	173 195	-		00		-†	G	 _ _	/	-†		z	1	-†	-1	-†	1	-†	1		1	1-	1-	3
MW-	3) Ja	195	-		52			Ĵ	⊨⊿a	1			z	1											3
MW-	A _	_	61	Zg	195	1	,†T	2#	ð	livo	Ē	10	1_		2		_		$ \downarrow$		_	\rightarrow				1		2
MW-1			512	1/	í۲_	f	<u>h</u>	μŻ	0	-	_(ط بر	L	-+	<u>z</u>		4		4	_+		_+	4	-+	4-	1	┨	12
MW-4_		-6	o fi	29	195			4.	Э-	-	_6	- 6		-	2					-	-+		_			+	<u> </u>	12_
		-+				+				-+				-	-		-	-+	-		-	-					┨──	<u> </u>
					··	L-				<u> </u>		·							<u>_</u>	Total	Nur	nber	L 1 to	Bottles	/Con	Laine	- <u> </u> 18:	ZZ
	Relinc	juish	ed B	¥							C)ale			Tím	e		1		Bece	ived	ву			1	Date		Time
J. Sitte A	ng	do	ø						_	-+	6/2	rg/0	X	13	0	0	Y	F M	d	D	0		Ku	Ef.	4	30	45	D70
										1							1								1			
Client Environme	<i>f</i> 4	\Box	(.e	os	(len	. e	Ę	F,			08	c'i i	19		Purc	chas	B Or	der I	lum	ber								1
Address 465 Tre				d	,								/	-+-		ect I			- A	-0-	0	4	3	04	.			
Phone Number 904) 7		9	30	-+	State Fax N	F	ber (104	21p {);	ふろ	a.	2	25 21	-+		ect l			19	<u>9</u> 6	5 6.v	М La	0	n,‡ 	е л , Ец	39-	.7	
Project Manager Sco	Ħ	-		U	<u>g.h</u>		<u>ـــك</u>							!	Sam	pled		<	. •	#	ŀ	1.	9	hes				
TURNAROUND TIMES check below Standard 74-21 days															SPEC		1115	TR		101	NS							
Stanuaru Zing Zi Udys	be e		wed	in e	dvanc	e\	4			+																		
RUSH (mus)						-1				+-																		
RUSH (musi	price																											
RUSH (musi <- 48 hours - 2x standard (3-7 days - 1.5x standard pri					- {	· -				+						- 3												
<- 48 hours - 2x standard j	ice		rice													- 3												

SIGNATURE PAGE

Reviewed by:

oject Manager ATI

•

Client: CHEVRON USA, PRODUCTS CO. MARIETTA, GEORGIA

Project Name:	CHEVRON FACILITY #46863, 1995 MONITORING
Project Number:	A004304
Project Location:	10163 LEM TURNER RD., JACKSONVILLE, FL
Accession Number:	506841
Project Manager:	SCOTT HUGHES (EGE, FL), JOHN MACHEN (CHEVRON)
Sampled By:	SCOTT HUGHES

Analysis Report

Analysis: ACID & BASE EXTRACTABLES (625)

Accession: Client: Project Number: Project Name: Project Location: Department:

.

506841 CHEVRON USA, PRODUCTS CO. CHEVRON FACILITY #46863, 1995 MONITORING CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL ORGANIC/MS

[0) Page 1 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

Accession: 506841 Client: CHEVRON USA, PRODUCTS CO. Project Number: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL ACID & BASE EXTRACTABLES (625) 625 / Federal Register 40 CFR, Part 136, July 1, 1992 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Project Name: Project Location: Test: Analysis Method: Extraction Method: WATER Matrix: QC Level: I Sample Date/Time: 001 29-JUN-95 0915 Lab 1d: Received Date: 30-JUN-95 Client Sample Id: EQBL Batch: ALW099 Blank: A Extraction Date: 30-JUN-95 Dry Weight %: N/A Analysis Date: 05-JUL-95 Units: Results: Rpt Lmts: Parameter: 0: ND P-CHLORO-M-CRESOL UG/L 25 PENTACHLOROPHENOL UG/L ND 30 UG/L ND 10 PHENOL 2,4,6-TRICHLOROPHENOL 2,4-DICHLOROPHENOL UG/L ND 20 UG/L ND 10 2,4-DIMETHYLPHENOL UG/L UG/L ND 10 2,4-DINITROPHENOL ND 30 2 - CHLOROPHENOL $\rm UG/L$ ND 15 ND 10 2-NITROPHENOL UG/L 4,6-DINITROCRESOL UG/L ND 50 4-NITROPHENOL UG/L ND 20 ACENAPHTHENE UG/L ND 10 UG/L ND 10 **ACENAPHT'HYLENE** ANTHRACENE UG/L ND10 UG/L UG/L BENZIDINE ND 10 BENZO (A) ANTHRACENE BENZO (A) PYRENE ND 10 UG/L ND 10 3,4-BENZOFLUORANTHENE ND 10 UG/L BENZO (G, H, I) PERYLENE BENZO (K) FLUORANTHENE BIS (2 - CHLOROETHOXY) METHANE UG/L ND 10 UG/L ND 10 UG/L ND 10 BIS (2-CHLOROETHYL) ETHER UG/L ND 10 BIS (2-CHLOROISOPROPYL) ETHER UG/L ND 10 ŬĠ/Ĺ UG/L BIS (2-ETHYLHEXYL) PHTHALATE ND 10 4 - BROMOPHENYL PHENYL ETHER BUTYLBENZYL PHTHALATE 2 - CHLORONAPHTHALENE ND 10 ND UG/L 10 ND UG/L 10 4 - CHLOROPHENYL PHENYL ETHER UG/L ND 10 CHRYSENE UG/L ND 10 DIBENZO (A, H) ANTHRACENE UG/L ND 10 1,2-D1CHLOROBENZENE UG/L ND 10 1,3-DICHLOROBENZENE UG/L ND 10 1,4-DICHLOROBENZENE 3,3'-DICHLOROBENZIDINE ŪG/L UG/L ND 10 ND 50 UG/L DIETHYLPHTHALATE ND 10 UG/L ND 10 DIMETHYLPHTHALATE 1,2,4 TRICHLOROBENZENE UG/L ND 10 DI-N-BUTYLPHTHALATE UG/L ND 10 2,4-DINITROTOLUENE UG/L ND 10 2,6-DINITROTOLUENE UG/L ND 10

[0) Page 2 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

Accession: 506841 Client: CHEVRON USA, PRODUCTS CO. Project Number: A004304 Project Number: A004304 Project Name: CHEVRON FACILITY #46863, 1995 MONITORING Project Location: 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 WATER Matrix: QC Level: Ι Sample Date/Time: 001 29-JUN-95 0915 Lab 1d: Client Sample Id: EQBL Received Date: 30-JUN-95 Units: Results: Rpt Lmts: Parameter: Q: DI-N-OCTYLPHTHALATE UG/L ND 10 1,2-DIPHENYLHYDRAZINE UG/L ND 10 UG/L UG/L FLUORANTHENE ND 10 ND 10 FLUORENE HEXACHLOROBENZENE UG/L ND 10 UG/L HEXACHLOROBUTADIENE ND 10 HEXACHLOROCYCLOPENTADIENE UG/L ND 10 HEXACHLOROETHANE INDENO (1,2,3-CD) PYRENE ISOPHORONE UG/L UG/L ND 10 ND 10 UG/L UG/L ND 10 ND 10 NAPHTHALENE NITROBENZENE UG/L ND 10 N-NITROSODIMETHYLAMINE UG/L ND 10 N-NITROSO-DI-N-PROPYLAMINE UG/L ND 10 ŬG/L UG/L N-NITROSODIPHENYLAMINE 10 ND 10 PHENANTHRENE ND PYRENE UG/L ND 10 VG/L %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR 2 - FLUOROPHENOL 95 21-100 PHENOL-D6 99 10-100 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL NITROBENZENE-D5 3* 10-123 93 43-116 35-114 33-124 82 TERPHENYL-D14 101

Comments:

ANALYST

* SURROGATE RECOVERY OUTSIDE ACCEPTANCE LIMITS. NO EXTRA SAMPLE TO RE-EXTRACT.

RW

INITIALS

-

[0) Page 3 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" 506841 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: Project Location: A004304 Project Number: CHEVRON FACILITY #46863, 1995 MONITORING Project Location: 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Matrix: QC Level: WATER I Sample Date/Time: 001 29-JUN-95 0915 Lab Id: Client Sample Id: EQBL Received Date: 30-JUN-95 "Sample Tic Report" Number of Tics Found: 0 Concentration Units: UG/L RT: Compound Name: Est Conc: Q: Cas Number:

_

_

-

Lab Id:

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0) Page 4 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" Accession: Client: Project Number: Project Name: Project Location: Test: 506841 CHEVRON USA, PRODUCTS CO. A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Matrix: GROUNDWATER OC Level: 7 QC Level: 1 Sample Date/Time: 003 29-JUN-95 0940 Received Date: 30-JUN-95 MW-7 Client Sample Id:

Batch: ALW099 Blank: A Dry Weight %:	N/A	Extractio Analysis		30-JUN-95 06-JUL-95
Parameter:	Units:	Results:	Rpt Lmt	s: Q:
P-CHLORO-M-CRESOL	UG/L	ND	25	
PENTACHLOROPHENOL	UG/L	ND	30	
PHENOL	UG/L	ND	10	
2,4,6-TRICHLOROPHENOL	UG/L	ND	20	
2,4-DICHLOROPHENOL	UG/L	ND	10	
2,4-DIMETHYLPHENOL	UG/L	ND	10	
2,4-DINITROPHENOL	ŪG/L	ND	30	
2 - CHLOROPHENOL	UG/L	ND	15	
2-NITROPHENOL	UG/L	ND	10	
4,6-DINITROCRESOL	UG/L	ND	50	
4-NITROPHENOL	UG/L	ND	20	
ACENAPHTHENE	ŬG/L	ND	10	
ACENAPHTHYLENE	UG/L	ND	10	
ANTHRACENE	ŬG/L	ND	10	
BENZIDINE	UG/L	ND	10	
BENZO (A) ANTHRACENE	UG/L	ND	10	
BENZO (A) PYRENE	ŬĠ/L	ND	10	
3, 4 - BENZOFLUORANTHENE	UG/L	ND	10	
BENZO (G, H, I) PERYLENE	UG/L	ND	10	
BENZO (G, H, I) PERIDENE BENZO (K) FLUORANTHENE	UG/L	ND	10	
BIS (2 - CHLOROETHOXY) METHANE	UG/L	ND	10	
BIS (2 - CHLOROETHOAT) METHARE BIS (2 - CHLOROETHYL) ETHER	UG/L	ND	10	
	UG/L	ND	10	
BIS (2-CHLOROISOPROPYL) ETHER	UG/L	ND	10	
BIS (2-ETHYLHEXYL) PHTHALATE	UG/L	ND	10	
4-BROMOPHENYL PHENYL ETHER	UG/L UG/L	ND	10	
BUTYLBENZYL PHTHALATE	UG/L UG/L	ND ND	10	
2 - CHLORONAPHTHALENE	UG/L UG/L		10	
4 - CHLOROPHENYL PHENYL ETHER		ND ND	10	
CHRYSENE	UG/L		10	
DIBENZO (A, H) ANTHRACENE	UG/L	ND	10	
1, 2-DICHLOROBENZENE	UG/L	ND		
1,3-DICHLOROBENZENE	UG/L	ND	10	
1,4-DICHLOROBENZENE	UG/L	ND	10	
3,3'-DICHLOROBENZIDINE	UG/L	ND	50	
DIETHYLPHTHALATE	UG/L	ND	10	
DIMETHYLPHTHALATE	UG/L	ND	10	
1,2,4 TRICHLOROBENZENE	UG/L	ND	10	
DI-N-BUTYLPHTHALATE	UG/L	ND	10	
2,4-DINITROTOLUENE	UG/L	ND	10	
2,6-DINITROTOLUENE	UG/L	ND	10	

[0] Page 5 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

506841 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL Project Name: Project Location: Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Matrix: GROUNDWATER OC Level QC Level: Т Sample Date/Time: 29-JUN-95 0940 Lab Id: 003 Client Sample 1d: MW-7 Received Date: 30-JUN-95 Units: Results: Rpt Lmts: Q: Parameter: UG/L ND 10 DI-N-OCTYLPHTHALATE UG/L UG/L ND 10 1,2-DIPHENYLHYDRAZINE 10 FLUORANTHENE ND FLUORENE UG/L ND 10 UG/L UG/L 10 HEXACHLOROBENZENE ND 10 ND **HEXACHLOROBUTADIENE** HEXACHLOROCYCLOPENTADIENE UG/L ND 10 UG/L UG/L 10 HEXACHLOROETHANE ND INDENO (1,2,3-CD) PYRENE ISOPHORONE ND 10 10 UG/L ND UG/L ND 10 NAPHTHALENE UG/L ND 10 NITROBENZENE 10 $\rm UG/L$ ND N-NITROSODIMETHYLAMINE N-NITROSO-DI-N-PROPYLAMINE UG/L ND 10 N-NITROSODIPHENYLAMINE UG/L ND 10 10 ND UG/L PHENANTHRENE UG/L ND 10 PYRENE VG/L %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR %REC/SURR 95 21-100 2 - FLUOROPHENOL 100 10-100 PHENOL-D6 2,4,6-TRIBROMOPHENOL 2-FLUOROBIPHENYL 10-123 32 97 43-116 98 35-114 NITROBENZENE-D5 111 33-124 TERPHENYL-D14 INITIALS RW ANALYST

Comments:

[0) Page 6 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" 506841 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: Project Location: A004304 Project Numbel: Ad04304 Project Name: CHEVRON FACILITY #46863, 1995 MONITORING Project Location: 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 GROUNDWATER Matrix: QC Level: I Lab Id: Client Sample Id: Sample Date/Time: 003 29-JUN-95 0940 MW-7 Received Date: 30-JUN-95 "Sample Tic Report" Number of Tics Found: 0 Concentration Units: UG/L Compound Name: RT: Est Conc: Q: Cas Number:

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

[0] Page 7 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" Accession: 506841 CHEVRON USA, PRODUCTS CO. Client: Project Number: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL Project Name: Project Location: Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 GROUNDWATER Matrix: OC Level: Τ Sample Date/Time: 29-JUN-95 1000 Lab 1d: 004 Received Date: 30-JUN-95 Client Sample Id: MW-6 30-JUN-95 Extraction Date: Batch: ALW099 Analysis Date: 06-JUL-95 Dry Weight %: N/A Blank: A Units: Results: Rpt Lmts: 0: Parameter: UG/L ND 25 P-CHLORO-M-CRESOL PENTACHLOROPHENOL UG/L UG/L ND 30 10 ND PHENOL 2,4,6-TRICHLOROPHENOL UG/L ND 20 2,4-DICHLOROPHENOL UG/L UG/L 10 ND ND 10 2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL UG/L ND 30 UG/L \mathbf{ND} 15 2 - CHLOROPHENOL UG/L ND 10 2-NITROPHENOL UG/L ND 50 4,6-DINITROCRESOL 4 - NITROPHENOL ACENAPHTHENE 20 UG/L ND UG/L ND 10 UG/L UG/L ACENAPHTHYLENE ND 10 ND 10 ANTHRACENE 10 UG/L ND BENZIDINE BENZO (A) ANTHRACENE BENZO (A) PYRENE UG/L ND 10UG/L ND 10ND 10 3,4-BENZOFLUORANTHENE UG/L BENZO (G,H,I) PERYLENE BENZO (K) FLUORANTHENE UG/L ND 10 UG/L ND 10 UG/L ND 10 BIS (2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHYL) ETHER UG/L ND 10 BIS (2-CHLOROISOPROPYL) ETHER UG/L ND 10 ND 10 UG/L BIS (2-ETHYLHEXYL) PHTHALATE 4-BROMOPHENYL PHENYL ETHER UG/L ND 10 BUTYLBENZYL PHTHALATE 2 - CHLORONAPHTHALENE UG/L ND 10 UG/L UG/L ND 10 ND 10 4-CHLOROPHENYL PHENYL ETHER \mathbf{ND} 10 UG/L CHRYSENE DIBENZO (A, H) ANTHRACENE 1,2-DICHLOROBENZENE UG/L ND 10 UG/L ND 10 1, 3-DICHLOROBENZENE UG/L ND 10 UG/L ND 10 1,4-DICHLOROBENZENE UG/L 50 ND 3,3'-DICHLOROBENZIDINE UG/L UG/L ND 10 DIETHYLPHTHALATE 10 NDDIMETHYLPHTHALATE UG/L ND 10 1,2,4 TRICHLOROBENZENE UG/L UG/L 10 ND DI-N-BUTYLPHTHALATE 2,4-DINITROTOLUENE 10ND 10 2,6-DINITROTOLUENE UG/L ND

[0) Page 8 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

Accession: 506841 CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: A004304 Project Number: A004304 Project Name: CHEVRON FACILITY #46863, 1995 MONITORING Project Location: 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 GROUNDWATER Matrix: QC Level: Т Sample Date/Time: Lab Id: 004 29-JUN-95 1000 Client Sample Id: MW-6 Received Date: 30-JUN-95 Units: Results: Rpt Lmts: Q: Parameter: UG/L ND 10 **DI-N-OCTYLPHTHALATE** 1,2-DIPHENYLHYDRAZINE FLUORANTHENE UG/L UG/L ND 10 ND 10 UG/L ND 10 FLUORENE UG/L HEXACHLOROBENZENE ND 10HEXACHLOROBUTADIENE UG/L ND 10 HEXACHLOROCYCLOPENTADIENE UG/L ND 10 ND 10 HEXACHLOROETHANE UG/L INDENO (1,2,3-CD) PYRENE UG/L ND 10 ISOPHORONE UG/L ND 10 NAPHTHALENE UG/L ND 10 UG/L UG/L ND 10 NITROBENZENE N-NITROSODIMETHYLAMINE ND 10 N-NITROSO-DI-N-PROPYLAMINE UG/L ND 10 UG/L UG/L N-NITROSODIPHENYLAMINE ND 10 ND 10 PHENANTHRENE PYRENE UG/L ND 10

 %REC/SURR

 %REC/SURR

 %REC/SURR

 %REC/SURR

 %REC/SURR

 %REC/SURR

 %REC/SURR

 %REC/SURR

 95 21-100 2 - FLUOROPHENOL 99 10-100 PHENOL-D6 10-123 43 2,4,6-TRIBROMOPHENOL 43-116 2 - FLUOROBIPHENYL 87 86 35-114 NITROBENZENE-D5 111 33-124 TERPHENYL-D14 INITIALS RW ANALYST

Comments:

[0) Page 9 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" Accession: 506841 CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: A004304 Project Number: A004304 Project Name: CHEVRON FACILITY #46863, 1995 MONITORING Project Location: 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 GROUNDWATER Matrix: QC Level: I Lab Id: 004 Client Sample Id: MW-6 Sample Date/Time: 29-JUN-95 1000 Received Date: 30-JUN-95 "Sample Tic Report" Number of Tics Found: 0 Concentration Units: UG/L

Cas Number: Compound Name: RT:

Est Conc: Q:

[0) Page 10 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

506841 Accession: CHEVRON USA, PRODUCTS CO. Client: A004304 Project Number: CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL Project Name: Project Location: Test: ACID & BASE EXTRACTABLES (625) 625 / Federal Register 40 CFR, Part 136, July 1, 1992 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Analysis Method: Extraction Method: GROUNDWATER Matrix: OC Level: Т Sample Date/Time: Lab 1d: 005 29-JUN-95 1020 Client Sample Id: MW-3 Received Date: 30-JUN-95 Batch: ALW099 Blank: A Extraction Date: 30-JUN-95 Dry Weight %: N/A Analysis Date: 06-JUL-95 Results: Rpt Lmts: Q: Units: Parameter: ND P-CHLORO-M-CRESOL UG/L 25 30 PENTACHLOROPHENOL UG/L ND PHENOL UG/L ND 10 2,4,6-TRICHLOROPHENOL 2,4-DICHLOROPHENOL 2,4-DIMETHYLPHENOL 2,4-DINITROPHENOL 2,4-DINITROPHENOL UG/L ND 20 ŪĠ/L ND 10 UG/LND 10 UG/L ND 30 ND UG/L 15 2 - CHLOROPHENOL ND UG/L 10 2-NITROPHENOL 4,6-DINITROCRESOL 4-NITROPHENOL ND 50 UG/L UG/L ND 20 ACENAPHTHENE UG/L ND 10 ND 10 ACENAPHTHYLENE UG/L ND UG/L 10 ANTHRACENE ŬĞ/L UG/L ND 10 BENZIDINE BENZO (A) ANTHRACENE BENZO (A) PYRENE ND 10 ND 10 UG/L 3,4-BENZOFLUORANTHENE UG/L ND 10 BENZO (G, H, J) PERYLENE BENZO (K) FLUORANTHENE BIS (2 - CHLOROETHOXY) METHANE BIS (2 - CHLOROETHYL) ETHER BIS (2 - CHLOROISOPROPYL) ETHER BIS (2 - CHLOROISOPROPYL) ETHER UG/L ND 10 UG/L ND 10 ND 10 UG/L UG/L ND 10 UG/L ND 10 BIS (2-ETHYLHEXYL) PHTHALATE ND 10 UG/L ND 10 4-BROMOPHENYL PHENYL ETHER UG/L BUTYLBENZYL PHTHALATE UG/L ND 10 2 - CHLORONAPHTHALENE UG/L ND 10 4 - CHLOROPHENYL PHENYL ETHER UG/L ND 10CHRYSENE UG/L ND 10 DIBENZO (A,H) ANTHRACENE 1,2-DICHLOROBENZENE UG/L ND 10 UG/L UG/L 10 ND ND 10 1,3-DICHLOROBENZENE 1,4-DICHLOROBENZENE UG/L ND 10 3,3'-DICHLOROBENZIDINE DIETHYLPHTHALATE 50 ND UG/L UG/L ND 10 DIMETHYLPHTHALATE UG/L ND 10 1,2,4 TRICHLOROBENZENE UG/L ND 10 UG/L 10 ND D1-N-BUTYLPHTHALATE ŬG/L ND 10 2,4-DINITROTOLUENE ND 10 2,6-DINITROTOLUENE UG/L

[0) Page 11 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

506841 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: A004304 Project Number: A004304 Project Name: CHEVRON FACILITY #46863, 1995 MONITORING Project Location: 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Matrix: GROUNDWATER OC Level: T QC Level: Ι Sample Date/Time: 005 29-JUN-95 1020 Lab Id: Client Sample Id: MW-3 Received Date: 30-JUN-95 IIm i + -- - -Date Trat

Parameter:	Units:	Results:	Rpt Lmts:	Q:	
DI-N-OCTYLPHTHALATE 1,2-DIPHENYLHYDRAZINE FLUORANTHENE FLUORENE HEXACHLOROBENZENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE NEXACHLOROCYCLOPENTADIENE HEXACHLOROCYCLOPENTADIENE NACHLOROCYCLOPENTADIENE NAPHTHALENE NITROBENZENE N-NITROSODIMETHYLAMINE N-NITROSODIPHENYLAMINE N-NITROSODIPHENYLAMINE PHENANTHRENE PYRENE 2-FLUOROPHENOL PHENOL-D6 2,4,6-TRIBROMOPHENOL	UG/L UG/L UG/L UG/L UG/L UG/L UG/L UG/L	ND ND ND ND ND ND ND ND ND ND ND ND ND N	Rpt LmLS: 10 10 10 10 10 10 10 10 10 10	Ų:	
2 - FLUOROBIPHENYL NITROBENZENE - D5	%REC/SURR	91	35-114		
NITROBENZENE-D5 TERPHENYL-D14	%REC/SURR %REC/SURR	91 109	35-114 33-124		
ANALYST	INITIALS	RŴ	55 164		

[0) Page 12 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

Accession: 506841 CHEVRON USA, PRODUCTS CO. Client: A004304 Project Number: Project Number: A004304 Project Name: CHEVRON FACILITY #46863, 1995 MONITORING Project Location: 10163 LEM TURNER RD., JACKSONVILLE, FL Test: ACID & BASE EXTRACTABLES (625) Analysis Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: 625 / Federal Register 40 CFR, Part 136, July 1, 1992 GROUNDWATER Matrix: OC Level: Ί Lab Id: Client Sample Id: Sample Date/Time: 29-JUN-95 1020 005 Received Date: 30-JUN-95

MW-3

"Sample Tic Report"

Number of Tics Found: 5 Concentration Units: UG/L

Cas Number:	Compound Name:	RT:	Est Conc: Q:
	UNKNOWN ALKANOIC ACID	16.50	40
	UNKNOWN ALKANOIC ACID	18.80	30
	UNKNOWN HYDROCARBON	20.73	20
	UNKNOWN HYDROCARBON	20.92	30
	UNKNOWN ALKANOIC ACID	11.85	10

· · · 1

Analysis Report

Analysis: VOLATILES (624)

Accession: Client: Project Number: Project Name: Project Location: Department:

506841 CHEVRON USA, PRODUCTS CO. A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL ORGANIC/MS

[0) Page 1 Date 12-Jul-95 "FINAL REPORT FORMAT - SINGLE" 506841 Accession: CHEVRON USA, PRODUCTS CO. Client: Project Number: λ004304 Project Name: CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL VOLATILES (624) Project Location: Test: Analysis Method: 624 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: N/A WATER Matrix: QC Level: TIC Lab Id: Sample Date/Time: 29-JUN-95 0915 001 EQBL Client Sample 1d: Received Date: 30-JUN-95 Batch: VIW041 Extraction Date: N/A 11-JUL-95 Blank: A Dry Weight %: N/A Analysis Date: Parameter: Units: Results: Rpt Lmts: Q: UG/L ND BENZENE 1 $\frac{1}{2}$ BROMODICHLOROMETHANE UG/L ND UG/L UG/L ND BROMOFORM 1 BROMOMETHANE ND UG/L UG/L CARBON TETRACHLORIDE ND 2 CHLOROETHANE ND 1 CHLOROBENZENE UG/L ND 1 2-CHLOROETHYLVINYL ETHER UG/L ND 5 22 CHLOROFORM UG/L ND CHLOROMETHANE UG/L ND 1 DIBROMOCHLOROMETHANE UG/L ND 1,2-DICHLOROBENZENE UG/L ND 2 2 2 1,3-DICHLOROBENZENE UG/L ND 1,4-DICHLOROBENZENE UG/L ND 1,1-DICHLOROETHANE UG/L UG/L 1 ND $\overline{2}$ 1,2-DICHLOROETHANE ND 5 TOTAL 1,2-DICHLOROETHENE UG/L ND 1,1-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYL BENZENE UG/L ND 1 UG/L ND 2 ND 1 UG/L UG/L ND 1 UG/L ND 1 3 METHYLENE CHLORIDE UG/L ND 1, 1, 2, 2-TETRACHLOROETHANE TETRACHLOROETHENE UG/L 2 NDUG/L ND 1 5 TOLUENE UG/L ND 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE UG/L UG/L 5 ND 2 ND TRICHLOROETHENE UG/L ND 1 TRICHLOROFLUOROMETHANE UG/L ND ٦ VINYL CHLORIDE TOTAL XYLENES UG/L ND 1 UG/L ND 2 BROMOFLUOROBENZENE %REC/SURR 98 86-115 1,2-DICHLOROETHANE-D4 %REC/SURR
%REC/SURR 99 76-114 101 88-110 TOLUENE-D8 INITIALS \mathbf{LP} ANALYST

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

"FINAL REPORT FORMAT - SINGLE" 506841 Accession: Client: CHEVRON USA, PRODUCTS CO. Project Number: Project Name: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL VOLATILES (624) Project Location: Tesť: 624 / Federal Register 40 CFR, Part 136, July 1, 1992 Analysis Method: Extraction Method: N/A GROUNDWATER Matrix: QC Level: 11CSample Date/Time: 003 29-JUN-95 0940 Lab Id: MW - 7 Received Date: 30-JUN-95 Client Sample Id: Extraction Date: Batch: VIW041 N/A 11-JUL-95 Dry Weight %: N/A Analysis Date: Blank: A Units: Results: Rpt Lmts: 0; Parameter: UG/L ND BENZENE 1 UG/L UG/L BROMODICHLOROMETHANE ND 1 BROMOFORM ND 2 UG/L ND BROMOMETHANE 1 UG/L UG/L 2 CARBON TETRACHLORIDE ND ND 1 CHLOROETHANE CHLOROBENZENE UG/L 1 1 5 2-CHLOROETHYLVINYL ETHER UG/L ND 2 2 2 CHLOROFORM UG/L ND CHLOROMETHANE UG/L ND DIBROMOCHLOROMETHANE 1 2 2 2 UG/L ND 1,2-DICHLOROBENZENE UG/L ND 1,3-DICHLOROBENZENE UG/L ND 1,4-DICHLOROBENZENE UG/L ND 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE UG/L \mathbf{ND} 1 2 5 UG/L ND TOTAL 1, 2-DICHLOROETHENE 1, 1-DICHLOROETHENE UG/L ND UG/L 1 ND ND 2 UG/L 1,2-DICHLOROPROPANE TRANS-1, 3-DICHLOROPROPENE TRANS-1, 3-DICHLOROPROPENE ETHYL BENZENE UG/L ND 1 UG/L ND 1 UG/L ND 1 METHYLENE CHLORIDE 1,1,2,2-TETRACHLOROETHANE UG/L ND 3 2 UG/L ND 1 TETRACHLOROETHENE UG/L ND TOLUENE UG/L ND 5 1,1,1-TRICHLOROETHANE 1,1,2-TRICHLOROETHANE 5 2 ND UG/L UG/L ND UG/L UG/L ND 1 TRICHLOROETHENE ND TRICHLOROFLUOROMETHANE 1 VINYL CHLORIDE TOTAL XYLENES ND UG/L 1 UG/L ND 2 %REC/SURR %REC/SURR %REC/SURR BROMOFLUOROBENZENE 90 86-115 1,2-DICHLOROETHANE-D4 76-114 101 88-110 103 TOLUENE-D8 INITIALS LP

Comments:

ANALYST

[0] Page 2 Date 12-Jul-95

Client:

Test:

Matrix:

Lab Id:

BENZENE

[0] Page 3 "FINAL REPORT FORMAT - SINGLE" 506841 Accession: CHEVRON USA, PRODUCTS CO. Project Number: A004304 CHEVRON FACILITY #46863, 1995 MONITORING Project Name: 10163 LEM TURNER RD., JACKSONVILLE, FL VOLATILES (624) Project Location: Analysis Method: 624 / Federal Register 40 CFR, Part 136, July 1, 1992 Extraction Method: N/A GROUNDWATER QC Level: 1IC 004 Sample Date/Time: 29-JUN-95 1000 Received Date: 30-JUN-95 Client Sample Id: MW-6 Batch: VIW041 Blank: A Extraction Date: N/A Dry Weight %: N/A Analysis Date: 11-JUL-95 Parameter: Units: Results: Rpt Lmts: 0: UG/L ND 1 BROMODICHLOROMETHANE UG/L UG/L ND 1 BROMOFORM ND 2 BROMOMETHANE UG/L ND 1 CARBON TETRACHLORIDE CHLOROETHANE 2 UG/L ND UG/L 1 ND CHLOROBENZENE UG/L UG/L ND 1 5 2 2 2-CHLOROETHYLVINYL ETHER ND CHLOROFORM UG/L ND CHLOROMETHANE UG/L ND DIBROMOCHLOROMETHANE UG/L 1 ND 1,2-DICHLOROBENZENE ŪĠ/Ŀ UG/L ND 2 2 2 1,3-DICHLOROBENZENE ΝD 1,4-DICHLOROBENZENE UG/L ND 1,1-DICHLOROETHANE 1 2 UG/L ND 1,2-DICHLOROETHANE UG/L ND TOTAL 1,2-DICHLOROETHENE 1,1-DICHLOROETHENE UG/L ND 5 ŪĠ/Ĺ ī ND 2 1,2-DICHLOROPROPANE UG/L ND CIS-1, 3-DICHLOROPROPENE UG/L ND 1 TRANS-1, 3-DICHLOROPROPENE UG/L ND 1 ETHYL BENZENE ND 1 UG/L METHYLENE CHLORIDE ŪG/L 3 2 ND 1, 1, 2, 2 - TETRACHLOROETHANE TETRACHLOROETHENE UG/L ND 1 UG/L ND UG/L ND 5 5 2 UG/L ND UG/L ND UG/L ND 1 UG/L ND 1

UG/L

UG/L

%REC/SURR %REC/SURR %REC/SURR

INITIALS

ND

ND

96

100

101

 \mathbf{P}

1

2

86-115

76-114

88-110

TOLUENE 1, 1, 1 - TRICHLOROETHANE 1, 1, 2 - TRICHLOROETHANE TRICHLOROETHENE TRICHLOROFLUOROMETHANE VINYL CHLORIDE TOTAL XYLENES BROMOFLUOROBENZENE 1,2-DICHLOROETHANE-D4 TOLUENE-D8 ANALYST

Comments:

Date 12-Jul-95

[0) Page 4 Date 12-Jul-95

"FINAL REPORT FORMAT - SINGLE"

506841 Accession: CHEVRON USA, PRODUCTS CO. Client: A004304 Project Number: CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL VOLATILES (624) Project Name: Project Location: Test: 624 / Federal Register 40 CFR, Part 136, July 1, 1992 Analysis Method: Extraction Method: N/A GROUNDWATER Matrix: IIC OC Level: 29-JUN-95 1020 005 Sample Date/Time: Lab Id: Received Date: 30-JUN-95 Client Sample Id: MW-3 Extraction Date: Batch: VIW041 N/AAnalysis Date: 12-JUL-95 Dry Weight %: N/A Blank: A Parameter: Units: Results: Rpt Lmts; Q: BENZENE UG/L 14 1 UG/L UG/L UG/L BROMODICHLOROMETHANE ND 1 2 BROMOFORM ND 1 BROMOMETHANE ND CARBON TETRACHLORIDE UG/L $\mathbf{N}\mathbf{D}$ 2 CHLOROET'HANE UG/L ND 1 UG/L CHLOROBENZENE 6 1 UG/L ND 5 2-CHLOROETHYLVINYL ETHER 22 CHLOROFORM UG/L ND CHLOROMETHANE UG/L ND 1 2 **DIBROMOCHLOROMETHANE** UG/L ND 1,2-DICHLOROBENZENE UG/L ND 1,3-DICHLOROBENZENE UG/L UG/L 22 ND 1,4-DICHLOROBENZENE ND 1,1-DICHLOROETHANE 1,2-DICHLOROETHANE UG/L ND 1 2 UG/L ND TOTAL 1, 2-DICHLOROETHENE UG/L ND 5 1,1-DICHLOROETHENE 1,2-DICHLOROETHENE 1,2-DICHLOROPROPANE CIS-1,3-DICHLOROPROPENE TRANS-1,3-DICHLOROPROPENE ETHYL BENZENE UG/L ND 1 UG/L ND 2 UG/L UG/L ND 1 ND 1 UG/L 2 1 UG/L ND 3 2 METHYLENE CHLORIDE 1, 1, 2, 2 - TETRACHLOROETHANE TETRACHLOROETHENE UG/L ND 1 UG/L ND UG/L ND 5 5 2 TOLUENE TRICHLOROETHANE 1,1,2-TRICHLOROETHANE TRICHLOROETHENE TRICHLOROFLUOROMETHANE UG/L ND UG/L ND UG/L ND 1 UG/L UG/L 1 ND ND 1 VINYL CHLORIDE ND 2 TOTAL XYLENES UG/L %REC/SURR %REC/SURR %REC/SURR 86-115 BROMOFLUOROBENZENE 96 105 76-114 1,2-D1CHLOROETHANE-D4 TOLUENE-D8 103 88-110 INITIALS \mathbf{P} ANALYST

[0) Page 5 Date 12-Jul-95

"Method Report Summary"

Accession Number:	506841
Client:	CHEVRON USA, PRODUCTS CO.
Project Number:	
Project Name:	CHEVRON FACILITY #46863, 1995 MONITORING
Project Location:	10163 LEM TURNER RD., JACKSONVILLE, FL
Test:	VOLATILES (624)

Client Sample 1d:	Parameter:	Unit:	Result:
MW - 7 MW - 3	CHLOROBENZENE BENZENE CHLOROBENZENE ETHYL BENZENE	UG/L UG/L UG/L UG/L	1 14 6 2

Analysis Report

Analysis: BETX + MTBE (602)

.

Accession: Client: Project Number: Project Name: Project Location: Department: 506841 CHEVRON USA, PRODUCTS CO. A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL GC/VOA

[0) Page 1 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" Accession: 506841 CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL BETX + MTBE (602) 602/Federal Register, 40 CFR, Part 136, July 1, 1992 Project Location: Tesť: Analysis Method: Extraction Method: N/A WATER Matrix: QC Level: llC Lab Id: 001 Sample Date/Time: 29-JUN-95 0915 EOBL Received Date: 30-JUN-95 Client Sample Id: Batch: TRW141 Extraction Date: N/A Blank: A Dry Weight %: N/A Analysis Date: 10-JUL-95 Parameter: Units: Results: Rpt Lmts: Q: UG/L UG/L BENZENE ND 1 ETHYL BENZENE ND 1 METHYL T-BUTYL ETHER UG/L \mathbf{ND} 5 TOLUENE UG/L ND 5 UG/L XYLENES ND 2 %REC/SURR TRIFLUOROTOLUENE (PID) 84-116 90 ANALYST INITIALS NC

[0) Page 2 Date 11-Jul-95

"FINAL REPORT FORMAT - SINGLE"

Accession: Client: Project Number: Project Location: Test: Analysis Method: Extraction Method: Matrix: QC Level:	CHEVRON FACILITY 10163 LEM TURNER BETX + MTBE (602 602/Federal Reg	Y #46863, 1995 R RD., JACKSON 2)	WILLE, FL	1y 1, 1	992	
Lab Id: Client Sample Id:	002 MW-5		Sample Date Received Da		29-JUN-9 30-JUN-9	
Batch: TRW141 Blank: A	Dry Weight %:	N/A	Extraction Analysis Da		N/A 11-JUL-9	5
Parameter:		Units:	Results:	Rpt Lm	ts: Q:	
BENZENE ETHYL BENZENE METHYL T-BUTYL ETH TOLUENE XYLENES TRIFLUOROTOLUENE (ANALYST		UG/L UG/L UG/L UG/L UG/L %REC/SURR INITIALS	ND ND ND ND 89 NC	1 5 5 2 84-116		

11 East Olive Road Pensacola, Florida 32514 (904) 474-1001

84-116

[0] Page 3 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" Accession: 506841 Client: CHEVRON USA, PRODUCTS CO. Project Number: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL BETX + MTBE (602) Project Name: Project Location: Test: 602/Federal Register, 40 CFR, Part 136, July 1, 1992 Analysis Method: Extraction Method: N/A GROUNDWATER Matrix: QC Level: IIC Sample Date/Time: 29-JUN-95 1110 006 Lab 1d: 30-JUN-95 Client Sample Id: MW-2 Received Date: Batch: TRW141 Blank: A Extraction Date: N/A Dry Weight %: N/A Analysis Date: 11-JUL-95 Results: Parameter: Units: Rpt Lmts: Q: BENZENE UG/L ND 1 ETHYL BENZENE UG/L UG/L ND 1 METHYL T-BUTYL ETHER TOLUENE ND 5 UG/L ND 5 2 XYLENES UG/L ND

%REC/SURR

INITIALS

91

NC

Comments:

ANALYST

TRIFLUOROTOLUENE (PID)

[0) Page 4 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" Accession: 506841 Client: CHEVRON USA, PRODUCTS CO. Project Number: Project Name: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL BETX + MTBE (602) 602/Federal Register, 40 CFR, Part 136, July 1, 1992 Project Location: Test: Analysis Method: Extraction Method: N/A GROUNDWATER Matrix: QC Level; 1IC 29~JUN-95 1120 30~JUN-95 007 Sample Date/Time: Lab Id: Client Sample 1d: MW-1 Received Date: Batch: TRW141 Blank: A N/A 11-JUL-95 Extraction Date: Dry Weight %: N/A Analysis Date: Parameter: Units: Results: Rpt Lmts: Q: NDBENZENE UG/L 1 ETHYL BENZENE UG/L UG/L ND 1 METHYL T-BUTYL ETHER ND 5 TOLUENE UG/L ND5 XYLENES UG/L ND 2 %REC/SURR TRIFLUOROTOLUENE (PID) 91 84-116 NC INITIALS ANALYST

[0] Page 5 Date 11-Jul-95 "FINAL REPORT FORMAT - SINGLE" Accession: 506841 CHEVRON USA, PRODUCTS CO. Client: Project Number: Project Name: A004304 CHEVRON FACILITY #46863, 1995 MONITORING 10163 LEM TURNER RD., JACKSONVILLE, FL Project Location: Test: BETX + MTBE (602) 602/Federal Register, 40 CFR, Part 136, July 1, 1992 Analysis Method: Extraction Method: N/A Matrix: GROUNDWATER QC Level: IIC Lab Id: 800 Sample Date/Time: 29-JUN-95 1140 Client Sample Id: MW-4 Received Date: 30-JUN-95 Batch: TRW141 Blank: A Extraction Date: N/A Dry Weight %: 11-JUL-95 N/A Analysis Date: Parameter: Units: Results: Rpt Lmts: Q: BENZENE UG/L ND 1 ETHYL BENZENE UG/L ND 1 UG/L ND 5 METHYL T-BUTYL ETHER 5 TOLUENE UG/L ND UG/L %REC/SURR XYLENES ND 2 TRIFLUOROTOLUENE (PID) 91 84-116

INITIALS

NC

Comments:

ANALYST

Department of Environmental Protection

Lawton Chiles Governor Twin Towers Office Building 2600 Blair Stone Road Tallahassee, Florida 32399-2400

Virginia B. Wetherell Secretary

January 5, 1996

Mr. John Machen, Environmental Manager Chevron USA Products Company, Inc. Post Office Box 1706 Atlanta, Georgia 30301

Re: Chevron Facility No. 46836 10163 Lem Turner Road Jacksonville, Florida FDEP Facility I.D. No. 168506977

Dear Mr. Machen:

The Bureau of Waste Cleanup has reviewed the Fourth Quarter Status Report and No Further Action Proposal (NFAP) dated August 30, 1995 (received September 5), submitted for this site. Documentation submitted with the NFAP confirms that criteria set forth in Rule 62-770.600(5), Florida Administrative Code (F.A.C.), have been met. The NFAP is hereby incorporated by reference in this Order. Therefore, you are released from any further obligation to conduct site rehabilitation at the site, except as set forth below.

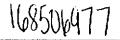
If a subsequent discharge of petroleum or petroleum product occurs at the site, the Department may require site rehabilitation in order to reduce contaminant concentrations to the levels approved through review of the NFAP or otherwise allowed by Chapter 62-770, F.A.C.

Additionally, you are required to properly abandon all monitoring wells except compliance wells required by Chapter 62-761, F.A.C., for release detection. The wells must be abandoned by grouting each well from the bottom up using a tremie pipe in accordance with the requirements of Rule 62-532.500(4), F.A.C. and the St. Johns River Water Management District Rule 40C-3.531 on or before March 6, 1996. By April 4, 1996 the Permittee shall submit a written report to the Department and to Grady L. Marchman or Allene McIntosh of the City of Jacksonville, Regulatory and Environmental Services Department, Water Quality Division providing verification of well plugging and abandonment.

Persons whose substantial interests are affected by this Approval Order have the right to challenge the Department's decision. Such a challenge may include filing a petition for an administrative determination (hearing) as described in the following paragraphs. However, pursuant to Chapter 62-103, "Protect, Conserve and Manage Florida's Environment and Natural Resources"

Printed on recycled paper.

Mr. John Machen January 5, 1996 Page 2 168506977


F.A.C., you may request an extension of time to file the Petition. All requests for extensions of time or petitions for administrative determinations must be filed directly with the Department's Office of General Counsel at the address given below within twenty-one (21) days of receipt of this notice (do not send them to the Bureau of Waste Cleanup).

Notwithstanding the above, a person whose substantial interest are affected by this Approval Order may petition for an administrative proceeding (hearing) in accordance with Section 120.57, Florida Statutes (F.S.). The petition must contain the information set forth below and must be filed (received) in the Office of General Counsel of the Department at 2600 Blair Stone Road, Tallahassee, Florida 32399-2400, within twenty-one (21) days of receipt of this notice. Failure to file a petition within this time period shall constitute a waiver of any right such person may have to request an administrative determination (hearing) under Section 120.57, F.S.

The Petition shall contain the following information:

- (a) The name, address, and telephone number of each petitioner, the Department file number (DEP facility number), and the name and address of the facility;
- (b) A statement of how and when each petitioner received notice of the Department's action or proposed action;
- (c) A statement of how each petitioner's substantial interests are affected by the Department's action or proposed action;
- (d) A statement of the material facts disputed by each petitioner, if any;
- (e) A statement of facts which each petitioner contends warrant reversal or modification of the Department's action or proposed action;
- (f) A statement of which rules or statutes each petitioner contends require reversal or modification of the Department's action or proposed action; and
- (g) A statement of the relief sought by each petitioner, stating precisely the action each petitioner wants the Department to take with respect to the

Mr. John Machen January 5, 1996 Page 3

Department's action or proposed action.

This Approval Order is final and effective on the date of receipt of this Order unless a petition (or time extension) is filed in accordance with the preceding paragraphs. Upon the timely filing of a petition, this Order will not be effective until further order of the Department.

When the Order is final, any party to the Order has the right to seek judicial review of the Order pursuant to Section 120.68, F.S., by filing of a Notice of Appeal pursuant to Rule 9.110, Florida Rules of Appellate Procedure, with the Clerk of the Department in the Office of General Counsel, 2600 Blair Stone Road, Tallahassee, Florida 32399-2400; and by filing a copy of the Notice of Appeal, accompanied by the applicable filing fees, with the appropriate District Court of Appeal. The Notice of Appeal must be filed within thirty (30) days from the date the Final Order is filed with the Clerk of the Department.

The DEP Facility Number for this site is 168506977. Please use this identification on all future correspondence with the Department.

Any questions you may have on the technical aspects of this Site Rehabilitation Completion Order should be directed to Grady L. Marchman, or Allene G. McIntosh at (904) 630-3404. Contact with the above-named persons does not constitute a petition for administrative determination.

Sincerely,

M. CLILV

John M. Ruddell, Director Division of Waste Management

JMR/glm

cc: Mr. Erik D. Swanson, P.M. DEP Tallahassee

> Mr. James O. Smith, Jr., P.E. Senior Engineer/President Environmental Geoscience & Engineering, Inc. Jacksonville, Florida 32239

SITE 4 – Trout River Food Mart

CAR, dated August 1993 (text, figures, tables, and laboratory analytical data) - 104 Pages

Remedial Action Interim Report, dated March 21, 2016 (text, figures, tables, and laboratory analytical data) – 28 Pages

SRCO, dated January 23, 2017 – 20 Pages

Contamination Assessment Report

MAPCO Service Station #6207 10203 Lem Turner Road Jacksonville, Florida 32218 FDER FAC # 168507541 EDI #160637 LOGGED IN OCT 1 5 1993 BBE

August 1993

Prepared By: Mary

Maryse D. Speckner Environmental Engineer

Reviewed By:

R. Shane Cox Engineer

Reviewed By:

Gregg H. Roberts, P.G. Project Manager Florida Registered Geologist No. 1472

Initials Date

Table of Contents

1.0	Introdu	uction
2.0	Backgr	ound
	2.1	Site Location and Description
	2.2	Site History
		2.2.1 Tank/Line Hydrostatic Testing
	2.3	Report Objectives
3.0	Geogra	aphical and Environmental Setting 6
	3.1	Topography and Drainage 6
	3.2	Regional Hydrogeology
	3.3	Proximity to Public Water Supplies
4.0	Contan	nination Assessment Methodologies
	4.1	Soil Borings
÷	4.2	Monitor Well Installations
		4.2.1 Shallow Monitor Well Installation
		4.2.2 Deeper Monitor Well Installation
	4.3	Data Collection Procedures
	÷	4.3.1 Sample Collection and Analyses
		4.3.2 Aquifer Characteristic Testing
5.0	Contan	nination Assessment Results
	5.1	Site Geology and Hydrogeology
	5.2	Hydraulic Gradient
	5.3	Soil Assessment Results
1. A. A.	5.4	Liquid Phase Hydrocarbons
·	5.5	Groundwater Assessment Results J
	5.6	Aquifer Characteristic Testing Results
6.0	Quality	Assurance
7.0	Summ	ary
8.0	Recom	mendation
9.0		nces

List of Figures

<u>Figure</u>	Description
1	Site Location Map
2	Land Use Map
3	Site Plan
4	Utility Layout Map
5	Soil Boring Location
6	Monitor Well Location
7	Deep/Shallow Monitor Well Section
8	Hydraulic Gradient Map (7/20/92)
9	Hydraulic Gradient Map (4/14/93)
10	Vadose Plume Map
11	BTEX Plume Map (7/20/92)
12	Benzene Plume Map (7/20/92)
13	Naphthalene Plume Map (7/20/92)
14	MTBE Plume Map (7/20/92)
15	BTEX Plume Map (4/14/93)
16	Benzene Plume Map (4/14/93)
17	Naphthalene Plume Map (4/14/93)
18	MTBE Plume Map (4/14/93)
•	

List of Tables

I	a	b	e	

Description

1	Monitor Well Construction Specifications	
2	Groundwater Monitoring Data	•
3	Organic Vapor Analysis	
4	Groundwater Analytical Results	
5	Aquifer Characteristic Summary	
6	Groundwater Quality Data	

List of Appendices

Appendix	Description	
A	Tank and Line Tightness Test Results	
В	Soil Boring Logs/Monitor Well Logs	
C	Correlation Graph PID vs. FID	
D	Aquifer Characteristic Testing	
E	Laboratory Analyses Results/Chain-of-Custody	
F	Contamination Assessment Report Summary Sheet	
1		

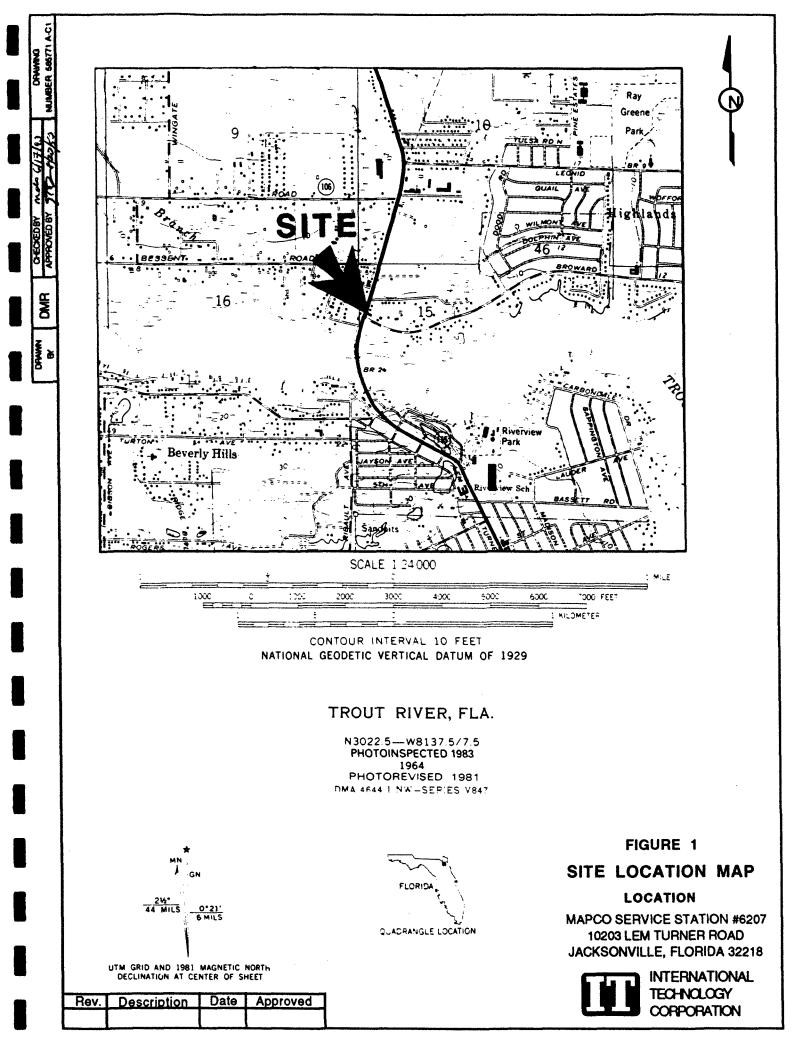
1.0 INTRODUCTION

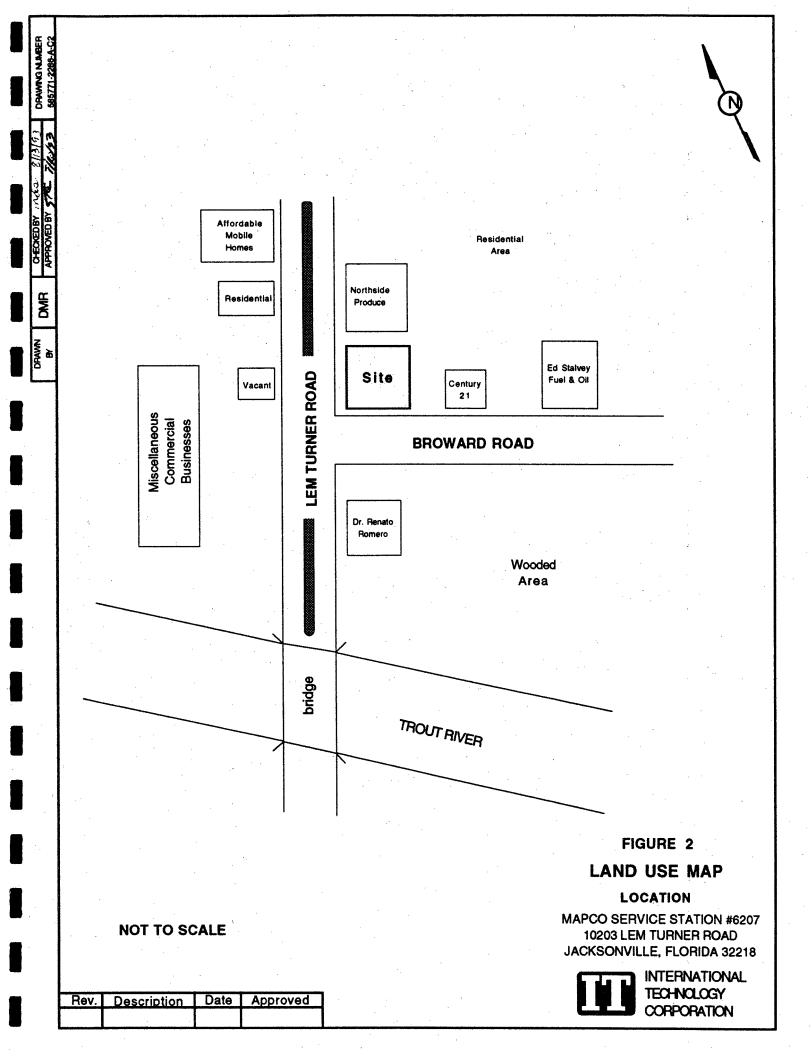
The following is a Contamination Assessment Report for MAPCO Service Station #6207, located at 10203 Lem Turner Road, in Jacksonville, Duval County, Florida.

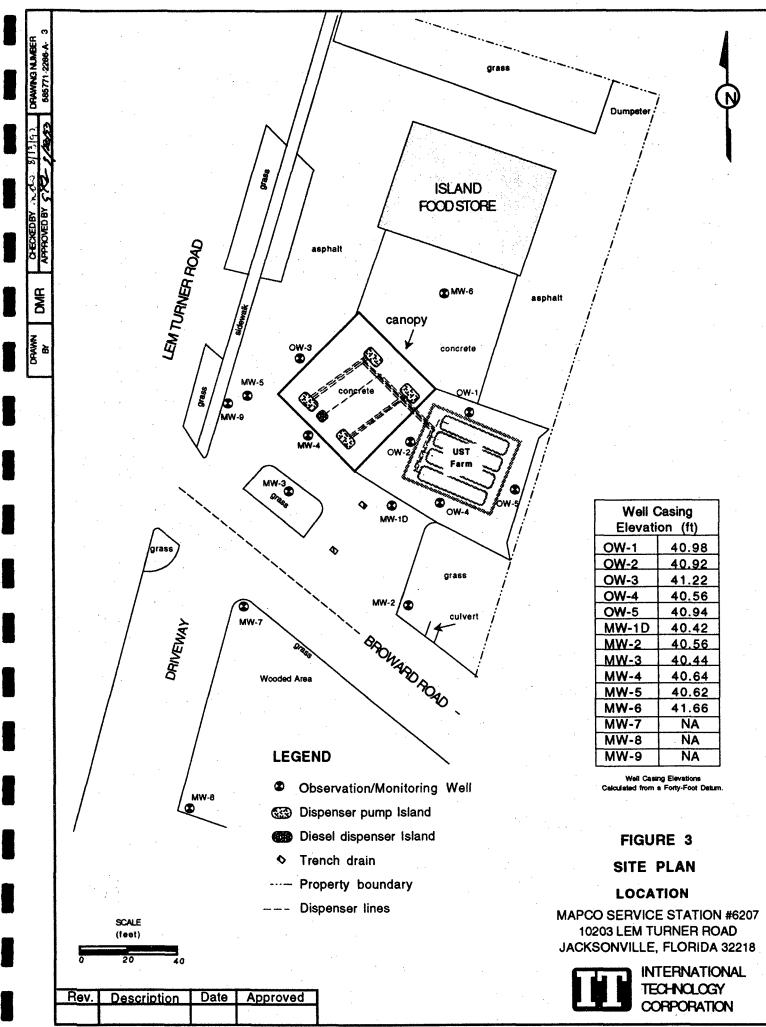
2.0 BACKGROUND

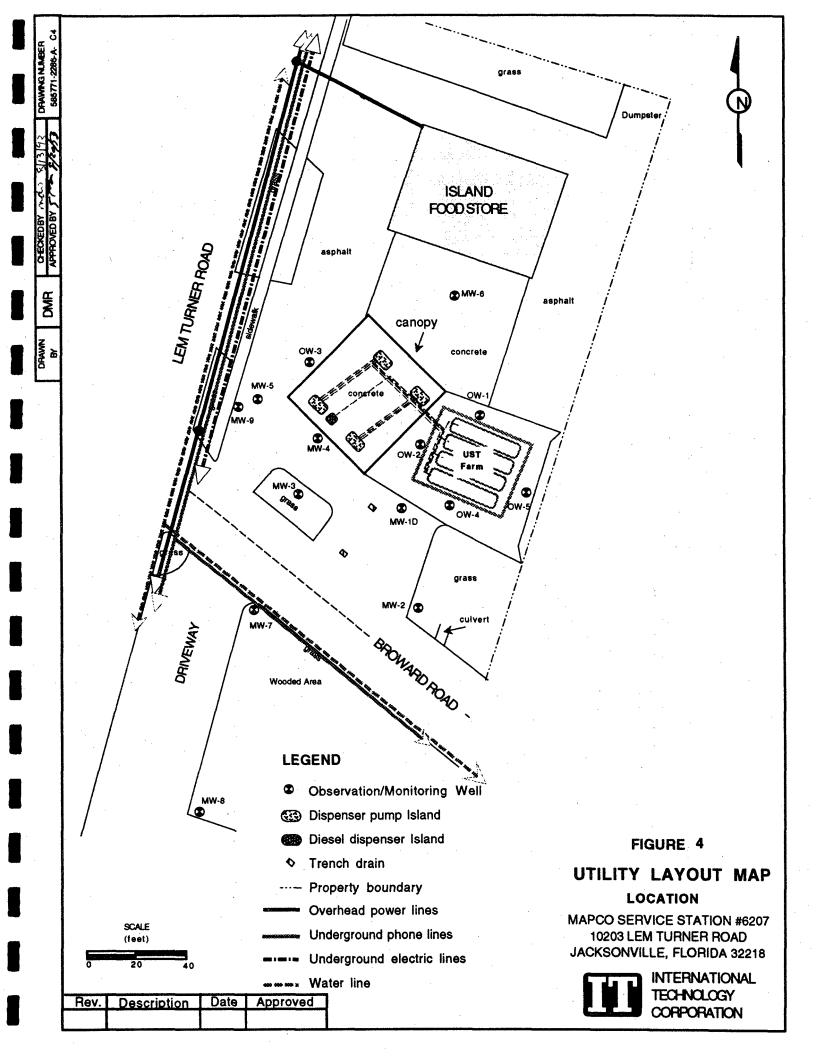
2.1 Site Location and Description

MAPCO Service Station #6207 is located in the northwest 1/4 of the northwest 1/4 of Section 15, Township 1 South, Range 26 East of the United States Geological Survey (USGS), Trout River Quadrangle. Figure 1 presents the quadrangle site location. More specifically, as depicted on the Land Use Map (Figure 2), the MAPCO facility is located on the northeast corner of the intersection of Lem Turner Road and Broward Road. The area immediately surrounding the facility is commercial and is surrounded by vacant, wooded, and residential areas. Fuel is dispensed on-site at five pump islands located to the south of the property, as shown on the Site Plan (Figure 3).


A survey of local underground utilities within the vicinity was conducted. Underground communication and power cables and overhead power lines are located along the western boundary of the site as shown on the Utility Layout Map (Figure 4).


2.2 Site History


Records from the Florida Department of Environmental Protection (FDEP) -Bureau of Waste Cleanup, indicate that petroleum contamination was discovered at the site on June 27, 1987. The facility applied for the Early Detection Incentive (EDI) Program and eligibility was approved on October 31, 1988. The facility was assigned EDI tracking #160637. There are currently four 12,000-gallon underground storage tanks located at the site. The tanks are used to store diesel and three grades of unleaded fuels (regular, super, and plus). The four underground storage tanks (USTs) are located on the east side of the pump islands. Records from the Stationary Tank Inventory indicate that the tanks were installed in February 1984 and are registered with the FDEP as Facility #168507541.


2.2.1 Tank/Line Hydrostatic Testing

On May 7-8, 1991, the four (4) USTs and associated piping were hydrostatically tested by Capital Petroleum, an independent contractor retained by MAPCO Petroleum, Inc. Copies of the results from the the tank and lines tightness test results are presented in Appendix A. The testing results indicate the tanks and lines meet current National Fire Protection Association (NFPA) tolerance requirements.

2.3 <u>Report Objectives</u>

The purpose of this investigation is to:

- 1. Map and describe relevant features of the site and adjacent areas;
- 2. summarize and describe assessment methodology and techniques;
- 3. summarize local geologic and hydrogeologic conditions of the affected or potentially affected hydrologic zones;
- 4. characterize and determine the areal and vertical extent of any liquid phase or dissolved hydrocarbons in the groundwater beneath the facility property;
- 5. determine the extent of adsorbed hydrocarbons within the vadose zone (unsaturated soils);
- 6. identify any potential sensitive receptors within a one-half mile radius of the site; and

7. determine local and regional groundwater supply areas and significant recharge areas.

3.0 GEOGRAPHICAL AND ENVIRONMENTAL SETTING

3.1 <u>Topography and Drainage</u>

Duval county lies within the Atlantic Coastal Plain physiographic province of northeastern Florida. The topography is characterized as generally low, with a gentle to flat slope, and is composed of a series of ancient marine terraces. These terraces parallel the present Atlantic shoreline and become progressively higher from east to west across the county. These terraces represent ancient sea level fluctuations during periods of glaciation and recession to the north. Elevations in Duval County range from sea level on the east coast to approximately 175 feet above mean sea level (msl) in western Duval County (Sunderland Terrace) (Fairchild, 1972).

Specifically, the study site is located on the ancient marine Pamlico Terrace and lies at an average elevation of 40 feet above msl. The on-site topography exhibits a very slight slope (approximately 1 foot downward toward the south). Duval County is drained primarily by the St. Johns River which flows from south to north and drains into the Atlantic Ocean.

3.2 <u>Regional Hydrogeology</u>

The northeast Florida region is underlain mostly by marine limestone, dolomite, shale, sand, and anhydrite that together range in thickness from approximately 5,500 to 12,000 feet. The sequence of rock units in Duval County is as follows from oldest to youngest: The Oldsmar Limestone, Lake City Limestone, Avon Park, and Ocala Group Limestones (Eocene); the Hawthorn Formation (Miocene); and a series of

undifferentiated sediments of Pliocene-Pleistocene age. The carbonate units (Oldsmar through the Ocala Group Limestones) are all lithologically similar, composed primarily of limestone, dolomite, chert, anhydrite, and gypsum, but can be differentiated paleontologically (Snell and Anderson, 1970).

The site and vicinity is underlain by approximately 100 to 140 feet of undifferentiated deposits of highly organic soils, clayey quartzose sand, and sandy clays which directly overlie the Hawthorn Formation of Miocene age. These undifferentiated deposits comprise the Holocene, Pleistocene, and Pliocene age sediments and contain the surficial water table aquifer in this area. Directly underlying these sediments is the Hawthorn Formation. The Hawthorn Formation is characterized by green phosphatic clayey sands and sandy clays with lenses of dolomite and limestone. In most places, the Hawthorn is nearly indistinguishable from the overlying sediments. The top of the Hawthorn is usually placed at the first occurrence of phosporite or a noticeable greenish-gray color. According to literature, the Hawthorn Formation is approximately 360-400 feet thick in this area. This formation conformably overlies the Ocala Group Limestones, which comprise the upper Floridan Aquifer System (Scott, 1988). The top of the Floridan Aquifer is approximately 500 feet below the ground surface in this area (Leve, 1966).

There are two types of aquifers present in the northeast Florida region, nonartesian and artesian. The occurrence of non-artesian water bearing units is basically limited to the undifferentiated sediments above the underlying sequence of carbonate rocks. Being unconfined, the shallow aquifer is controlled by gravity flow. This means that the water table generally conforms to the land surface topography. In much of Duval County, the water table lies less than 10 feet below the ground surface. The maximum depth to groundwater in this area is 35 feet. The upper permeable zone consists of cavernous Ocala and Avon Park limestones of late and middle Eocene age. This upper aquifer is the source of water for much of the domestic and irrigation purposes. The thickness of these water bearing sediments generally averages 80 feet thick. There are parts of the county, especially the western portion, where the shallow aquifer is under artesian conditions due to the existence of an overlying confining clay unit.

The relatively impermeable layers of marl and clay in the upper Hawthorn serve as confining units to the water in the underlying limestone aquifer. Several minor artesian aquifers occur in the Hawthorn Formation. These are, however, secondary in importance to the artesian bodies of water present in the deeper Floridan Aquifer System. Basal limestone beds locally present in the Hawthorn, where permeable and hydraulically connected to the underlying limestones, are considered as part of the Floridan Aquifer System (Fairchild, 1972).

MDS, 585771, 8/93

The Floridan Aquifer System in Duval County ranges in thickness from 600 to 1,200 feet and produces large quantities of water from the vugs, interstices and conduits common in the carbonate host rock. The base of the Floridan is considered to be in the dolostones of the Lake City Limestone. Groundwater beneath this unit is characteristically saline, highly mineralized, and non-potable. The Ocala Group, encountered at a depth of approximately 500 feet below the surface, is the most widely utilized supplier of potable water in this area.

Recharge water is introduced into the Floridan Aquifer System where the potentiometric surface lies at an elevation lower than the water table, provided the layer covering the aquifer is not totally confining. This occurs through the lower porous layers of the Hawthorn Formation. Recharge also occurs through sinkholes and lakes directly connected to the aquifer, where the aquifer is unconfined (water table conditions) (Snell and Anderson, 1970). The most efficient areas of recharge occur in the western parts of the Putnam and Clay Counties and parts of Alachua and Bradford Counties where the confining layers are thin and semi-permeable (Leve, 1966). Since the depth to groundwater is shallow in most parts of Duval County, recharge to the shallow aquifer is fairly rapid through downward percolating rainwater. The shallow water table aquifer is the main focus of this study.

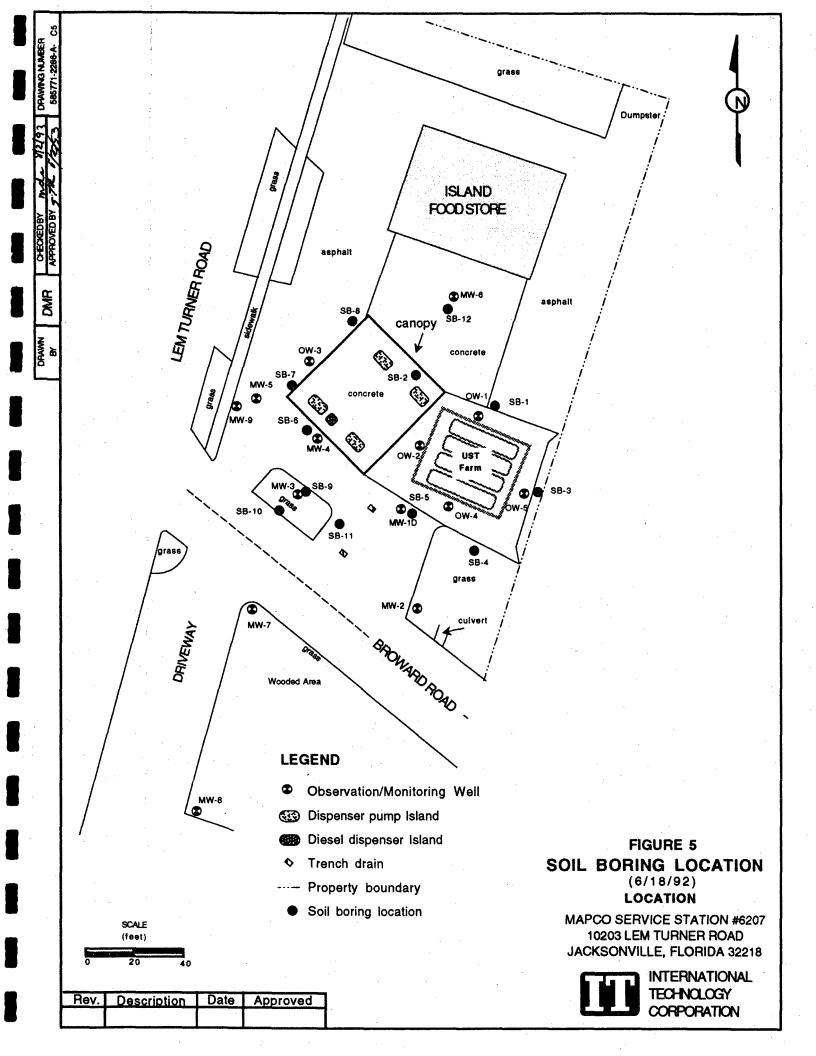
3.3 Proximity to Public Water Supplies

The proximity of the site to private wells, public well fields and surface water bodies was researched with the aid of published listings, maps and visual observations. A review of a listing of the well completion reports from the St. Johns River Water Management District (SJRWMD) indicated that there are no public or private water wells permitted within a half mile radius of the site. Records indicated that the nearest private water well is located approximately three quarter (3/4) mile northeast from the site. The well is reportedly constructed to a total depth of 118 feet. The nearest surface water body is the Trout River, located approximately one quarter (1/4) mile south of the site.

4.0 CONTAMINATION ASSESSMENT METHODOLOGIES

A soil boring and field screening program was planned to assess the potential horizontal and vertical extent of hydrocarbon vapors in the soil around the UST and dispenser areas. The extent and volume of the affected area was determined by collecting samples at regular intervals from the surface to the groundwater. The samples were analyzed for organic vapors with a portable Photoionization Detector (PID) according to procedures stated under Chapter 17-770, F.A.C.

4.1 Soil Borings


To assess the soil quality, a series of soil borings were conducted on June 18, 1992. Soil samples were obtained to determine the extent of hydrocarbons adsorbed to vadose zone soils through organic vapor analysis. A total of twelve (12) soil borings, designated as SB-1 through SB-12, were placed at various locations on-site. The borings were manually installed using an auger with a carbon steel bucket. Figure 5 shows the approximate location of the soil borings.

All soil borings were continuously sampled at regular intervals until groundwater was reached. Field headspace analyses were performed by placing soil samples into jars. Specifically, the samples were placed into half-filled 16-ounce mason jars and were covered with aluminum foil and lids. The samples were left to stand for approximately five (5) minutes, out of direct sunlight, to allow vapors to volatilize into the headspace of each jar. Headspace vapors were analyzed using a Photovac MicroTIP, Model HL-200, Photoionization Detector (PID). Readings were obtained by inserting the PID probe through a hole punctured in the foil. The sample was monitored and the peak reading obtained was recorded. The depth from which the sample was collected, the PID reading, and the geology are noted on the boring log included in Appendix B. The PID instrument was calibrated in the field, prior to the sampling event, using a 100 ppm concentration isobutylene gas. Correlation plots which relate the equivalent responses between the Photovac MicroTIP (PID) and the FID-OVA are included in Appendix C.

4.2 Monitor Well Installations

Five (5) tank pad area observation wells (labelled OW-1, OW-2, OW-3, OW-4, and OW-5) existed on-site prior to initiation of this study. To characterize the plume, one (1) deep monitor well (MW-1D), and five (5) shallow monitor wells (MW-2, MW-3, MW-4, MW-5, and MW-6) and were installed on the subject property on July 14 and 15, 1992. Additional shallow monitor wells MW-7 and MW-8 were installed off-site on December 9, 1992 and on July 9, 1993, respectively. Also installed on July 9, 1993 was monitor well MW-9, located immediately adjacent to monitor well MW-5. The monitor well locations are depicted in Figure 6.

All the wells were drilled using a Ram 10 XL truck-mounted rotary rig driving 6.25-inch inside diameter (ID) hollow stem augers. The wells were initiated by cutting an 18" x 18" square in the asphalt (if present) exposing the fill material beneath the pavement. Posthole diggers were used to make a pilot hole to check for the presence of local lines or pipes. After hand digging to a reasonable depth (3 to 4 feet below land surface (bls)), the augers were used to advance the borehole to the desired completion depth. Between monitor well installation points, the augers were steam-cleaned to ensure consistent quality. All the monitor wells installed have a 2-inch diameter.

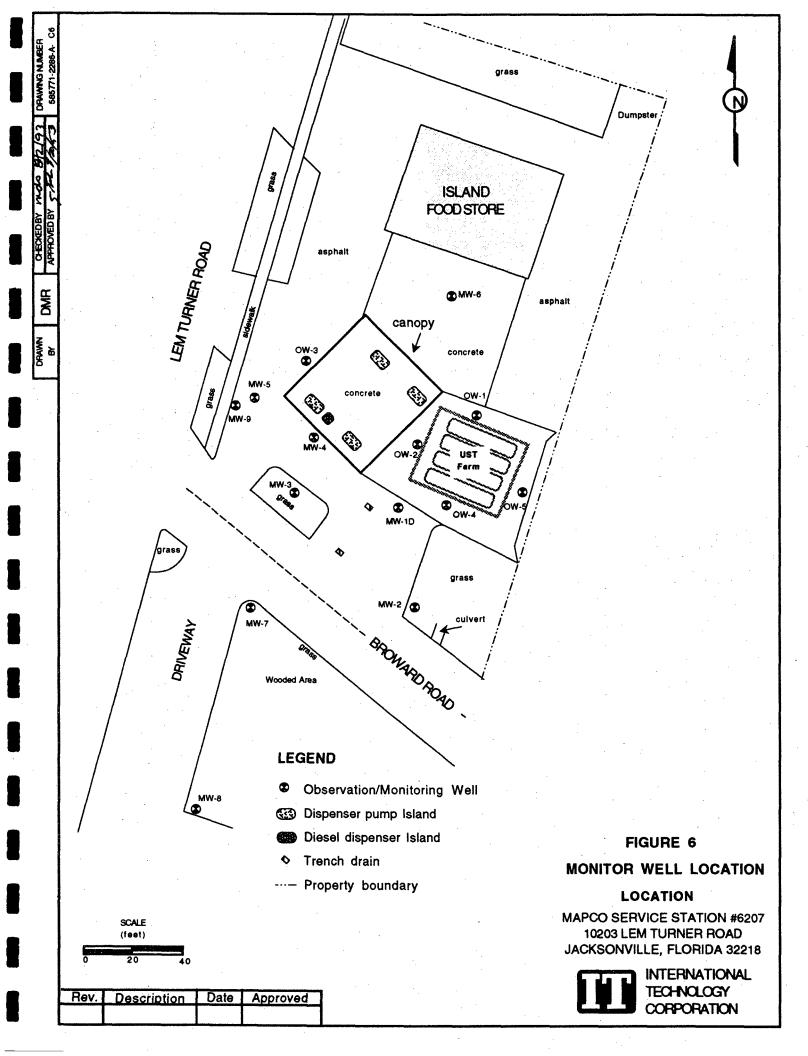


Table 1 lists the monitor well designations, date of installation, and construction data used in this study.

Table 1Monitor Well Construction SpecificationsMAPCO Service Station #620710203 Lem TurnerJacksonville, Florida

FDER FAC # 168507541

Well#	Diameter	Riser	Screen	Total Length	Date Installed
	(inches)	(feet)	(feet)	(feet)	
OW-1	2	NA	NA	10.10	NA
OW-2	2	0.5 - PVC	8.90 "PVC	9.40	NA
OW-3	2	0.5 - PVC	11.00 *PVC	11.50	NA
OW-4	2	NA	NA	8.80	NA
OW-5	2	0.5 - PVC	12.50 "PVC	13.00	10/86
MW-1D	2	19.40 - PVC	5 - 0.01"PVC	24.40	7/14/92
MW-2	2	0.40- PVC	10 - 0.01"PVC	10.40	7/14/92
MW-3	2	0.80 - PVC	10 - 0.01"PVC	10.80	7/14/92
MW-4	2	0.45 - PVC	10 - 0.01"PVC	10.45	7/14/92
MW-5	2	0.50 - PVC	10 - 0.01"PVC	10.50	7/15/92
MW-6	2	0.65 - PVC	10 - 0.01"PVC	10.65	7/15/92
MW-7	2	1.10 - PVC	10 - 0.01"PVC	11.10	12/9/92
MW-8	2	1.05 - PVC	10 - 0.01*PVC	11.05	7/9/93
MW-9	2	0.55 - PVC	10 - 0.01"PVC	10.55	7/9/93
	A assailable			1	

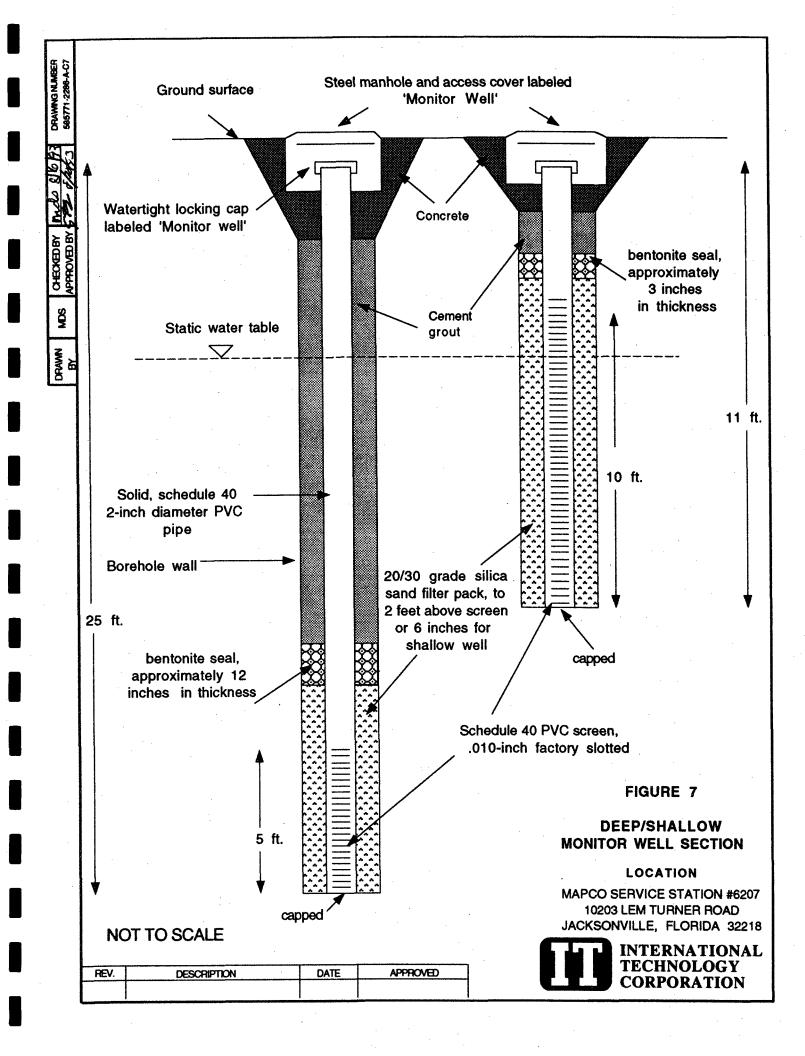
NA - Not available.

Note: All depth measurements are in feet below land surface (bls).

4.2.1 Shallow Monitor Well Installations

On July 14 - 15, 1992, five (5) shallow monitor wells (MW-2 through MW-6) were installed on the subject property. Monitor well MW-2 was placed south of the tank pad to provide delineation of the plume to the southeast. Monitor well MW-3 was placed on the southern boundary of the property in an initial attempt to obtain downgradient delineation of the hydrocarbon plume. To investigate the elevated organic vapor reading obtained at the soil boring SB-6, monitor well MW-4 was placed immediately adjacent to that location. Monitor wells MW-5 and MW-6 were placed on the west and north sides of the pump islands to provide lateral and upgradient delineation, respectively.

To obtain definition and to further characterize of the hydrocarbon plume additional shallow monitor wells were installed on December 9, 1992 and on July 9, 1993. On December 9, 1992, one (1) shallow well MW-7 was installed offsite. The well was placed on the south side of Broward Road, downgradient from MW-3. On July 9, 1993, two (2) additional shallow wells (MW-8 and MW-9) were installed. Monitor well MW-8 was placed off-site downgradient from MW-7 to obtain MTBE delineation. Monitor well MW-9 was place approximately 11 feet southwest of MW-5 to obtain BTEX delineation to the west.


The water table was encountered around three (3) feet bls during the initial soil quality investigation in June 1992. The shallow wells were installed to approximately 11 feet bls. All the shallow wells were constructed of approximately one (1) foot of 2-inch diameter, flush-threaded Schedule 40 PVC casing and completed with approximately ten (10) feet of 0.010-inch factory-slotted PVC screen. The annular space between the screen and the borehole for shallow monitor wells was packed with 20/30 grade silica sand to 0.25 foot above the screen interval. Bentonite pellets were placed on top of the sand pack to provide an impermeable layer and to prevent the portland grout from cementing the sand pack. The remainder of the annulus was grouted with cement to the surface. The grout effectively seals the annulus of the well from surface fluids. The monitor wells are further sealed from surface runoff with an 8-inch diameter, cast iron flush mount, manhole type vault placed with cement to a depth of 3 inches. The top of the manhole is raised slightly above grade level to inhibit surface runoff from collecting in the manhole. The concrete around the manhole is smoothly sloped from the top of the manhole to grade level. The wells were fitted with a water tight lockable cap and secured with keyed-alike locks.

Currently, there are fourteen (14) monitor wells present at the site, including two (2) off-site wells. Figure 6 diagrams the location of each of these wells. A general monitor well schematic diagram depicting construction details is shown on Figure 7.

Each monitor well was developed using a centrifugal pump to remove finegrained materials within the well and around the screen packing. Well completion data is presented along with the geologic well logs in Appendix B.

4.2.2 Deeper Monitor Well Installation

To delineate the vertical extent of the groundwater plume, one (1) deep monitor well (MW-1D) was installed on July 14, 1992. Deep monitor well MW-1D was installed immediately adjacent to observation well OW-2 inside the dissolved hydrocarbon plume area. Monitor well MW-1D was constructed to a total depth of 24.4 feet with 5 feet of screen and 19.4 feet of 2-inch diameter, flush-threaded Schedule 40 PVC solid riser. The annular space between the screen and the borehole was sand packed with 20/30 silica sand to two feet above the screen interval. One foot of bentonite pellets were placed on top of the sand pack and the remainder of the annulus was grouted with cement to the surface. The deep well location is also shown in Figure 6.

is presented along with the geologic well logs in Appendix B.

4.3 Data Collection Procedures

4.3.1 Sample Collection and Analyses

Soil samples were field-screened for organic vapors by the headspace method. Groundwater samples were collected from the twelve monitor wells present on the subject site following IT Corporation Standard Operating Procedures and our Comprehensive Quality Assurance Plan #870467G. Prior to sampling, each monitor well was purged of three to five well volumes of standing water to ensure the acquisition of samples representative of the local groundwater. The samples were collected with Teflon bailers and transferred to the appropriate laboratory-supplied bottles. To ensure a representative sample from each well, all retrieval equipment was washed with Micro[®], sterilized with isopropanol and rinsed with distilled water between sampling points. The samples were packed in ice and shipped via Greyhound bus to Toxikon Corporation, a Florida-certified laboratory, following a chain-of-custody protocol.

4.3.2 Aquifer Characteristic Testing

The wells were surveyed for location and elevation on June 15, 1992 and July 20, 1992. The monitor wells were surveyed for casing elevation and location relative to a benchmark. The elevation of the water table and the flow direction of the groundwater were determined by surveying the location and elevation of the top of the well casings and by measuring the depth to water.

The depth to water was determined by using a Keck Instrument water level sensor (Model ET-89) capable of measuring differences as small as 0.01 feet. All fluid levels were measured relative to the northern lip of each well casing. Water levels in the wells were measured on July 20, 1992 and on April 14, 1993 to determine the seasonal change in groundwater elevation. Liquid phase hydrocarbons were detected in monitor well MW-4 during the monitor events. Table 2 presents the survey and monitoring data.

Table 2Groundwater Monitoring DataMAPCO Service Station #620710203 Lem Turner RoadJacksonville, FloridaFDER FAC # 168504541

(Measurement in feet)

· · · ·		July 20, 1992		
Well#	Casing	Water	Liquid Phase	Water Table
	Elevation	<u>Depth</u>	Hydrocarbons	Elevation
OW-1	40.98	NA	0	NA
OW-2	40.92	2.68	0	38.24
OW-3	41.22	3.08	0	38.14
OW-4	40.56	2.35	т. О — 24 м.	38.21
OW-5	40.94	2.67	0	38.27
MW-1D	40.42	2.88	0	37.54
MW-2	40.56	2.60	0	37.96
MW-3	40.44	2.61	-	37.83
MW-4	40.64	2.86	(0.25)	37.78
MW-5	40.62	2.69	0	37.93
MW-6	41.66	2.90	0	38.76
MW-7	NA	NA	NA	NA
MW-8	NA	NA	NA	NA
MW-9	NA NA	NA	NA	NA

		April 14, 1993		
Well#	Casing	Water	Liquid Phase	Water Table
	Elevation	<u>Depth</u>	Hydrocarbons	Elevation
OW-1	40.98	1.90	0	39.08
OW-2	40.92	1.93	0	38.99
OW-3	41.22	2.37	0	38.85
OW-4	40.56	1.79	0	38.77
OW-5	40.94	2.11	0	38.83
MW-1D	40.42	1.58	0	38.84
MW-2	40.56	2.60	0	37.96
MW-3	40.44	2.41	-	38.03
MW-4	40.64	NA	(0.54)	NA
MW-5	40.62	2.11		38.51
MW-6	41.66	2.03	0	39.63
MW-7	NA	NA	NA	NA
MW-8	NA	NA	NA	NA
MW-9	NA	NA	NA	NA

Slug tests were performed on July 20, 1992 to determine the hydraulic properties of the water table aquifer at the site. The slug test is a method of determining the hydraulic conductivity of an unconfined aquifer near a partially penetrating well by suddenly removing a volume of water. The calculation for the slug test is based on the Equation (Bouwer and Rice, 1976 and 1989). A rising head slug test was conducted on four shallow wells MW-2, MW-3, MW-5, MW-6, and on deep well MW-1D with an ORS[™] data logger. The data probe was lowered into the well and connected to the data logger. The test procedures involved inducing an instantaneous lowering of the water level by removing a "slug" of known volume from the well and observing the rate of recovery of the water level. The data logger was set to record changes in the water level five times every second for the first ten seconds and then once every second thereafter until the static water level was reached. The recovery was measured with an electrical pressure transducer and recorded on a data logger. The equation and data used to calculate the aquifer characteristics are contained in Appendix D. According to Bouwer and Rice, the slug test results are comparable with those obtained by other techniques.

The hydraulic gradient was calculated by finding the difference of water table elevations between two monitor wells (MW-6 and MW-2, MW-6 and MW-3, and between MW 6 and MW-5) and dividing by the distance between the two wells. The average of these three values is the local hydraulic gradient. The monitoring data collected on July 20, 1992 was used to calculated the hydraulic gradient at the site. The hydraulic gradient calculations are included in Appendix D.

5.0 CONTAMINATION ASSESSMENT RESULTS

5.1 <u>Site Geology and Hydrogeology</u>

The shallow subsurface geology was determined through the analysis of auger cuttings and cores generated during monitor well installation activities. The shallow subsurface generally consists of layers of sand, organic silty sand, and sandy clay. The uppermost layer is a dark-brown, fine to medium-grained quartz sand to a depth of approximately three (3) feet. A layer of brown silty sand is encountered at depths ranging from three (3) to six (6) feet bls. A bluish sandy clay is encountered from six (6) to approximately eight (8) to ten (10) feet. This layer is followed by fine to medium-grained sand layers. Geologic well logs and monitor well construction details are presented in Appendix B.

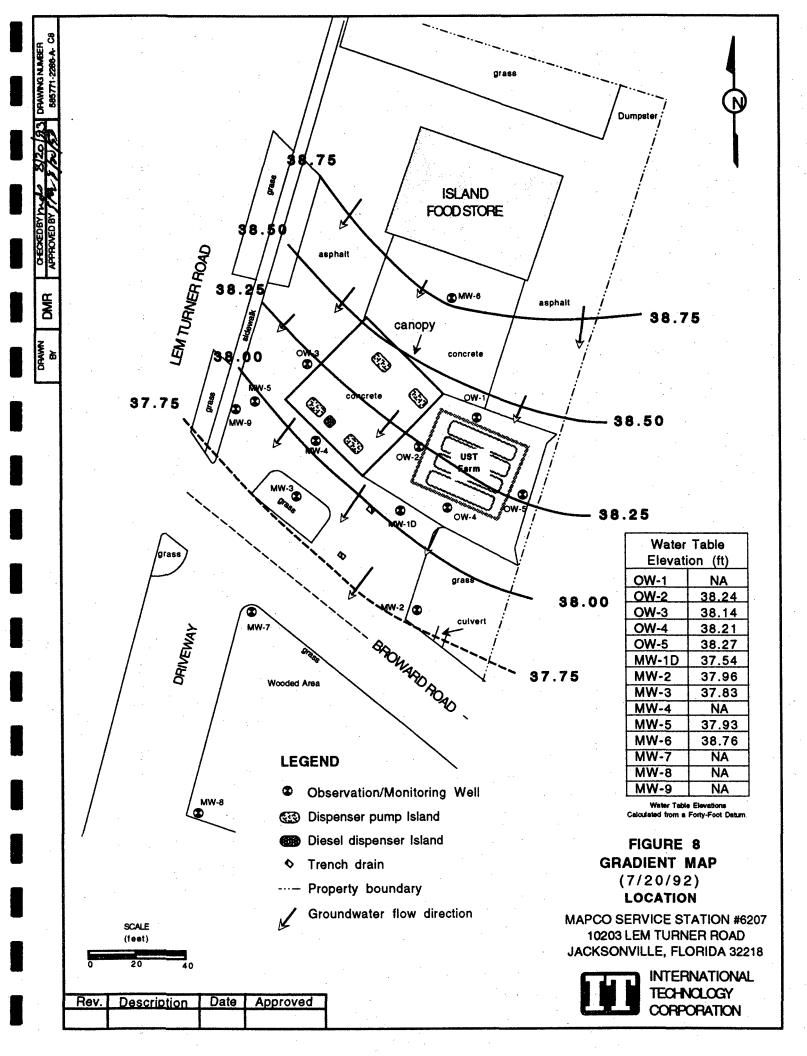
Hydraulic Gradient 5.2

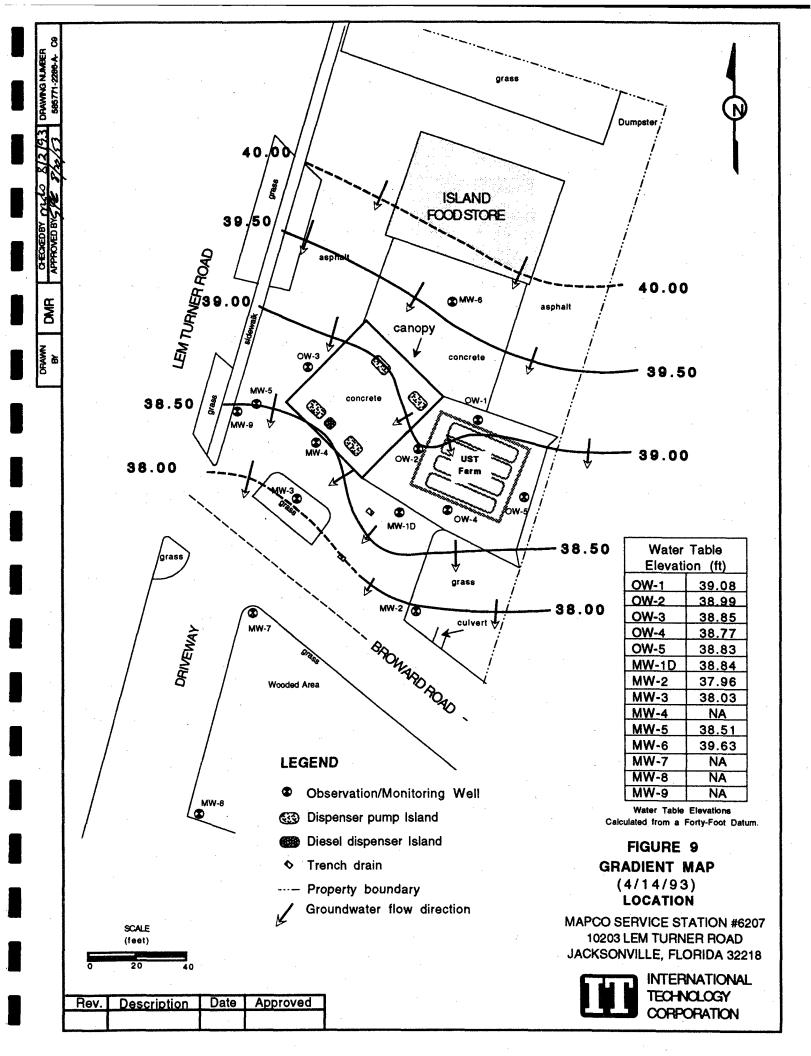
Data gathered through surveying and monitoring were used to calculate the relative water table elevations and are provided in Table 2. Areas of equal water table elevations were contoured to estimate the local groundwater flow direction as shown on Figures 8 and 9. The groundwater flow is perpendicular to the contour lines from areas of higher to lower water table elevations. The local flow direction is estimated to be due south-southwest towards the Trout River. A small seasonal groundwater fluctuations (averaged of 0.60 feet) were observed from June 1992 to April 1993. The local hydraulic gradient was calculated to be 0.00788 ft/ft.

5.3 Soil Assessment Results

Field screening results of the headspace analyses ranged from non-detected levels to greater than 500 ppm (FID) and are summarized in Table 3. The area of highest reading of organic vapors was detected in the soil boring SB-6 taken immediately adjacent to monitor wells MW-4.

Table 3


Total Volatile Organic Compound Results (Organic Vapor Analysis) MAPCO Service Station #6207 10203 Lem Turner Road Jacksonville, Florida FDER FAC # 168507541

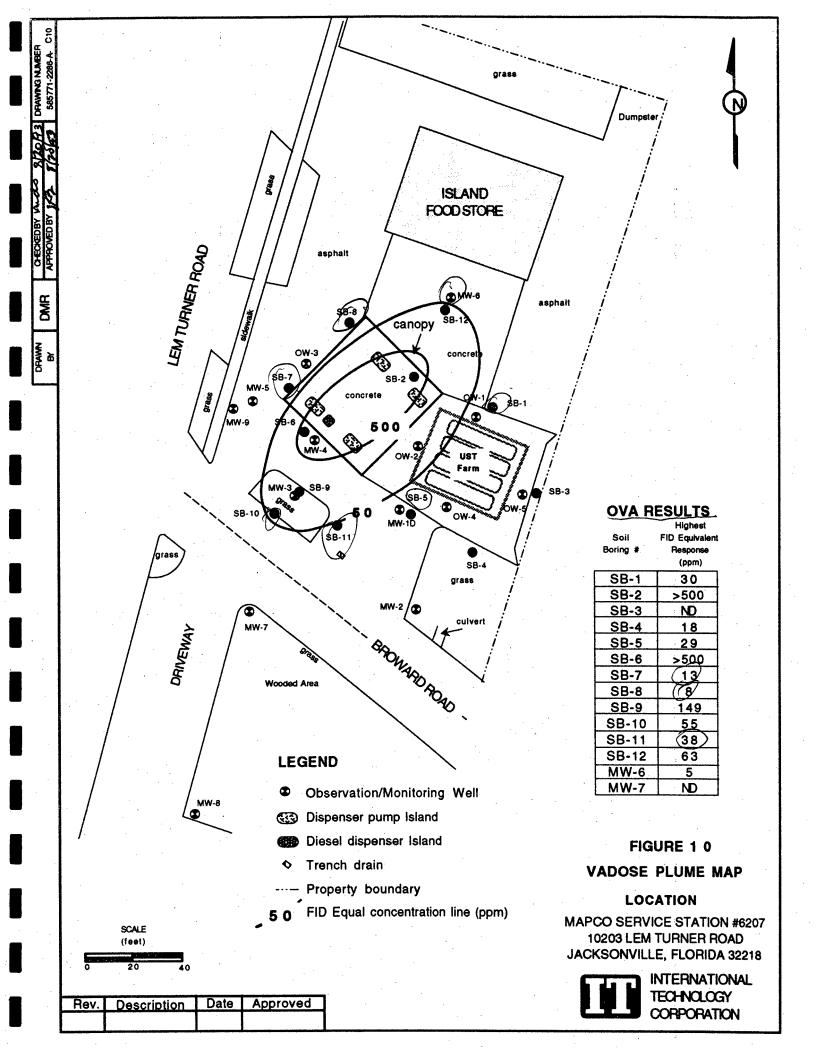

(PID response with FID equivalent response in parenthesis)

13

BORING #	<u>1-2'</u>	2-3'	<u>3-4'</u>	Date Obtained
SB-1	37.3 (30)	23.2 (18)	•	6/18/92
SB-2	419 (>500)	131 (149)	-	6/18/92
SB-3	6.7 (ND)	6.4 (ND)	10.9 (ND)	6/18/92
SB-4	18.3 (10)	17.2 (10)	22.5 (18)	6/18/92
SB-5	35.1 (29)	29.2 (22)	20 (13)	6/18/92
SB-6	1287 (>500)	1182 (>500)	3937 (>500)	6/18/92
SB-7	15.1 (9)	20.6 (13)	8.8 (ND)	6/18/92
SB-8	14.7 (8)	7.9 (ND)	5.8 (ND)	6/18/92
SB-9	19.8 (12)	32.9 (28)	131 (149)	6/18/92
SB-10	17.9 (10)	15.4 (9)	57.7 (55)	6/18/92
SB-11	42.7 (38)	40.0 (35)	30.3 (23)	6/18/92
SB-12	-	40.3 (35)	67.1 (63)	6/18/92
Depth in fe	et and concentrati	on in parts per million	n (ppm) I	Not available.

18

The facility historically stored gasoline and diesel products, therefore, the action limit stated in the FDEP document "Guidelines for Assessment and Remediation of Petroleum Contaminated Soils" (FDEP, 1989) is a 50 ppm (FID-OVA) headspace reading. Correlation graphs relating Microtip PID responses to FID-OVA responses are included in Appendix C. The soil boring locations can be seen in Figure 5. Figure 10 shows that the impacted soils are restricted to the area surrounding the soil borings SB-2 and SB-6.


5.4 Liquid Phase Hydrocarbons

Following the installation of monitor well MW-4 (placed in the vicinity of the soil boring which exhibited the highest soil vapor response [SB-6]), liquid phase hydrocarbons (LPH) were detected in the monitor well. Free product recovery was initiated by periodical manual bailing of the liquid phase substance by IT Corporation field personnel and Food Island Store maintenance personnel. The thickness of the product removed varied from approximately 6 to less than 0.01 inches. The product/water removed on a periodic basis is being placed in an approved 55-gallon drum stored on-site. The drum is also being used by Island Food Store to store the UST's tank bottom water. To date, it is estimated that approximately one to two gallons of product/water has been removed from the monitor well.

5.5 Groundwater Assessment Results

On June 16, 1992, the groundwater from the five compliance observation wells (OW-1 through OW-5) was sampled and analyzed for the parameters outlined in Chapter 17-770.600(8)(b), FAC for the Kerosene Analytical Group (KAG). The samples were analyzed for volatile aromatic halocarbons by EPA Method 601, purgeable aromatics by EPA Method 602, diesel and kerosene compounds by EPA Method 610, total lead by EPA Method 239.2, total recoverable petroleum hydrocarbons (TRPH) by EPA Method 418.1, and finally, ethylene dibromide (EDB) by EPA Method 504. Parameters detected with EPA Method 602, include benzene, toluene, ethylbenzene, and total xylenes (BTEX), and methyl tert-butyl ether (MTBE).

Groundwater samples were collected on July 20, 1992 from the newly installed monitor wells (MW-1D through MW-6, with the exception of MW-4) and analyzed only for the parameters previously detected during the initial sampling of the compliance wells. The samples were analyzed for purgeable aromatics (EPA Method 602) and diesel compounds (EPA Method 610). Monitor well MW-1D was sampled for the full Kerosene Analytical Group. In addition, field-filtered groundwater samples were collected from observation wells OW-1, OW-4, and OW-5 and analyzed for dissolved lead by EPA Method 239.2. No sample were collected from monitor well MW-4 due to the presence of liquid phase hydrocarbons. On December 14, 1992, off-site shallow monitor wells

MW-7, was sampled for EPA Methods 602, 610, 418.1, and total lead by EPA Method 239.2.

A complete round of sampling was performed on April 14, 1993. During this sampling event, each observation/monitor well was sampled for EPA Methods 602 and 610. Monitor well MW-1D was also analyzed for TRPH. Again, no sample were collected from monitor well MW-4 due to the presence of liquid phase hydrocarbons. Following the installation of monitor wells MW-8 and MW-9, the newly installed wells were sampled on July 20, 1993 for EPA Methods 602 and 610.

In addition to the groundwater samples, equipment and field blanks were obtained for quality assurance purposes during each sampling event. The equipment blanks are identified as QA-1 and the field blanks as QA-2 in the laboratory analytical reports. The results of the groundwater samples analyses are summarized in Table 4. The laboratory data, including the chain-of-custody forms, are included in Appendix E.

As shown in Table 4 for the April 14, 1993 and July 20, 1993 sampling events, the samples from the tank pad observation well OW-2 were found to contain dissolved hydrocarbons at concentrations above the target cleanup levels set in Chapter 17-770, F.A.C. The samples collected from this observation well were found to contain total BTEX and total naphthalenes at concentrations of 9500 micrograms per liter (μ g/L) and 794 μ g/L, respectively. Since liquid phase hydrocarbons were observed in monitor well MW-4, no samples were collected from this well. The samples collected from monitor well MW-3 showed elevated levels of benzene (610 μ g/L), total BTEX (710 μ g/L), and naphthalenes (341 μ g/L). All other analyzed parameters sampled from the delineating monitor wells, MW-1D, MW-2, MW-3, MW-4, MW-8, and MW-9 were found to be below the method lower detection limits or below the target concentration guidelines.

The non-detected concentrations obtained for the constituents of deep well MW-1D show the vertical extent of the dissolved hydrocarbons to extend to less than 20 feet below land surface (top of the screen interval of MW-1D).

Table 4

Groundwater Analytical Results MAPCO Service Station #6207 10203 Lem Turner Road Jacksonville, Florida FDER FAC # 168507541

(All concentrations are in ppb)

June 16, 1992

	•		Ethyl	Total	Total		Total		<u>Total</u>		Total
Well#	Benzene	Toluene	benzene	Xylenes	BTEX	EDB	Naph.	MTBE	Lead	IRPH	<u>601</u>
(OW-)	ND	ND	ND	16.7	16.7	ND	12.5	72.4	182	ND -	ND
OW-2	291	192	208	259	950	ND	235.8	893 🎲	37	ND	ND
OW-3	ND	ND	ND	ND	ND	ND	ND	13.2	24 ·	ND	ND
(W-4	69.8	ND	35.4	38.6	143.8	ND	100	ND .	95	ND	ND
OW-5	ND	ND	ND	ND	ND	ND.	ND 1	ND	127	ND	ND

July 20, 1992

,			Ethyl	Total	Total	,	Total			Total
<u>Well#</u>	<u>Benzene</u>	Toluene	benzene	<u>Xylenes</u>	BTEX	EDB	Naph.	MTBE	<u>TRPH</u>	<u>601</u>
MW-1D	ND	ND	ND	ND ND	ND	ND	ND	ND	3630	ND
MW-2	ND	. ND	ND	ND	ND	NA	ND	ND	NA	NA
WW-3	403	71	123	734	1331	NA	ND	336	NA	NA
MW-A	NA :	NA	NA	NA	NA	NA	NA	NA	NA	NA
(MW-8	ND	ND	ND	ND	ND	NA	ND	181	NA	NA
MW-6	ND	ND	ND	ND	NĎ	NA	ND	ND	NA	NA
(-MW-7)	ND	ND	ND	ND	ND	NA	ND	488	ND	NA
					-					
Well #	Di	ssolved Le	ad							
OW-1		ND								۰.
OW-4		ND								
OW-5		ND	·							*

ND - Compound analyzed but concentration are below detection limits.

NA- Not analyzed for this parameter. MW-7 was sampled on 12/14/92. MW-4 was not sampled due to the presence of LPH.

Table 4 (Cont'd)Groundwater Analytical ResultsMAPCO Service Station #620710203 Lem Turner RoadJacksonville, FloridaFDER FAC # 168507541

(All concentrations are in ppb)

April 14, 1993

				Ethyl	<u>Total</u>	<u>Total</u>	Total		
	<u>Well#</u>	Benzene	Toluene	benzene	<u>Xylenes</u>	BTEX	Naph.	MTBE	IBPH
;•	OW-1	ND	ND	ND	, ND	ND	16.1	13	NA
	OW-2	3500	1000	1300	3700	9500	794	2800	. NA
	OW-3	ND	ND	ND	ND	ND	ND	. 19	NA
	OW-4	ND	ND	2.8	ND	2.8	72	31	NA
	OW-5	• ND	ND	ND	ND	ND	ND	ND ¹	NA
	MW-1D	ND	ND	ND	ND	ND	ND .	ND	ND
	MW-2	ND .	ND	ND	ND	ND	ND	ND	NA
	MW-3	610	100	ND	ND	710	341	ND	NA
	MW-4	NA	NA	NA	NA	NA	NA	NA	NA
	MW-5	20	ND	ND	ND	20	ND	240	NA
	MW-6	ND ·	ND	ND	ND	ND	ND .	ND	NA
	MW-7	ND	ND	ND	ND	ND.	ND	350	NA

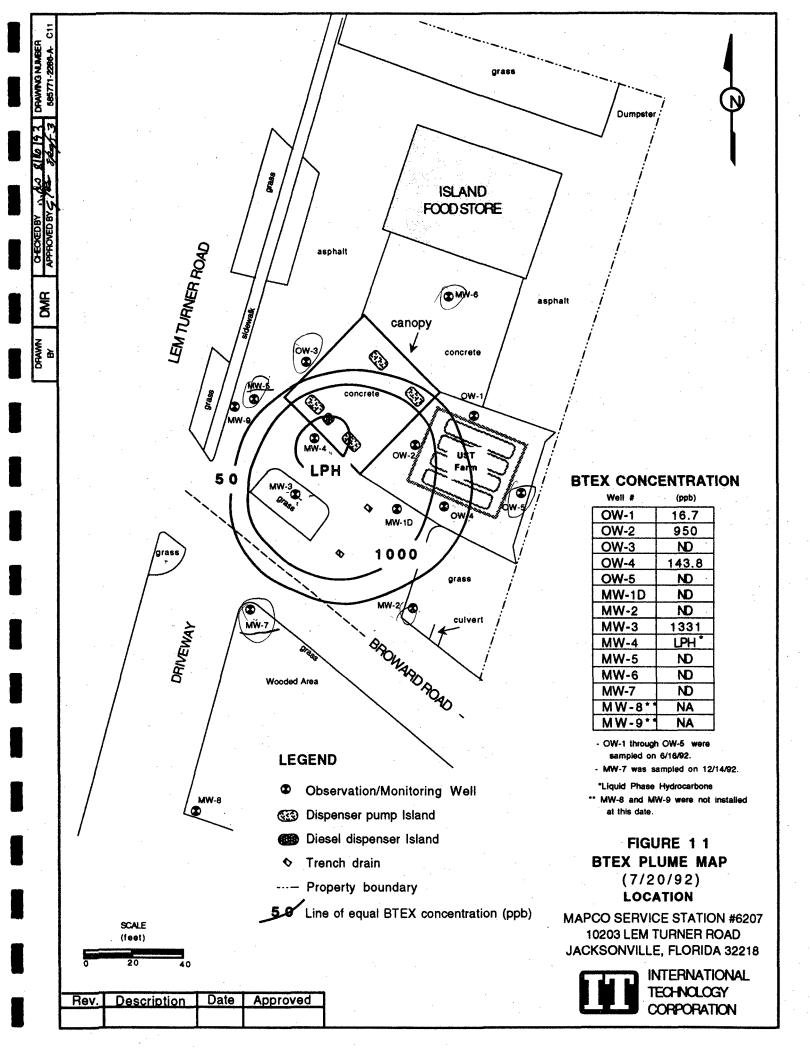
July 20, 1993

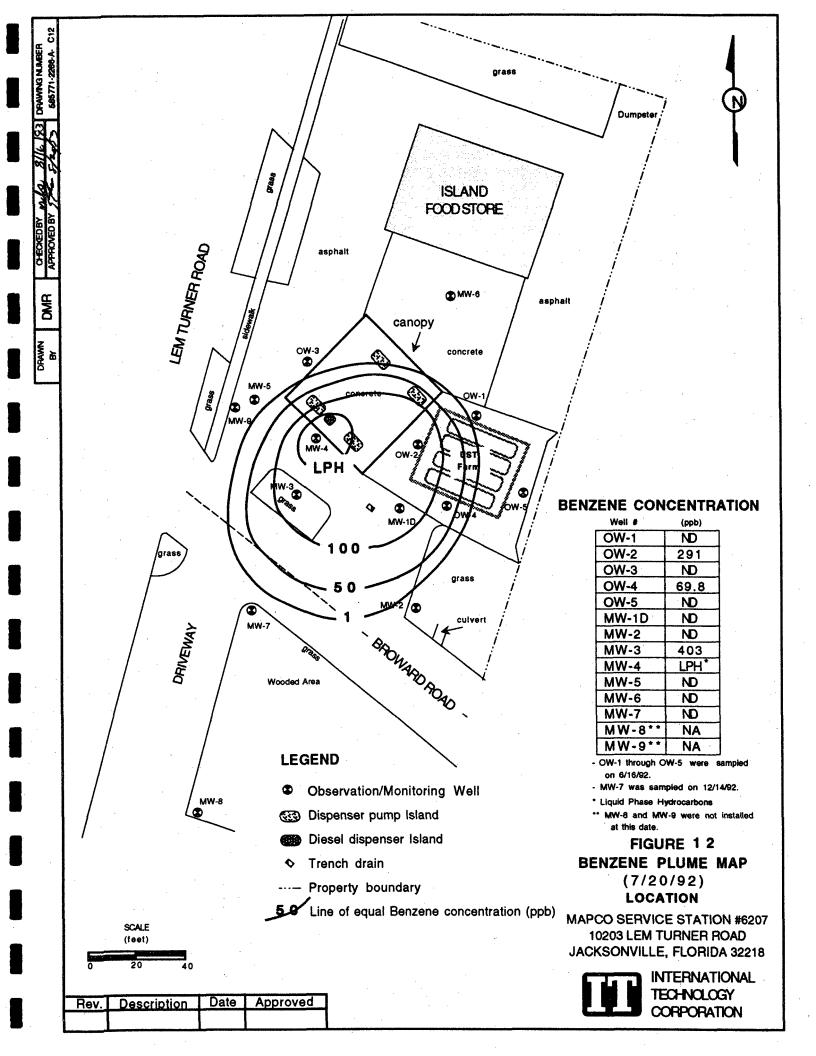
			Ethyl	Total	<u>Total</u>	Total		· · ·
Weil#	Benzene	Toluene	benzene	<u>Xylenes</u>	BTEX	Naph.	MTBE	IRPH
MW-8	ND	ND	ND	ND	ND	ND	ND	NA
MW-9	ND	1.3	ND	ND	1.3	ND	11	NA

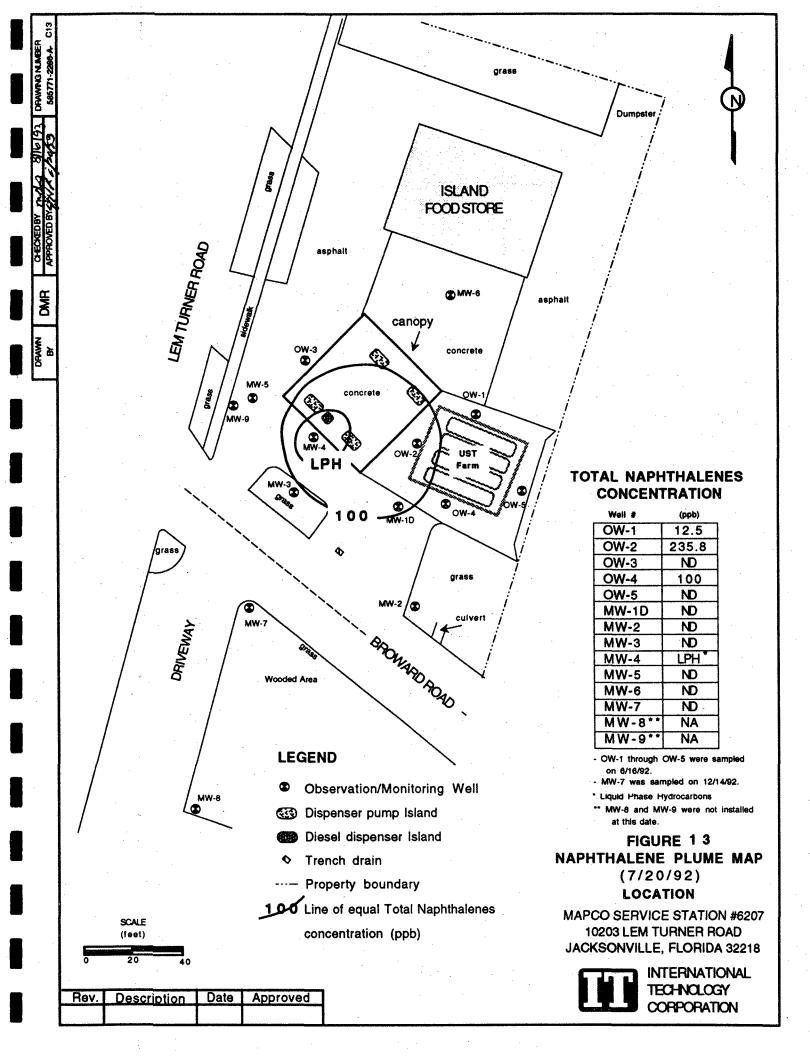
ND - Compound analyzed but concentration are below detection limits.

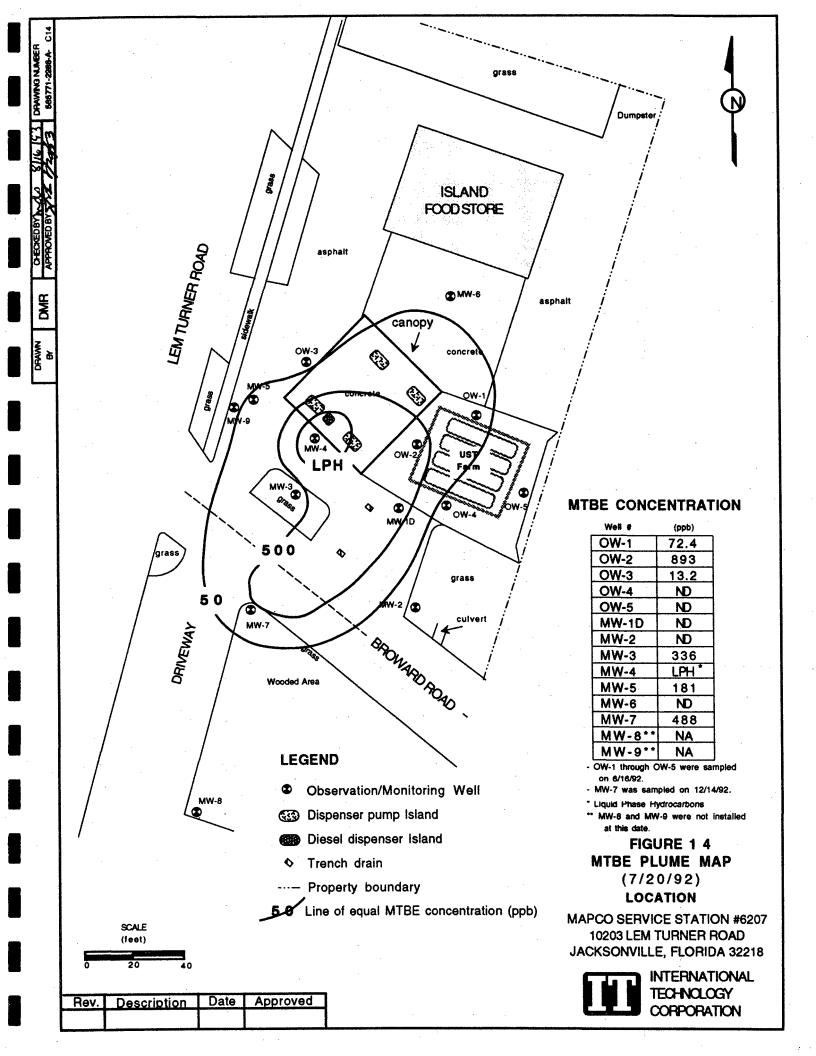
NA- Not analyzed for this parameter.

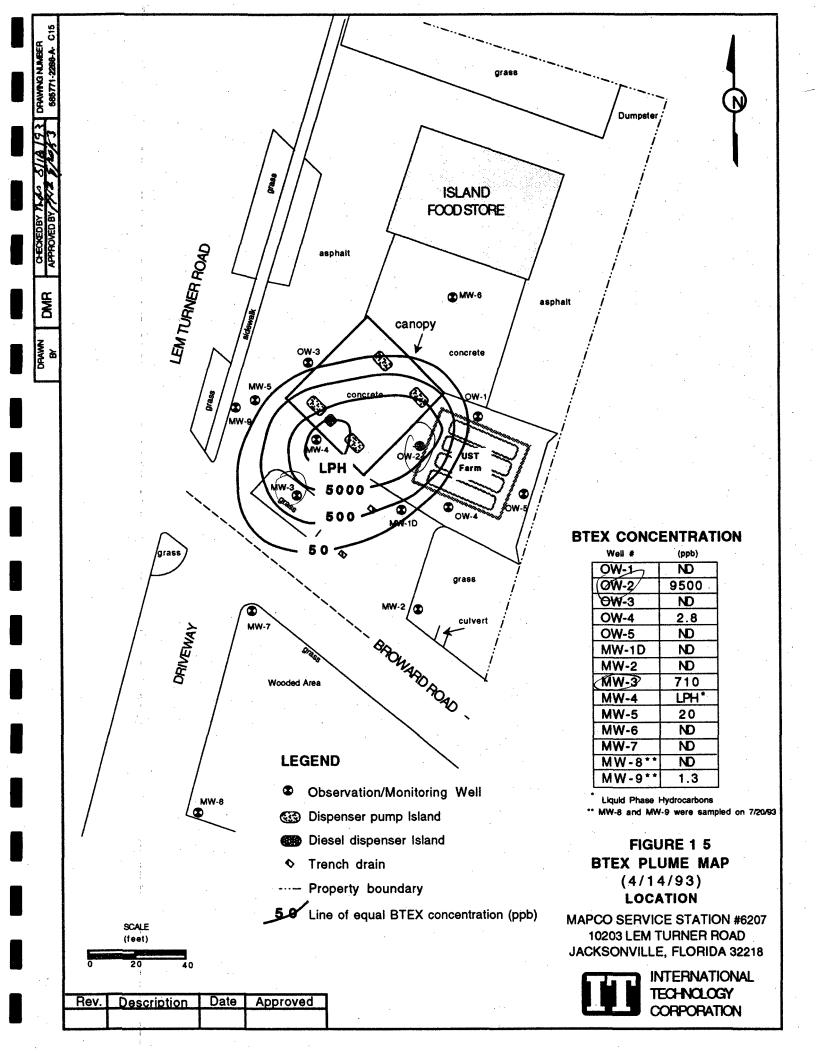
MW-4 was not sampled due to the presence of LPH.


Isoconcentration maps for Total BTEX, Benzene, Total Naphthalenes, and MTBE (Figures 11, 12, 13, and 14, respectively) were constructed using the analytical data from the July 20, 1992 sampling event. Additional isoconcentration maps for the same parameters were constructed using the analytical data obtained from the most recent sampling events (April 14, 1993 and July 20, 1993). These isoconcentration maps are shown on Figures 15, 16, 17, and 18. The dissolved hydrocarbon plume is delineated in the horizontal direction to the northeast by MW-6, to the northwest by MW-9, to the southwest by MW-8, and to the southeast by OW-5. In the vertical direction, the dissolved hydrocarbon plume is delineated by the deep monitor well MW-1D at a depth of 20 feet.

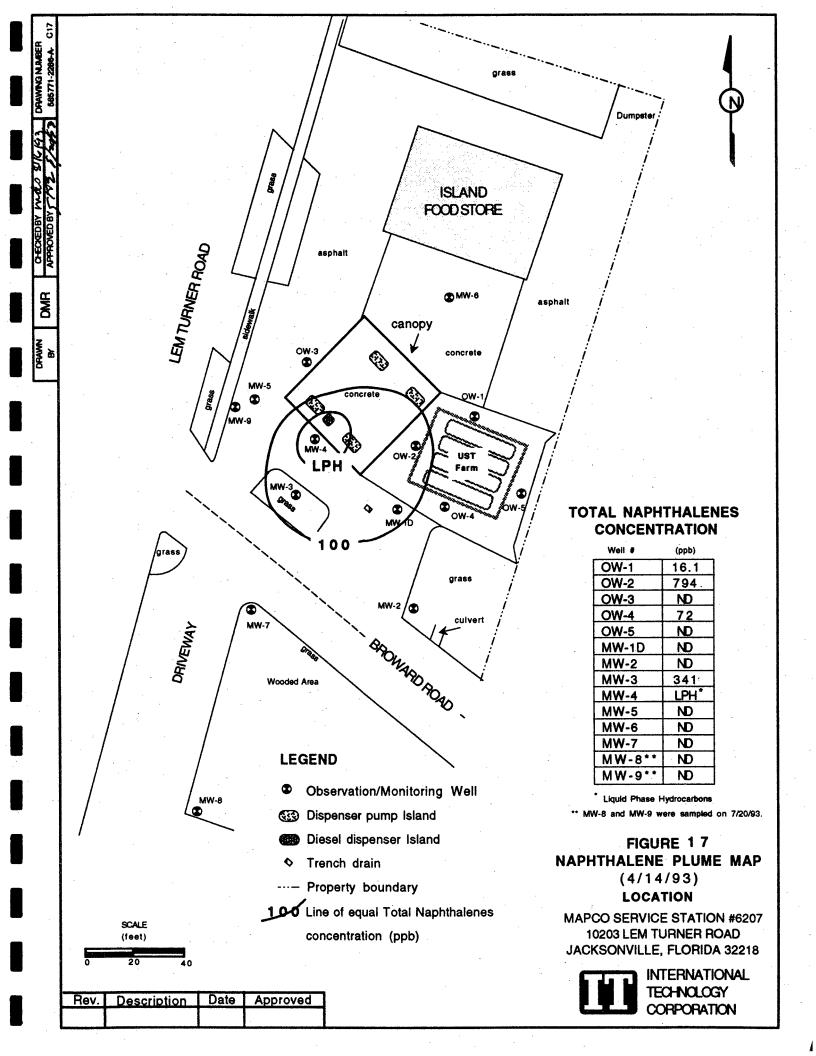

5.6 Aquifer Characteristic Testing Results


Slug tests were performed on July 20, 1992 to determine the hydraulic properties of the water table aquifer at the site. A rising head slug test was conducted on four shallow wells MW-2, MW-3, MW-5, MW-6, and on deep well MW-1D. Data collected during the test by the data logger were downloaded into a plot program and graphed on a semi-log plot to depict drawdown versus time. For each plotted graph, another plot was obtained using only the data from the second segment of the drawdown curve. The drawdown variables needed to use the equation developed by Bouwer and Rice (1976) to calculate the hydraulic conductivity (K) were obtained from the second graph. The data, the plots, and the calculations of each test are included in Appendix D. Estimates made to complete the calculations included: an effective porosity (n) of 30% (based on visual observation of the soil composition), and a saturated aquifer thickness of 50 feet (based on literature review).


The horizontal hydraulic gradient of 0.00788 ft/ft across the site was calculated using the monitoring data obtained on July 20, 1992. The average calculated hydraulic conductivity of the four shallow monitor wells MW-2, MW-3, MW-5, and MW-6 is 11.80 ft/day and the transmissivity, based on an estimated saturation thickness of 50 feet, averaged 590.3 sq ft/day. The estimated rate of groundwater flow is 0.31 ft/day. The hydraulic conductivity of the deeper monitor well MW-1D is 3.21 ft/day, the transmissivity is 160.3 sq ft/day and the estimated rate of groundwater flow is 0.08 ft/day. The storage coefficient was estimated to be 0.29 for the fine to medium-grained silty/clayey sand observed at this location (Fetter, 1980). The above observation reflects a decrease in transmissivity with depth. A summary of the aquifer characteristics is presented in Table 5.


In addition to the the slug test, the physical properties and quality of the groundwater were determined on July 20, 1992. The following Table 6 summarizes these properties.





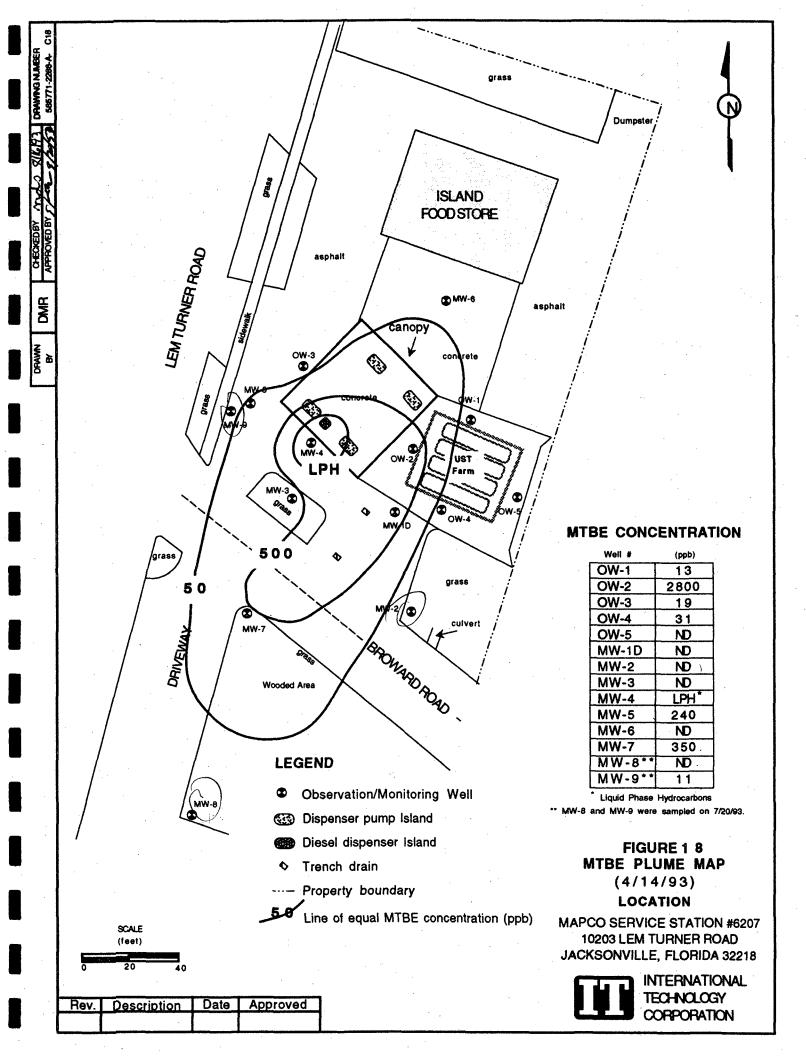


Table 5Aquifer Characteristics SummaryMAPCO Service Station #620710203 Lem TurnerJacksonville, FloridaFDEP FAC # 168507541

<u>Results</u>	<u>MW-2</u>	<u>MW-3</u>	<u>MW-5</u>	<u>MW-6</u>	<u>MW-1D</u>	AVG.
Hydraulic Conductivity (K), (ft/day)	20.21	1.40	7.81	17.81	3.21	11.80
Velocity (V), (ft/day)	0.53	0.04	0.21	0.47	0.08	0.31
Transmissivity (T), (ft ² /d)	1010.6	69.8	390.5	890.4	160.3	590.3
· · · · · · · · · · · · · ·	· .					

* Average does not include results from the deep well MW-1D.

Table 6Groundwater Quality DataMAPCO Service Station #620710203 Lem TurnerJacksonville, FloridaFDEP FAC # 168507541

July 20, 1992

Monitor Well	<u>Temperature</u>	Salinity	Conductivity	Hardness	Iron	рH
	(oC)	(%)	(mmhos)	(mg/L as CaCO ₃)	(mg/L)	
MW-1D	32	• 0	430	300	4.0	7.5
MW-2	30	0	700	320	10.0	6.7
MW-3	31	0	420	400	10.0	6.5
MW-5	32	0	485	240	7.4	7.1
MW-6	33	0	600	420	5.4	6.9

6.0 QUALITY ASSURANCE

IT Corporation's Comprehensive Quality Assurance Plan #870467G is on file with the FDEP and is in compliance with FDEP's "Guidelines for Preparing Quality Assurance Plans" (DER-QA-001/85). Toxikon Corporation Generic (QAP #860214G) and GTEL Environmental Laboratories, Inc. also on file with the FDEP.

All samples were analyzed within the applicable holding times. Results of the analyses of the equipment rinsate and field blanks were below detection limits for all parameters.

7.0 SUMMARY

In June 1992, IT Corporation was retained by MAPCO to conduct a contamination assessment at the Island Food Store/MAPCO Service Station #6207, located at 10203 Lem Turner Road, Jacksonville, Florida. Four 12,000-gallon USTs are located at this site. The USTs are used to store and dispense three grades of unleaded fuels and diesel.

The proximity of the site to private wells, public well fields and surface water bodies was researched with the aid of published listings, maps and visual observations. A review of a listing of the well completion reports from the St. Johns River Water Management District (SJRWMD) indicated that there are no public or private water wells permitted within a half mile radius of the site. Records indicated that the nearest private water well is located approximately three quarter (3/4) of a mile northeast from the site. The well is reportedly constructed to a total depth of 118 feet. The nearest surface water body is the Trout River, located approximately one quarter (1/4) mile south of the site.

The site currently has fourteen (14) observation/monitor wells: five (5) shallow tank pad monitor wells, eight (8) shallow monitor wells and one (1) deep monitor well. All shallow wells are approximately eleven (11) feet in depth and the deep well is approximately 25 feet. The average depth to water at the time of the last sampling was approximately two (2) feet bls. The direction of groundwater flow is estimated to be generally due south-southwest.

The shallow subsurface generally consists of layers of sand, organic silty sand, and sandy clay. The uppermost layer is a dark-brown, fine to medium-grained quartz sand to a depth of approximately three feet. A layer of brown silty sand is encountered at depths ranging from three (3) to six (6) feet bls. A bluish sandy clay is encountered from six to approximately eight (8) to ten (10) feet. This layer is followed by fine to medium-grained sand layers.

The horizontal hydraulic gradient of 0.00788 ft/ft across the site was calculated using the monitoring data obtained on July 20, 1992. The average calculated hydraulic conductivity of the four shallow monitor wells MW-2, MW-3, MW-5, and MW-6 is 11.80 ft/day and the transmissivity (based on an estimated saturation thickness of 50 feet) averaged 590.3 sq ft/day. The estimated rate of groundwater flow is 0.31 ft/day. The hydraulic conductivity of the deeper monitor well MW-1D is 3.21 ft/day, the transmissivity is 160.3 sq ft/day and the estimated rate of groundwater flow is 0.08 ft/day. The storage coefficient was estimated to be 0.29 for the medium-grained silty/clayey sand observed at this location (Fetter, 1980). The above observation reflects a decrease in transmissivity with depth.

Isoconcentration maps for Total BTEX, Benzene, Total Naphthalenes, and MTBE (Figures 11, 12, 13, and 14, respectively) were constructed using the analytical data from the July 20, 1992 sampling event. Additional isoconcentration maps for the same parameters were constructed using the analytical data obtained from the most recent sampling events (April 14, 1993 and July 20, 1993). These isoconcentration maps are shown on Figures 15, 16, 17, and 18. The dissolved hydrocarbon plume is delineated in the horizontal direction to the northeast by MW-6, to the northwest by MW-9, to the southwest by MW-8, and to the southeast by OW-5. In the vertical direction, the dissolved hydrocarbon plume is delineated by the deep monitor well MW-1D at a depth of 20 feet.

8.0 RECOMMENDATION

Based on the results of this investigation, a remedial action plan is recommended for this facility.

9.0 REFERENCES

Bouwer, H., and Rice, R.C. A Slug Test for Determining Hydraulic Conductivity of Unconfined Aquifers With Completely or Partially Penetrating Wells, Water Resources Research, Vol. 12, No. 3, (1976).

Bouwer, H., The Bouwer and Rice Slug Test - An Update, Ground Water, Vol. 27, No. 3, (1989).

- Fairchild, R.W., The Shallow Aquifer System in Duval County, Florida: Florida Geological Survey Report of Investigations No. 43, (1972).
- Fetter, C.W., Applied Hydrogeology, Charles Merrill Publishing Company, Columbus, Ohio, (1980).
- Leve, Gilbert W., Groundwater in Duval and Nassau Counties, Florida, Florida, Geological Survey Bulletin No. 59, (1966).
- Scott, Thomas M., The Lithostratigraphy of the Hawthorn Group (Miocene) of Florida, Florida Geological Survey Bulletin No. 59, (1988).
- Snell, L.J. and Anderson, W., *Water Resources of Northeast Florida*, Florida Geological Survey Report of Investigations No. 54, (1970).
- St. Johns River Water Management District, State of Florida, Water Well Construction Permit.

APPENDIX E LABORATORY Analysis RESULTS

Page 1	TOXIKON CORP.	REPORT	Work Order # 92-06-018
Received: 06/17/92	07/07/	92 13:33:40	
REPORT <u>IT ENVIRONMENTAL SER</u> TO <u>7119 UNIVERSITY BLVD</u> <u>WINTERPARK. FL. 3279</u> (407)679-8299 FAX 67	8Y	TOXIKON WEST PALM B 1860 OLD OKEECHOBEE R WEST PALM BEACH, FL	10.401 /// (0)
ATTEN GREGG ROBERTS		MARK DEVLIN	

PHONE (407) 478-4803

CLIENT IT OR SAMPLES 7 COMPANY IT ENVIRONMENTAL SERVICES FACILITY 7119 UNIVERSITY BLVD. UINTERPARK. FL. 32792

TAKEN 6/16/92

TYPE	WATER
P.O. #	
INVOICE	under separate cover

SAMPLE IDENTIFICATION

<u>01</u>	04-1		
<u>02</u>	04-2		
03	ON-3		
04	OV-4		
05	04-5	:	
	QA-1		
07	QA-2		

TEST CODES and NAMES used on this workorder

CONTACT MARK

601602	PURG. HALOCARBONS & ARONAT
610	PAH
EDB	Ethylene Dibromide
HEX TV	NETALS, TOTAL EXT., WATER
P8	LEAD
TPH IR	TPH BY IR

JUL 1 3 1992

TOKIKON CORP.		lork Order # 92-06-018
Results	by Sample	
SAMPLE # Q	1 FRACTIONS: A.B.C	
Date & Tim	e Collected <u>06/16/92 10:25</u> ;	00 Category WATER
.182 TPN_IRN	<u>D</u>	
.005 mg/L DL=5.	0	
Ì	Results	Results by Sample SAMPLE # 01 FRACTIONS: <u>A.B.C</u> Date & Time Collected 06/16/92 10:25: _182 TPN_IRND

TOXIKON CORP. REPORT Results by Sample

Work Order # 92-06-018

SAMPLE ID OU-1

Received: 06/17/92

FRACTION 01A TEST CODE 601602 NAME PURG. NALOCARBONS & ARCMAT Date & Time Collected 06/16/92 10:25:00 Category WATER

		DETECT	CAS
EPA METHOD 601	RESULT	LIMIT	NO.
Chloromethane		100	74-87-3
Bromomethane	MD	100	74-83-9
Vinyl Chloride	ND	100	75-01-4
Dichlorodifluoromethane		100	75-71-8
Chioroethane	160	100	75-00-3
Methylene Chloride	ND	10	75-09-2
Trichlorofluoromethane	ND	10	75-69-4
1,1-Dichloroethene	. ND		75-35-4
1,1-Dichloroethane	ND		75-34-3
trans-1,2-Dichloroethene	ND	10	156-60-5
Chloroform	ND	10	67-66-3
1,2-Dichloroethane	ND	10	107-06-2
1,1,1-Trichloroethane	ND	10	71-55-6
Carbon tetrachloride	ND	10	56-23-5
Bromodichloromethane	ND	10	75-27-4
1,2-Dichloropropane	ND	10	78-87-5
Trans-1,3-Dichloropropane	NO	10	10061-02-6
Trichloroethene	ND	10	79-01-6
cis-1,3-Dichloropropene	ND	10	10061-01-5
1,1,2-Trichloroethane	ND	10	79-00-5
Dibromochloromethane	NED	10	124-48-1
2-Chloroethylvinyl ether	ND	100	100-75-8
Bromoform	MD	100	75-25-2
1,1,2,2-Tetrachloroethane	ND	10	79-34-5
Tetrachloroethene	ND	10	127-18-4
Chlorobenzene	ND	10	108-90-7
1,4-Dichlorobenzene	ND	10	106-46-7
1,3-Dichlorobenzene	ND	10	541-73-1
1,2-Dichlorobenzene	MD	10	95-50-1

EPA METHOD 602

Benzene	<u>ND10</u> 71-43-2
Toluene	<u>ND 10</u> 108-88-3
Ethylbenzene	ND 10 100-41-4
Xylenes (Total)	<u>16.7</u> <u>10</u> 1330-20-7
Methyl-t-Butyl Ether	72,4 100 1254-25-9

NOTES AND DEFINITIONS FOR THIS REPORT:

EXTRACTED:	06/19/92
DATE RUN:	06/19/92
ANALYST:	<u>IL</u>
INSTRUMENT:	TRE-9000
DIL. FACTOR:	10
UNITS = ug/L	
ND = not dete	cted at detection limit

Page 3

TOXIKON CORP.

, ŝ,

Work Order # 92-06-018

Received: 06/17/92

SAMPLE ID ON-1

Page 4

Results by Sample

FRACTION OIC TEST CODE 610 NAME PAN Date & Time Collected 06/16/92 10:25:00

REPORT

Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	DETECT CAS		
	RESULT	LIMIT	NUMBER
Naphthalene	12.5	10	91-20-3
Acenaphthylene	.ND	10	208-96-8
Acenephthene	NO	10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	ND	10	120-12-7
Fluoranthene	ND	10	206-44-0
Pyrene	MD	10	129-00-0
Benzo(a)anthracene	HD	10	56-55-3
Chrysene	ND	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	ND	10	207-08-9
Benzo(a)pyrene	NO	10	50-32-8
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5
Dibenz(a,h)anthracene	ND	10	53-70-3
Benzo(g,h,i)perylene	NO	10	191-24-2

Additional Analytes

1-Methylnaphthalene	<u>ND</u>	10	
2-Methylnaphthalene	ND	10	

NOTES AND DEFINITIONS FOR THIS REPORT: EXTRACTED..... 06/22/92 DATE RUN..... 06/23/92 INSTRUMENT..... PE UNITS..... UG/L ND = NOT DETECTED AT DETECTION LIMIT

Page 5 Received: 06/17/92		KON CORP. Results b		k Order # 92-06-018
SAMPLE ID <u>OW-2</u>	······································		FRACTIONS: <u>A.B.C</u> Collected <u>06/16/92 10:50:00</u>	Category WATER
ED80 ug/L DL=0.02	PB 0.037 mg/L DL=0.005	TPN_1RND mg/L DL=5.0		

Page 6 Received: 06/17/92 TOKIKON CORP. REPORT Results by Sample Work Order # 92-06-018

SAMPLE ID ON-2

FRACTION 02A TEST CODE 601602 NAME PURG. HALOCARBONS & AROMAT Date & Time Collected 06/16/92 10:50:00 Category WATER

	,	DETECT	r cas
PA NETHOD 601	RESULT	LIMIT	NO.
Chloromethane		100	74-87-3
Bromomethane	<u> </u>	100	74-83-9
Vinyl Chloride		100	75-01-4
Dichlorodifluoromethane		_ 100	75-71-8
Chloroethane			75-00-3
Nethylene Chloride	ND	10	75-09-2
Trichlorofluoromethane	NO	10	75-69-4
1,1-Dichloroethene	NO	10	75-35-4
1,1-Dichloroethane	<u> </u>	10	75-34-3
trans-1,2-Dichloroethene	. ND		156-60-5
Chloroform	. ND	10	67-66-3
1,2-Dichloroethane	ND	10	107-06-2
1,1,1-Trichloroethane	ND	10	71-55-6
Carbon tetrachloride	ND	10	56-23-5
Bromodichloromethane	ND		75-27-4
1,2-Dichloropropane	ND		78-87-5
Trans-1,3-Dichloropropane	ND		10061-02-
Trichloroethene	ND	10	79-01-6
cis-1,3-Dichloropropene	ND		10061-01-
1,1,2-Trichloroethane	ND		79-00-5
Dibromochloromethane	ND		124-48-1
2-Chloroethylvinyl ether	ND		100-75-8
Bromoform	ND		75-25-2
1,1,2,2-Tetrachloroethane	ND		79-34-5
Tetrachloroethene	ND		127-18-4
Chlorobenzene	ND		108-90-7
1,4-Dichlorobenzene	ND		106-46-7
1,3-Dichlorobenzene	ND ND		541-73-1
1,2-Dichlorobenzene	ND		95-50-1

EPA METHOD 602

Benzene	<u>29110</u> 71-43-2
Toluene	192 10 108-88-3
Ethylbenzene	208 10 100-41-4
Xylenes (Total)	
Nethyl-t-Butyl Ether	893 100 1254-25-9

NOTES AND DEFINITIONS FOR THIS REPORT:

EXTRACTED:	06/19/92
DATE RUN;	06/19/92
ANALYST:	IL
INSTRUMENT:	TRE-9000
DIL. FACTOR:	10
UNITS = ug/L	
ND = not deter	cted at detection limit

Page 7 Received: 06/17/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-06-018

SAMPLE ID ON-2

FRACTION OZC TEST CODE 610 NAME PAN Date & Time Collected 06/16/92 10:50:00 Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

DETECT CAS		
RESULT	LINIT	NUMBER
143	10	91-20-3
<u> </u>	10	208-96-8
ND	10	83-32-9
	10	86-73-7
NO	10	85-01-8
MD	10	120-12-7
<u> </u>	10	206-44-0
ND	10	129-00-0
NED	10	56-55-3
ND	10	218-01-9
MD	10	205-99-2
NO	10	207-08-9
MD	10	50-32-8
NO	10	193-39-5
. NO	10	53-70-3
NC	10	191-24-2
		RESULT LIMIT 143 10 MD 10

Additional Analytes 1-Methylnaphthalene 30.8 10 2-Methylnaphthalene <u>62.0</u> 10

NOTES AND DEFINITIONS FOR THIS REPORT:

06/23/92 IL
TI
PE
UG/L
AT DETECTION LIMIT

Page 8 Received:	06/17/92		KON CORP. Results b	REPORT Ny Sample	Vork	Order # 9	2-06-018
SAMPLE	10 <u>GW-3</u>			FRACTIONS: A.B.		Category	WATER
ED8 ug/L	₩D DL≈0.02	P80.024 mg/L DL=0.005	TPH_IRNC mg/L DL=5.0	2			

Page 9 Received: 06/17/92

TOXIKON CORP. REPORT

Work Order # 92-06-018

Results by Sample

SAMPLE ID ON-3

FRACTION 03A TEST CODE 601602 NAME PURG. HALOCARBONS & ARCHAT Date & Time Collected 06/16/92 11:10:00 Category MATER

	DETECT CAS
EPA NETHOD 601	RESULT LINIT NO.
Chloromethane	ND 10 74-87-3
Bromomethane	ND 10 74-83-9
Vinyl Chloride	<u> </u>
Dichlorodifluoromethane	<u> </u>
Chloroethane	<u> </u>
Methylene Chloride	<u>MD</u> 1.0 75-09-2
Trichlorofluoromethane	ND 1.0 75-69-4
1,1-Dichloroethene	ND 1.0 75-35-4
1,1-Dichloroethane	<u>ND</u> 1.0 75-34-3
trans-1,2-Dichloroethene	<u>ND 1.0</u> 156-60-5
Chloroform	<u>ND 1.0</u> 67-66-3
1,2-Dichloroethane	<u>ND 1.0 107-06-2</u>
1,1,1-Trichloroethane	<u>ND 1.0</u> 71-55-6
Carbon tetrachloride	<u>ND 1.0</u> 56-23-5
Bromodichloromethane	<u> </u>
1,2-Dichloropropane	<u>ND 1,0</u> 78-87-5
Trans-1,3-Dichloropropane	<u>ND1.0</u> 10061-02-6
Trichloroethene	<u>ND 1.0</u> 79-01-6
cis-1,3-Dichloropropene	<u>ND 1.0</u> 10061-01-5
1,1,2-Trichloroethane	<u>ND1.0</u> 79-00-5
Dibromochloromethane	<u>ND 1.0</u> 124-48-1
2-Chloroethylvinyl ether	<u>ND10</u> 100-75-8
Bromoform	<u> </u>
1,1,2,2-Tetrachloroethane	<u>ND1.0</u> 79-34-5
Tetrachloroethene	<u>ND _1,0</u> 127-18-4
Chlorobenzene	<u>ND _1.0</u> 108-90-7
1,4-Dichlorobenzene	<u>ND 1.0</u> 106-46-7
1,3-Dichlorobenzene	<u>ND1.0</u> 541-73-1
1,2-Dichlorobenzene	<u>MD</u> <u>1,0</u> 95-50-1

EPA METHOD 602

Benzene	<u>ND 1.0</u> 71-43-2
Toluene	<u>ND 1.0</u> 108-88-3
Ethylbenzene	<u>ND 1.0</u> 100-41-4
Xylenes (Total)	<u>MD 1.0</u> 1330-20-7
Methyl-t-Butyl Ether	<u>13.2</u> <u>10</u> 1254-25-9

NOTES AND DEFINITIONS FOR THIS REPORT:

EXTRACTED:	<u>06/19/92</u>
DATE RUN:	06/19/92
ANALYST:	<u> </u>
INSTRUMENT:	TRE-9000
DIL. FACTOR:	1
UNITS = ug/L	
ND = not dete	cted at detection limit

Page 10 Received: 06/17/92

Work Order # 92-06-018

SAMPLE ID OM-3

FRACTION 03C TEST CODE 610 NAME PAN Date & Time Collected 06/16/92 11:10:00

Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

· ·		DETECT CAS	
· · · ·	RESULT	LIMIT	NUMBER
Naphthalene	ND	10	91-20-3
Acenaphthylene	ND	10	208-96-8
Acenaphthene	<u>ND</u>	10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	ND	10	120-12-7
Fluoranthene	ND	10	206-44-0
Pyrene	ND	10	129-00-0
Benzo(a)anthracene	ND	10	56-55-3
Chrysene	ND	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	ND	10	207-08-9
Benzo(a)pyrene	ND	10	50-32-8
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5
Dibenz(a,h)anthracene	ND	10	53-70-3
Benzo(g,h,i)perylene	ND	10	191-24-2

Additional Analytes

1-Methylnaphthalene	,	. ND	10	
2-Methylnaphthalene		<u> </u>	10	

NOTES AND DEFINITIONS FOR THIS REPORT:

EXTRACTED	06/22/92
DATE RUN	06/23/92
ANALYST	IL
INSTRUMENT	<u>PE</u>
UNITS	UG/L
ND = NOT DETECTED	AT DETECTION LIMIT

Page 11 Received: 06/17/92	TOXIKON CORP. Results b	REPORT Vori by Sample	k Order # 92-06-018
SAMPLE ID <u>QW-4</u>		FRACTIONS: <u>A.B.C</u> Collected <u>06/16/92 11:05:00</u>	Category WATER
ED6ND_P60 Ug/LDL=0.02 mg/LDL=0) <u>.095</u> TPH_IRH).005 mg/L DL=5.(2	

÷

TOKIKON CORP. REPORT Results by Sample

Work Order # 92-06-018

SAMPLE ID ON-4

FRACTION 04A TEST CODE <u>601602</u> NAME <u>PURG. HALOCARBONS & AROMAT</u> Date & Time Collected 06/16/92 11:05:00 Category MATER

	DETECT CAS
A NETHOD 601	RESULT LIMIT NO.
Chloromethane	ND 100 74-87-3
Bromomethane	ND100 74-83-9
Vinyl Chloride	NQ _ 100 75-01-4
Dichlorodifluoromethane	<u> </u>
Chloroethane	NO100 75-00-3
Methylene Chloride	<u></u>
Trichlorofluoromethane	ND10 75-69-4
1,1-Dichloroethene	<u></u>
1,1-Dichloroethane	<u>ND10</u> 75-34-3
trans-1,2-Dichloroethene	ND10 156-60-5
Chloroform	<u>ND</u> 10 67-66-3
1,2-Dichloroethane	ND 10 107-06-2
1,1,1-Trichloroethane	<u>ND</u> 10 71-55-6
Carbon tetrachloride	ND10 56-23-5
Bromodichloromethane	ND 10 75-27-4
1,2-Dichloropropane	NO 10 78-87-5
Trans-1,3-Dichloropropane	ND10 10061-02
Trichloroethene	ND10 79-01-6
cis-1,3-Dichloropropene	<u>N0 10</u> 10061-01
1,1,2-Trichloroethane	ND 10 79-00-5
Dibromochloromethane	ND 10 124-48-1
2-Chloroethylvinyl ether	ND 100 100-75-8
Bromoform	<u>ND</u> 100 75-25-2
1,1,2,2-Tetrachloroethane	ND 10 79-34-5
Tetrachloroethene	ND 10 127-18-4
Chlorobenzene	ND 10 108-90-7
1,4-Dichlorobenzene	ND 10 106-46-7
1,3-Dichlorobenzene	N0 10 541-73-1
1,2-Dichlorobenzene	<u>ND 10</u> 95-50-1

EPA METHOD 602

Benzene	<u>69.8</u> <u>10</u> 71-43-2
Toluene	<u>ND 10</u> 108-88-3
Ethylbenzene	35.4 10 100-41-4
Xylenes (Total)	38.6 10 1330-20-7
Methyl-t-Butyl Ether	<u>N0</u> <u>100</u> 1254-25-9

NOTES AND DEFINITIONS FOR THIS REPORT:

EXTRACTED:	06/19/92
DATE RUN:	06/19/92
ANALYST:	<u>1L</u>
INSTRUMENT:	TRE-9000
DIL. FACTOR:	10
UNITS = ug/L	
ND = not dete	cted at detection limit

Page 12 Received: 06/17/92

TOKIKON CORP. REPORT Results by Sample

Work Order # 92-06-018

Received: 06/17/92

Page 13

SAMPLE ID ON-4

FRACTION 04C TEST CODE 610 NAME PAN Date & Time Collected 06/16/92 11:05:00

Category MATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	DETECT CAS		
	RESULT	LINIT	NUMBER
Naphthalene	100	10	91-20-3
Acenaphthylene		10	208-96-8
Acenaphthene	<u>ND</u>	10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	<u> </u>	10	120-12-7
Fluoranthene	MD	10	206-44-0
Pyrene	ND	10	129-00-0
Benzo(a)anthracene	<u> </u>	10	56-55-3
Chrysene	ND	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	ND	<u> </u>	207-08-9
Senzo(a)pyrene	ND	10	50-32-8
Indeno(1,2,3-cd)pyrene	NO	10	193-39-5
Dibenz(a,h)anthracene	NO	10	53-70-3
Benzo(g,h,i)perylene	MD	10	191-24-2

Additional Analytes

1-Methylnaphthalene	ND	10
2-Methylnaphthalene	MD	10

	EXTRACTED	06/22/92
	DATE RUN	06/23/92
	ANALYST	<u> </u>
	INSTRUMENT	<u>PE</u>
. ,	UNITS	UG/L
	ND = NOT DETECTED	AT DETECTION LIMIT

Page 14 Received: (06/17/92		OXIKON	i CORP. Resu	its b	REPORT y Sample	Vork	Order # 1	92-06-018
SAMPLE I	<u>ou-5</u>					FRACTIONS: A.B.C		<u> </u>	
EDB		PB0.1	77 TE	Date &		Collected <u>06/16/92</u>	10:15:00	Category	WATER
	DL=0.02	mg/L DL=0.0		mg/L D			•	•	

Page 15 Received: 06/17/92

TOXIKON CORP. REPORT Work Order # 92-06-018

Results by Sample

SAMPLE ID ON-5

FRACTION 05A TEST CODE 601602 NAME PURG. NALOCARBONS & ARONAT Date & Time Collected 06/16/92 10:15:00 Category MATER

	DETECT CAS
EPA NETHOD 601	RESULT LINIT NO.
Chloromethane	<u> </u>
Bromomethane	ND10 74-83-9
Vinyl Chloride	ND10 75-01-4
Dichlorodifluoromethane	<u> </u>
Chloroethane	ND 10 75-00-3
Nethylene Chloride	NO1.0 75-09-2
Trichlorofluoromethane	<u></u>
1,1-Dichlorgethene	<u></u> <u>_</u> <u></u> <u>_</u> <u></u> <u>_</u> <u></u> <u>_</u> <u></u> <u>_</u> <u></u> <u>_</u> <u></u>
1,1-Dichloroethane	<u></u>
trans-1,2-Dichloroethene	<u>NO1.0</u> 156-60-5
Chloroform	<u></u>
1,2-Dichloroethane	ND 1.0 107-06-2
1,1,1-Trichloroethane	<u>ND</u> 1.0 71-55-6
Carbon tetrachloride	<u>ND</u> 71-53-5
Bromodichloromethane	<u>ND1.0</u> 75-27-4
1,2-Dichloropropane	<u></u>
Trans-1,3-Dichloropropane	<u>ND1.0</u> 10061-02-6
Trichloroethene	<u></u>
cis-1,3-Dichloropropene	ND 1.0 10061-01-5
1,1,2-Trichloroethane	ND 1.0 79-00-5
Dibromochloromethane	ND 1.0 124-48-1
2-Chloroethylvinyl ether	ND 10 100-75-8
Bromoform	<u></u>
1,1,2,2-Tetrachloroethane	<u></u>
Tetrachloroethene	ND 1.0 127-18-4
Chlorobenzene	ND 1.0 108-90-7
1,4-Dichlorobenzene	ND 1.0 106-46-7
1,3-Dichlorobenzene	ND 1.0 541-73-1
1,2-Dichlorobenzene	ND 1.0 95-50-1
· · · · · · · · · · · · · · · · · · ·	

EPA METHOD 602

Benzene	<u>ND1.0</u> 71-43-2
Toluene	<u>ND 1.0</u> 108-88-3
Ethylbenzene	<u>ND 1.0</u> 100-41-4
Xylenes (Total)	<u>ND</u> <u>1.0</u> 1330-20-7
Methyl-t-Butyl Ether	<u>ND</u> <u>10</u> 1254-25-9

EXTRACTED:	06/19/92
DATE RUN:	06/19/92
ANALYST:	<u> </u>
INSTRUMENT:	TRE-9000
DIL. FACTOR:	1
UNITS = ug/L	
ND = not dete	cted at detection limit

Page 16 Received: 06/17/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-06-018

SAMPLE ID ON-5

FRACTION OSC TEST CODE 610 NAME PAN Date & Time Collected 06/16/92 10:15:00

Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	DETECT CAS		
	RESULT	LIMIT	NUMBER
Naphthalene	NO	10	91-20-3
Acenaphthylene	<u>ND</u>	10	208-96-8
Acenaphthene	<u> </u>	10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	ND	10	120-12-7
Fluoranthene	ND	10	206-44-0
Pyrene	ND	10	129-00-0
Benzo(a)anthracene	ND	10	56-55-3
Chrysene	ND	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	NO	10	207-08-9
Benzo(a)pyrene	<u>HD</u>	10	50-32-8
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5
Dibenz(a,h)anthracene	<u>HD</u>	10	53-70-3
Benzo(g,h,i)perylene	ND	10	191-24-2
Addition	al Analyte	S .	
1-Methylnaphthalene	ND	10	

ND 10 2-Methylnaphthalene

06/22/92
06/23/92
<u> </u>
PE
UG/L
AT DETECTION LIMIT

Page 17 Received:	06/17/92		OXIKON CORP. Res	ults b	REPORT y Sample	Work	Order # '	92-06-018
SAMPLE	D 9A-1		SAMPL	E # 06	FRACTIONS: A	.B.C		·
						16/92 11:00:00	Category	WATER
EDG		P8	D TPH_IR	. III)	ی مراجع کار اور مراجع کار اور			n ant € a
ug/L	DL=0.02	mg/ L DL=0.0	05 ag/L	DL=5.0	•			

TOXIKON CORP. REPORT Results by Sample

· Work Order # 92-06-018

SAMPLE ID QA-1

Received: 06/17/92

FRACTION 06A TEST CODE 601602 NAME PURG. HALOCARBONS & AROMAT Date & Time Collected 06/16/92 11:00:00 Category WATER

BPA NETHOD 601	DETECT CAS RESULT LIMIT NO.
Chloromethane	<u>ND 10</u> 74-87-3
Bromomethane	<u>ND 10</u> 74-83-9
Vinyl Chloride	<u> </u>
Dichlorodifluoromethane	<u> </u>
Chloroethane	<u>10</u> 75-00-3
Nethylene Chloride	<u> </u>
Trichlorofluoromethane	<u>ND1.0</u> 75-69-4
1,1-Dichloroethene	<u></u>
1,1-Dichloroethane	<u>ND1.0</u> 75-34-3
trans-1,2-Dichloroethene	<u>ND1.0</u> 156-60-5
Chloroform	<u>ND1.0</u> 67-66-3
1,2-Dichloroethane	<u>ND1.0</u> 107-06-2
1,1,1-Trichloroethane	<u>ND _1.0</u> 71-55-6
Carbon tetrachloride	<u> </u>
Bromodichloromethane	<u>ND1.0</u> 75-27-4
1,2-Dichloropropane	<u>ND1.0</u> 78-87-5
Trans-1,3-Dichloropropane	<u>MD 1.0</u> 10061-02-6
Trichloroethene	<u></u>
cis-1,3-Dichloropropene	<u>ND _1.0</u> 10061-01-5
1,1,2-Trichloroethane	<u>ND1.0</u> 79-00-5
Dibromochloromethane	<u>ND1.0</u> 124-48-1
2-Chloroethylvinyl ether	<u> </u>
Bromoform	<u>ND10</u> 75-25-2
1,1,2,2-Tetrachloroethane	<u>ND1.0</u> 79-34-5
Tetrachloroethene	<u>ND1.0</u> 127-18-4
Chlorobenzene	<u>ND1.0</u> 108-90-7
1,4-Dichlorobenzene	<u>ND 1.0</u> 106-46-7
1,3-Dichlorobenzene	<u>ND1.0</u> 541-73-1
1,2-Dichlorobenzene	<u>MD 1.0</u> 95-50-1

EPA METHOD 602

Benzene	<u>ND 1.0</u> 71-43-2
Toluene	<u>MD 1.0</u> 108-88-3
Ethylbenzene	<u>ND 1.0</u> 100-41-4
Xylenes (Total)	<u> </u>
Methyl-t-Butyl Ether	<u>ND 10</u> 1254-25-9

NOTES AND DEFINITIONS FOR THIS REPORT:

EXTRACTED:	06/19/92
DATE RUN:	06/19/92
ANALYST:	<u> </u>
INSTRUMENT:	TRE-9000
DIL. FACTOR:	1
UNITS = ug/L	
ND = not dete	cted at detection limit

Page 18

Page 19 Received: 06/17/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-06-018

SAMPLE ID QA-1

FRACTION OGC TEST CODE 610 NAME PAN Date & Time Collected 06/16/92 11:00:00

Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	10 - A	DETECT	CAS
	RESULT	LIMIT	NUMBER
Naphthalene	ND	10	91-20-3
Acenaphthylene	ND	10	208-96-8
Acenaphthene		10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	ND	10	120-12-7
Fluoranthene	ND	10	206-44-0
Pyrene	ND	10	129-00-0
Benzo(a)anthracene	NO	10	56-55-3
Chrysene	ND	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	ND	10	207-08-9
Benzo(a)pyrene	ND	10	50-32-8
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5
Dibenz(a,h)anthracene	NO	10	53-70-3
Benzo(g,h,i)perylene	<u> </u>	10	191-24-2

Additional Analytes

1-Methylnaphthalene	ND	10	
2-Methylnaphthalene	<u> </u>	10	

NOTES AND DEFINITIONS FOR THIS REPORT: EXTRACTED..... 06/22/92

DATE RUN	06/23/92
ANALYST	<u> </u>
INSTRUMENT	PE
UNITS	UG/L
ND = NOT DETECTED	AT DETECTION LINIT

Page 20 Received: 06/17/92

TEST CODE 601602 NAME PURG. NALOCARBONS & ARONAT

EPA METHOD: 601/602 Volatile Halocarbons & Aromatic Compounds

Reference: Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater, Appendix A. 40CFR Part 136. Federal Register Vol. 49, No. 209, 1984.

TEST CODE 610 NAME PAR

EPA METHOD: 610 Polynuclear Aromatic Hydrocarbons

Reference: Methods for Organic Chemical Analysis of Municipal and Industrial Westewater. Appendix A. 40CFR Part 136. Federal Register Vol. 49, No. 209, 1984.

TEST CODE EDB NAME Ethylene Dibromide

EPA METHOD: 504

Reference: Methods for the Determination of Organic Compounds in Drinking Water. EPA/600/4-88/039, December 1988, pg. 89. 1,2-Dibromoethane (EDB) and 1,2,-Dibromo-3-Chloropropane (DBCP) in Water by Microextraction and Gas Chromatography.

TEST CODE MEX TH NAME METALS, TOTAL EXT., WATER

REFERENCE:

EPA METHOD 3005. Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by Flame Atomic Absorption Spectroscopy or Inductively Coupled Plasma Spectroscopy. Test Methods for Evaluating Physical/Chemical Methods. SW 846, 3rd Edition.

TEST CODE TPH IR NAME TPH BY IR

EPA METHOD: 418.1 for water sample.

Reference: Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020 (Revised, March 1983). EPA/EMSL, Cincinnati, OH.

EPA METHOD: 9073 for soil sample.

Reference: Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846 (Third Edition) 1986. Office of Solid Waste, USEPA.

Page 1		TOXIKON	CORP.	REPORT	Work Order # 92-07-030
Received:	07/22/92		08/07/	92 12:51: 36	
REPORT	IT ENVIRONMENTAL SERVI	CES	PREPARED	TOXIKON WEST PALM BEACH	$ \alpha / \alpha$
TO	7119 UNIVERSITY BLVD.		8Y.	1860 OLD OKEECHOBEE RD. 40	$\frac{1}{2}$
	WINTERPARK, FL. 32792			WEST PALM BEACH, FL 33409	- maal
	(407)679-8299 FAX 679-	8280	•		CERTIFIED BY
ATTEN	GREGG ROBERTS		ATTEN	MARK DEVLIN	
			PHONE	(407) 478-4803	CONTACT MARK

CLIENT	IT OR	SAMPLES 11
COMPANY	IT ENVIRONMENTAL S	ERVICES
FACILITY.	7119 UNIVERSITY BL	VD.
	WINTERPARK, FL. 32	792

WORK ID	MAPCO #585771	
TAKEN	7/20/92	
TRANS	GREYHOUND	
TYPE	WATER	· · .
P.O. #	541925	
INVOICE	under separate cover	

SAMPLE IDENTIFICATION

<u>01</u>	NW-10/920720/771
<u>02</u>	MW-2/920720/771
03	MJ-3/920720/771
	M-5/920720/771
	MW-6/920720/771
	OW-1/920720/771
	ON-4/920720/771
	ON-5/920720/771
	QA-1/920720/771
	QA-2/920720/771
	TRIP-BLANK
<u> </u>	IRIP-DLANA

TEST CODES and NAMES used on this workorder

 601602
 PURG. HALOCARBONS & AROMAT

 602
 EPA 602

 610
 PAH

 EDB
 Ethylene Dibromide

 HOLD
 THIS SAMPLE IS ON HOLD

 MEX TW
 METALS, TOTAL EXT., WATER

 PS
 LEAD

 TPH IR
 TPH BY IR

AUG 1 G 1000

	· · ·	0'L=10 1/8w	500°0≖10 וא ⁶ ש	1/6n
		TPH 18 3.63	GN 8 d	CN 903
CELEGOLA MATER	26/02//0 passal 100	emiīā stad		
	FRACTIONS: A.B		122/022026	701-110 01 373WVS
	anders	Results by		26/22/10 :bevies
	+1			

Page 3 Received: 07/22/92

TOXIKON CORP. REPORT Results by Sample Work Order # 92-07-030

SAMPLE 10 MI-10/920720/771

FRACTION 01A TEST CODE 601602 NAME PURG. HALOCARBONS & AROMAT Date & Time Collected 07/20/92 16:35:00 Category WATER

EPA METHOD 601	DETECT CAS RESULT LIMIT NO.
Chloromethane	ND 5.0 74-87-3
Bromomethane	ND 5.0 74-83-9
Vinyl Chloride	ND 5.0 75-01-4
Dichlorodifluoromethane	ND 5.0 75-71-8
Chloroethane	HD 5.0 75-00-3
Methylene Chloride	ND 1.0 75-09-2
Trichlorofluoromethane	ND 1.0 75-69-4
1,1-Dichloroethene	ND 1.0 75-35-4
1,1-Dichloroethane	ND 1.0 75-34-3
trans-1,2-Dichloroethene	ND 1.0 156-60-5
Chloroform	ND _1.0 67-66-3
1,2-Dichloroethane	MD 1.0 107-06-2
1,1,1-Trichloroethane	<u>1.0</u> 71-55-6
Carbon tetrachloride	ND 1.0 56-23-5
Bromodichloromethane	<u>ND 1.0</u> 75-27-4
1,2-Dichloropropane	<u>ND 1.0</u> 78-87-5
Trans-1,3-Dichloropropane	<u>ND 1.0</u> 10061-02-6
Trichloroethene	<u>HD 1.0</u> 79-01-6
cis-1,3-Dichloropropene	<u>ND1,0</u> 10061-01-5
1,1,2-Trichloroethane	<u>ND 1.0</u> 79-00-5
Dibromochloromethane	<u>ND1.0</u> 124-48-1
2-Chloroethylvinyl ether	<u> </u>
Bromoform	<u> </u>
1,1,2,2-Tetrachloroethane	<u>ND1.0</u> 79-34-5
Tetrachloroethene	<u>ND1.0</u> 127-18-4
Chlorobenzene	<u>ND 1.0</u> 108-90-7
1,4-Dichlorobenzene	<u>ND 1.0</u> 106-46-7
1,3-Dichlorobenzene	<u>ND 1.0</u> 541-73-1
1,2-Dichlorobenzene	<u>ND 1.0</u> 95-50-1

EPA METHOD 602

Benzene	<u>ND 1.0</u> 71-43-2
Toluene	ND 1.0 108-88-3
Ethylbenzene	ND 1.0 100-41-4
Xylenes (Total)	ND 1.0 1330-20-7
Methyl-t-Butyl Ether	ND 5.0 1254-25-9

EXTRACTED:	07/28/92
DATE RUN:	07/28/92
ANALYST:	1L
INSTRUMENT:	TRE-9000
DIL. FACTOR:	1
UNITS = ug/L	•
ND = not deter	cted at detection limit

Page 4 Received: 07/22/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-07-030

SAMPLE ID MW-10/920720/771

FRACTION <u>01A</u> TEST CODE <u>610</u> NAME <u>PAH</u> Date & Time Collected <u>07/20/92 16:35:00</u>

Category MATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	DETECT CAS		
	RESULT	LIMIT	NUMBER
Naphthalene		10	91-20-3
1-Nethylnaphthalene	NO	10	
2-Methylnaphthalene	ND	10	
Acenaphthylene	NO	10	208-96-8
Acenaph thene	ND	10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	. ND	10	120-12-7
Fluoranthene	NĐ	10	206-44-0
Pyrene		10	129-00-0
Benzo(a)anthracene	ND	10	56-55-3
Chrysene	ND	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	MD	10	207-08-9
Benzo(a)pyrene	ND	10	50-32-8
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5
Dibenz(a,h)anthracene	ND	10	53-70-3
Benzo(g,h,i)perylene	ND	10	191-24-2

NOTES AND DEFINITIONS	S FOR THIS REPORT:	
EXTRACTED	07/23/92	
DATE RUN	07/28/92	
ANALYST	<u> </u>	j
INSTRUMENT	PE	
UNITS	UG/L	
ND = NOT DETECTED	AT DETECTION LIMIT	
ND - NOT DETECTED	AT DETECTION LIAIT	

Page 5 Received: 07/22/92	TOXIKON CORP. REPORT Results by Sample	Work Order # 92-07-030
SAMPLE ID MM-2/920720/771	FRACTION <u>02A</u> TEST CODE Date & Time Collected <u>07/</u>	
	EPA METHOD 602	WITH NTBE

. •		RESULT	DETECT	CAS NO.
	8enzene	NO		71-43-2
	Toluene	NO		108-88-3
	Ethylbenzene	<u>ND</u>	1.0	100-41-4
	Xylenes (Total)	ND	1.0	1330-20-7
	Methyl-t-Butyl Ether	ND	5.0	1254-25-9
, et				

NOTES AND DEFINITI	ONS FOR THIS REPORT:	
 DATE RUN:	07/28/92	
 ANALYST:	IL	
INSTRUMENT:	TREMETRI	
DIL. FACTOR:	1	
UNITS:	ug/L	
ND = NOT DETE	CTED AT DETECTION LIMIT	

Page 6TOXIKON CORP.REPORTWork Order # 92-07-030Received: 07/22/92Results by Sample

SAMPLE ID MW-2/920720/771

FRACTION 02A TEST CODE 610 NAME PAN Date & Time Collected 07/20/92 16:30:00

Category WATER

POLYNUCLEAR ARONATIC HYDROCARBONS

			DETECT CAS		
	RESULT	LINIT	NUMBER		
Naphthalene	MO	10	91-20-3		
1-Nethylnaphthalene	ND	10			
2-Methylnaphthalene	NO	10			
Acenaphthylene	NO	10	208-96-8		
Acenaphthene	ND	10	83-32-9		
Fluorene	ND	10	86-73-7		
Phenanthrene	ND	10	85-01-8		
Anthracene	ND	10	120-12-7		
Fluoranthene	ND	10	206-44-0		
Pyrene	NO	10	129-00-0		
Benzo(a)anthracene	ND	10	56-55-3		
Chrysene	NO	10	218-01-9		
Senzo(b)fluoranthene	NO	10	205-99-2		
Benzo(k)fluoranthene	ND	10	207-08-9		
Benzo(a)pyrene	ND	10	50-32-8		
Indeno(1,2,3-cd)pyrene	<u>ND</u>	10	193-39-5		
Dibenz(a,h)anthracene	ND		53-70-3		
<pre>Benzo(g,h,i)perylene</pre>	ND	10	191-24-2		

 NOTES AND DEFINITIONS FOR THIS REPORT:

 EXTRACTED......
 07/23/92

 DATE RUN......
 07/28/92

 ANALYST......
 IL

 INSTRUMENT.....
 PE

 UNITS......
 UG/L

 ND = NOT DETECTED AT DETECTION LIMIT

Page 7		TOXIKON CORP.	REPORT	Work Order # 92-07-030
Received: 07/22/92		Results i	by Sample	
	· ·			,

SAMPLE 10 10-3/920720/771

FRACTION 03A TEST CODE 602 NAME EPA 602 Date & Time Collected 07/20/92 16:45:00 Catego

Category MATER

EPA METHOD 602 WITH MTBE

	DETECT	CAS
RESULT	LIMIT	NO.
403	25	71-43-2
71.0	25	108-88-3
123	25	100-41-4
734	25	1330-20-7
336	125	1254-25-9
	<u>403</u> <u>71.0</u> <u>123</u> <u>734</u>	RESULT LIMIT 403 25 71.0 25 123 25 734 25

	DATE RUN:	07/28/92	
	ANALYST:	<u> </u>	•
	INSTRUMENT:	TREMETRI	
· •	DIL. FACTOR:	25	
	UNITS:	ug/L .	
÷.	ND = NOT DETEC	TED AT DETECT	ION LIMIT

Page 8

Received: 07/22/92

SAMPLE 10 MM-3/920720/771

TOXIKON CORP. Results by Sample

Work Order # 92-07-030

FRACTION 03A TEST CODE 610 NAME PAN Date & Time Collected 07/20/92 16:45:00

REPORT

Category MATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	DETECT CAS		
	RESULT	LINIT	NUMBER
Naphthalene	NO	10	91-20-3
1-Methylnaphthalene	ND	10	
2-Methylnaphthalene	ND	10	
Acenaphthylene	ND	10	208-96-8
Acenaphthene	ND	10	83-32-9
Fluorene	NO	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	ND	10	120-12-7
Fluoranthene		10	206-44-0
Pyrene	ND	10	129-00-0
Benzo(a)anthracene	HD	10	56-55-3
Chrysene	MD	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	ND	10	207-08-9
Benzo(a)pyrene	ND	10	50-32-8
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5
Dibenz(a,h)anthracene	ND	10	53-70-3
<pre>Benzo(g,h,i)perylene</pre>	<u>ND</u>	10	191-24-2

NOTES AND DEFINITIONS FOR THIS REPORT: EXTRACTED..... 07/23/92 DATE RUN..... 07/28/92 ANALYST..... IL INSTRUMENT..... PE UNITS..... UG/L ND = NOT DETECTED AT DETECTION LIMIT

Page 9 Work Order # 92-07-030 TOXIKON CORP. REPORT Received: 07/22/92 Results by Sample

SAMPLE 10 MM-5/920720/771

FRACTION 04A TEST CODE 602 NAME EPA 602 Date & Time Collected 07/20/92 16:50:00 Category WATER

EPA METHOD 602 WITH MTBE

		DETECT	CAS
	RESULT	LINIT	NO.
8enzene	<u>ND</u>	1.0	71-43-2
Toluene	<u></u> MD	1.0	108-88-3
Ethylbenzene	<u> </u>	1.0	100-41-4
Xylenes (Total)	<u>ND</u>	1.0	1330-20-7
Methyl-t-Butyl Ether	181	5.0	1254-25-9

DATE RUN: 07/28/92	
ANALYST: IL	
INSTRUMENT: TREMETRI	
DIL. FACTOR: 1	
UNITS: Ug/L	
ND = NOT DETECTED AT DETECTION LIMIT	

Page 10 Received: 07/22/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-07-030

SAMPLE 10 MM-5/920720/771

FRACTION <u>04A</u> TEST CODE <u>610</u> NAME <u>PAN</u> Date & Time Collected <u>07/20/92 16:50:00</u>

Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	DETECT CAS		
	RESULT	LINIT	NUMBER
Naphthalene	<u>ND</u>	10	91-20-3
1-Methylnaphthalene	ND	10	
2-Methylnaphthalene	<u> </u>	10	÷
Acenaphthylene	ND	10	208-96-8
Acenaphthene	ND	10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	NO	10	120-12-7
Fluoranthene	NO	10	206-44-0
Pyrene	MD	10	129-00-0
Benzo(a)anthracene	MO	10	56-55-3
Chrysene	<u> </u>	10	218-01-9
Benzo(b)fluoranthene	ND	10	205-99-2
Benzo(k)fluoranthene	ND	10	207-08-9
Benzo(a)pyrene	ND	10	50-32-8
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5
Dibenz(a,h)anthracene	NO	10	53-70-3
Benzo(g,h,i)perylene	NO	10	191-24-2
NOTES AND DEFINITI	ONS FOR TH	IS REP	ORT:
EVEDACTED	07/07/0	'n	

HOICS AND DELINITIONS	STOR THIS REPORT.
EXTRACTED	07/23/92
DATE RUN	07/28/92
ANALYST	1L
INSTRUMENT	PE
UNITS	UG/L
ND = NOT DETECTED	AT DETECTION LIMIT

age 11 aceived: 07/22/92	TOXIKON CORP. Results I	REPORT by Semple	Work Order #	92-07-030
AMPLE ID MM-6/920720/771		TEST CODE <u>602</u> Collected <u>07/20/92 1</u>		y water
	EPA METH	OD 602 WI	TH NTBE	
	Benzene	DE	TECT CAS INIT NO. 1.0 71-43-2	

Toluene	<u>ND 1.0</u> 108-88-3
Ethylbenzene	<u>ND 1.0</u> 100-41-4
Xylenes (Total)	<u>ND 1,0</u> 1330-20-7
Methyl-t-Butyl Ether	<u>ND5,0</u> 1254-25-9
NOTES AND DEFI	NITIONS FOR THIS REPORT:
DATE RUN:	07/28/92
ANALYST:	IL
INSTRUMEN	

ANALYST:	11
	£k
INSTRUMENT:	TREMETRI
DIL. FACTOR:	1
UNITS:	ug/L
ND = NOT DETEC	TED AT DETECTION LIMIT

Ĩ

Page 12 Received: 07/22/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-07-030

SAMPLE 10 10-6/920720/771

FRACTION 05A TEST CODE 610 NAME PAN Date & Time Collected 07/20/92 17:05:00 Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

	DETECT CAS RESULT LIMIT NUMBER
	· .
Naphthalene	<u> </u>
1-Methylnaphthalene	<u>ND10</u>
2-Methylnaphthalene	<u>10</u>
Acenaphthylene	<u>N010</u> 208-96-8
Acenaphthene	<u>N010</u> 83-32-9
Fluorene	<u>10</u> 86-73-7
Phenanthrene	<u>ND 10</u> 85-01-8
Anthracene	<u>10</u> 120-12-7
Fluoranthene	<u>10</u> 206-44-0
Pyrene	<u>ND 10</u> 129-00-0
Benzo(a)anthracene	<u>ND10</u> 56-55-3
Chrysene	<u>ND10</u> 218-01-9
Benzo(b)fluoranthene	<u>10</u> 205-99-2
Benzo(k)fluoranthene	<u>10</u> 207-08-9
Benzo(a)pyrene	<u>ND10</u> 50-32-8
Indeno(1,2,3-cd)pyrene	<u>ND 10</u> 193-39-5
Dibenz(a,h)anthracene	<u>ND 10</u> 53-70-3
Benzo(g,h,i)perylene	<u>ND 10 191-24-2</u>
NOTES AND DEFINITION	ONS FOR THIS REPORT:
EXTRACTED	. 07/23/92
	07/09/00

DATE RUN...... 07/28/92 ANALYST INSTRUMENT..... PE UG/L UNITS..... ND = NOT DETECTED AT DETECTION LINIT

Page 13	TOXIKON CORP.	REPORT	Work Order # 92-07-030
Received: 07/22/92	Results b	y Sample	
SAMPLE ID ON-1/920720/771	SAMPLE # 06	FRACTIONS: A	
	Date & Time	Collected 07/20/	92 17:15:00 Category WATER
	· · · ·		
mg/L DL=0.005			
	н. 1.		
		······	
SAMPLE 10 04-4/920720/771	SAMPLE # 07	FRACTIONS: A	·
	Date & Time	Collected 07/20/	92 17:30:00 Category WATER
	· · · ·		
mg/L DL=0,005		$(1,1,2,\dots,2^{n-1})$	
		· · · · · · · · · · · · · · · · · · ·	
SAMPLE ID 04-5/920720/771	SAMPLE # 08	FRACTIONS: A	
	Date & Time	Collected 07/20/	92 17:40:00 Category WATER
	e de la companya de l		•
PB			•
mg/L DL=0.005		5 g	· · ·

İ

Page 14 Received: 07/22/92	TOXIKON CORP. RE Results by Sampl		Work Order # 9/	2-07-030
SAMPLE ID <u>9A-1/920720/771</u>	FRACTION <u>09A</u> TEST Date & Time Collecte			WATER
	EPA NETHOD	502 WITH	NTBE	
		DETECT RESULT LINIT		
	Benzene _	<u>MD 1.0</u>	71-43-2	
	Toluene	<u>MD 1.0</u>	2 108-88-3	
	Ethylbenzene	ND 1.(2 100-41-4	
	Xylenes (Total)	<u>ND 1.(</u>	1330-20-7	
	Nethyl-t-Butyl Ether	<u>ND 5.</u>	0 1254-25-9	
	NOTES AND DEFINIT	IONS FOR THIS RE	PORT:	
	DATE RUN: Analyst: Instrument:	1		
	DIL. FACTOR: UNITS:	1 ug/L	~	
	ND = NOT DET	ECTED AT DETECTI	ON LIMIT	

Page 15 Received: 07/22/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-07-030

SAMPLE 10 94-1/920720/771

FRACTION 09A TEST CODE 610 NAME PAN Date & Time Collected 07/20/92 17:45:00 Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

ана. Спорта страна	DETECT CAS		
	RESULT	LINIT	NUMBER
Naphthalene		10	91-20-3
1-Methylnaphthalene	ND	10	1
2-Methylnaphthalene	ND	10	
Acenaphthylene	ND	10	208-96-8
Acenaphthene	<u> </u>	10	83-32-9
Fluorene	ND	10	86-73-7
Phenanthrene	ND	10	85-01-8
Anthracene	ND	10	120-12-7
Fluoranthene	ND	10	206-44-0
Pyrene	ND	10	129-00-0
Benzo(a)anthracene	ND	10	56-55-3
Chrysene	ND	- 10	218-01-9
Benzo(b)fluoranthene	NO	10	205-99-2
Benzo(k)fluoranthene	ND	10	207-08-9
Benzo(a)pyrene	ND	10	50-32-8
Indeno(1,2,3-cd)pyrene	NC	10	193-39-5
Dibenz(a,h)anthracene		10	53-70-3
Benzo(g,h,i)perylene	NC	10	191-24-2

NOTES AND DEFINITIONS FOR THIS REPORT: EXTRACTED..... 07/23/92 DATE RUN...... 07/28/92 ANALYST..... 11 INSTRUMENT..... PE UG/L UNITS..... ND = NOT DETECTED AT DETECTION LIMIT

TOKIKON		ts by		r	Vork	Order # 92-07-0	30
	SAMPLE	# 10	FRACTION	5: <u>A</u>		· · · · · · · · · · · · · · · · · · ·	
	Date &	Time	Collected	07/20/92	15:15:00	Category WATER	
						· * · ·	
			•				•
			· · · · · · · · · · · · · · · · · · ·		·····	· · · · · · · · · · · · · · · · · · ·	
	Date &	Time	Collected	07/17/92	14:30:00	Category WATER	
					14		
-		Resul	Results by SAMPLE # 10 Date & Time	Results by Sample	Results by Sample	Results by Sample	Results by Sample SAMPLE # <u>10</u> FRACTIONS: <u>A</u> Date & Time Collected <u>07/20/92 15:15:00</u> Category <u>WATER</u>

.

TOXIKON CORP. REPORT Received: 07/22/92 Test Nethodology

Work Order # 92-07-030

TEST CODE 601602 NAME PURG. HALOCARBONS & AROMAT

EPA METHOD: 601/602 Volatile Halocarbons & Aromatic Compounds

Reference: Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A. 40CFR Part 136. Federal Register Vol. 49, No. 209, 1984.

TEST CODE 602 NAME EPA 602

Method not available.

Page 17

TEST CODE 610 NAME PAN

EPA METHOD: 610 Polynuclear Aromatic Hydrocarbons

Reference: Methods for Organic Chemical Analysis of Municipal and EIndustrial Wastewater. Appendix A. 40CFR Part 136. Federal Register Vol. 49, No. 209, 1984.

TEST CODE EDB NAME Ethylene Dibromide

EPA METHOD: 504

Reference: Methods for the Determination of Organic Compounds in Drinking Water. EPA/600/4-88/039, December 1988, pg. 89. 1,2-Dibromoethane (EDB) and 1,2,-Dibromo-3-Chloropropane (DBCP) in Water by Microextraction and Gas Chromatography.

TEST CODE NEX TV NAME METALS, TOTAL EXT., WATER

REFERENCE:

EPA METHOD 3005. Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by Flame Atomic Absorption Spectroscopy or Inductively Coupled Plasma Spectroscopy. Test Methods for Evaluating Physical/Chemical Methods. SW 846, 3rd Edition.

TEST CODE TPH IR NAME TPH BY IR

EPA METHOD: 418.1 for water sample.

Reference: Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020 (Revised, March 1983). EPA/EMSL, Cincinnati, OH.

EPA METHOD: 9073 for soil sample.

Reference: Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846 (Third Edition) 1986. Office of Solid Waste, USEPA.

Page 1	T	OXIKON CORP.	•	REPORT	Vor	k Order # 92-12-05	1
Received	: 12/16/92	· 12	2/30/9	2 07:08:27	• •		
REPORT	IT ENVIRONMENTAL SERVICE	ES PREI	ARED	TOXIKON WEST PALM	BEACH		
· TO	7119 UNIVERSITY BLVD.	·	BŸ	1860 OLD OKEECHOBEE	E RD. 401	<	Α.
	WINTERPARK, FL. 32792			WEST PALM BEACH, FI	33409 (11 MANIT	\sim
.*	(407)679-8299 FAX 679-82	280		· · ·		CERTIFIED BY	
ATTEN	GREGG ROBERTS		ATTEN	JOHN YAREMCHUK			
			PHONE	(407) 478-4803		CONTACT KELLI	
CLIENT	IT OR SAMPI	LES 1					
COMPANY	IT ENVIRONMENTAL SERVICE	ES					
FACILITY	7119 UNIVERSITY BLVD.	-	.*				
· ,	WINTERPARK, FL. 32792	·					
×	· · · · · · · · · · · · · · · · · · ·						
WORK ID	NAPCO 585771						
TAKEN	12/14/92						÷.,
TRANS	GREYHOUND	-		•			
TYPE	WATER						
P.O. #	937436 BILL DEERFIELD O	FFICE				· · · · · ·	

INV. # 10499

SAMPLE IDENTIFICATION

TEST CODES and HAMES used on this workorder

602	<u>EPA 602</u>		
<u>610</u>	PAH		
	METALS.		WATER
P8	LEAD		
	TPH BY		

JAN 0 4 1993

Received: 12/16/92	Results by Sample	Work Order # 92-12-051
SAMPLE ID M-7/921214/771	SAMPLE # 01 FRACTIONS: A	
	Date & Time Collected 12/14/	92 13:40:00 Category WATER
PB ND_ TPH_1R ND		
mg/L DL=0.005 mg/L DL=1.0		
1		· · · · · · · · · · · · · · · · · · ·

age 3	TOXIKON CORP	, REPORT	Work Order # 9	72-12-051
eceived: 12/16/92	R	esults by Sample		
AMPLE ID <u>MM-7/9212</u>		10N <u>01A</u> TEST CODE <u>602</u> & Time Collected <u>12/14/92</u>		Y WATER
				٦
	EPA	METHOD 602 W	ITH MTBE	
		RESULT	DETECT CAS LIMIT NO.	
	Benzene	ND	1.0 71-43-2	
	Toluene	<u>ND</u>	<u>1.0</u> 108-88-3	
• • •	Ethylbenzene	ND	<u>1.0</u> 100-41-4	
	Xylenes (Tota	NDND	<u>1.0</u> 1330-20-7	
· · · · · · · · · · · · · · · · · · ·	Methyl-t-Buty	el Ether <u>488</u>	<u>1.0</u> 1254-25-9	
	NOT	ES AND DEFINITIONS FOR T	HIS REPORT:	
		DATE RUN: <u>12/25/9</u> ANALYST: <u>T</u>	2	
		INSTRUMENT: TRE-900 DIL. FACTOR:	<u>0</u> 1	
		UNITS: <u>UG/L</u> ND = NOT DETECTED AT D	ETECTION LIMIT	

P

s

Page 4 Received: 12/16/92 TOXIKON CORP. REPORT Results by Sample

Work Order # 92-12-051

SAMPLE 10 MM-7/921214/771

FRACTION 01A TEST CODE 610 NAME PAN

Date & Time Collected 12/14/92 13:40:00 Category WATER

POLYNUCLEAR AROMATIC HYDROCARBONS

· · ·	DETECT CAS			
	RESULT	LIMIT	NUMBER	
Naphthalene	ND	10	91-20-3	
1-Methylnaphthalene	ND	10		
2-Methylnaphthalene	ND	10		
Acenaphthylene	ND	10	208-96-8	
Acenaphthene	ND	10	83-32-9	
Fluorene	ND	10	86-73-7	
Phenanthrene	ND	10	85-01-8	
Anthracene	ND	10	120-12-7	
Fluoranthene	ND	10	206-44-0	
Pyrene	ND	10	129-00-0	
Benzo(a)anthracene	ND	10	56-55-3	
Chrysene	ND	10	218-01-9	
Benzo(b)fluoranthene	ND	10	205-99-2	
Benzo(k)fluoranthene	ND	10	207-08-9	
Benzo(a)pyrene	ND	10	50-32-8	
Indeno(1,2,3-cd)pyrene	ND	10	193-39-5	
Dibenz(a,h)anthracene	ND	10	53-70-3	
Benzo(g,h,i)perylene	ND	10	191-24-2	

EXTRACTED	12/17/92
DATE RUN	12/17/92
ANALYST	<u> </u>
INSTRUMENT	PE
UNITS	UG/L
DILUTION	1
ND = NOT DETECTE	D AT DETECTION LIMIT
CONMENTS:	

Page 5 TOXIKON CORP. REPORT Received: 12/16/92 Test Methodology Work Order # 92-12-051

TEST CODE 602 NAME EPA 602

EPA METHOD: 602 Volatile Aromatic Compounds

Reference: Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A. 40CFR Part 136. Federal Register Vol. 49, No. 209, 1984.

TEST CODE 610 NAME PAN

EPA METHOD: 610 Polynuclear Aromatic Hydrocarbons

Reference: Methods for Organic Chemical Analysis of Municipal and Industrial Wastewater. Appendix A. 40CFR Part 136. Federal Register Vol. 49, No. 209, 1984.

TEST CODE MEX TV NAME METALS, TOTAL EXT., WATER

REFERENCE:

EPA METHOD 3005. Acid Digestion of Waters for Total Recoverable or Dissolved Metals for Analysis by Flame Atomic Absorption Spectroscopy or Inductively Coupled Plasma Spectroscopy. Test Methods for Evaluating Physical/Chemical Methods. SW 846, 3rd Edition.

TEST CODE TPH IR NAME TPH BY IR

EPA METHOD: 418.1 for water sample.

Reference: Methods for Chemical Analysis of Water and Wastes. EPA 600/4-79-020 (Revised, March 1983). EPA/EMSL, Cincinnati, OH.

EPA METHOD: 9073 for soil sample.

Reference: Test Methods for Evaluating Solid Waste: Physical/Chemical Methods. EPA SW-846 (Third Edition) 1986. Office of Solid Waste, USEPA.

	INTERNATI TECHNOLO CORPORAT	DGY		NALYS	IS REQ	UEST /	AND Ref CORD * Pag	erence Document	: No. 3640
	Project Name/I	No. 1 Mapco 685	<u>77/</u>	ples Shipm	ent Date	7 12-19	592 Bill (Deerfiel	station
S	ample Team Memb	ers 2 D. Rozzan	0				K KOn	Deerher	7 BCH
	Profit Center I	No. 3 2286		Lal	o Contact	9			
	Project Mana	ger 4 Gregg Ro	bets Proje	ect Contac	t/Phone	12 407	6798299 Report to	10 TH COR	p
	Purchase Order I	No. 6 93743	6	Carrier/W	/aybill No	13 G/eu	thousd	Delande	•
	Required Report D	ate		ONE	CONT	AINER	PER LINE		· · · · · · · · · · · · · · · · · · ·
	Sample ¹⁴	Sample ¹⁵ Description/Type	Date/Time ¹⁶ Collected	Туре	⁷ Sample ¹⁸ Volume	Pre- ¹⁹ servative	Requested Testing ²⁰ Program	Condition on ²¹ Receipt	Disposal ²² Record No.
A	mw-1921214 771	water-	1/14 13:40	Glass	BOML	HEL) 100 LOR 602		
		· · · · · ·		olasa	120-1	-	7	FUR	AB
ĺ	\$ 1V -	1		Plastic	802	Nitric	Etto lea	d objection of the second seco	NLY
				91953 21.1er	21.45	None	(610		
[V		91955	21.40	Sulfunic) TPH 418.1	CODI	AD
ſ	m.								
ſ									·
ľ	:,								
ſ	Special Instruction	רא: ²³ י		-			-		
	Possible Hazard lo	dentification: 24 ammable Li Skin Im	itant _1 Pois	son B	Unknowr		Sample Disposal: ²⁵ Return to Client I Disp	osal by Lat	e (mo s
Ī	Turnaround Time Normal XI Rush			QC 1.1	Level: 2	7 .[_]]	Project Specific (specify);		
ľ	1. Relinquished by a (Signature/Affiliation)		3000 Tim	e: 12-15		1	ved by 28 Q	Date: Time:	12 16 92
	2. Relinquished by (Signature/Affiliation)) Data Tim			2. Recei	ved by	Date: Time:	
	3. Relinquished by (Signature/Affiliation)		Date	8:		3. Recei		Date: Time:	

Southeast Region 10500 University Center Drive, Suite 160 Tampa, FL 33612 (813) 979-9092 800-933-GTEL (4835) FAX: 813-979-6914 Project Number: ITC16MAP01 Project ID: 10203 Lem Turner Rd. Store Number: 6207 Work Order Number: F304224

April 22, 1993

Mr. Greg Roberts IT Corporation 7119 University Blvd. Winter Park, FL 32792

Dear Mr. Roberts

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on April 16, 1993 under chain of custody record 21059 and 21060.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified (approved) by the State of Florida under Certificate Number HRS#E84196 and by the State of South Carolina under Certificate Number #96025.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

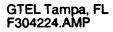
Sincerely, GTEL Environmental Laboratories, Inc.

Harold Vernon Laboratory Director

GTEL Tampa, FL F304224.AMP Page 1

Project Number: ITC16MAP01 Project ID: 10203 Lem Turner Rd. Store Number: 6207 Work Order Number: F304224

ANALYTICAL RESULTS


Volatile Organics in Water EPA Method 602 (modified)^a

GTEL	Sample Number	0422401	0422402	0422403	0422404
Clie	ent Identification	TRIP BLANK	QA 1 930414 /771	QA 2 930414 /771	QA 3 930414 /771
	Date Sampled	04-14-93	04-14-93	04-14-93	04-14-93
Date Analyzed		04-19-93	04-19-93	04-19-93	04-19-93
Analyte0	QL, ug/L ^b	Concentration, ug/L			
Benzene	0.5	<ql< td=""><td><ql< td=""><td>580</td><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td>580</td><td><ql< td=""></ql<></td></ql<>	580	<ql< td=""></ql<>
Toluene	1.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Ethyl Benzene	1.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Xylenes (total) ^a	5.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
BTEX (total)		**		580	
Methyl tert-Butyl Ethera	10.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Quantitation Limit Multiplie	rC	1	1	100	1

Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770. а

b С

QL = Quantitation Limit The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation limits due to sample dilutions.

Project Number: ITC16MAP01 Project ID: 10203 Lem Turner Rd. Store Number: 6207 Work Order Number: F304224

ANALYTICAL RESULTS

Volatile Organics in Water EPA Method 602 (modified)^a

GT	EL Sample Number	0422405	0422406	0422407	0422408
	Client Identification	OW 1 930414 /771	OW 2 930414 /771	OW 3 930414 /771	OW 4 930414 /771
	Date Sampled	04-14-93	04-14-93	04-14-93	04-14-93
	Date Analyzed	04-20-93	04-19-93	04-19-93	04-20-93
Analyte	QL, ug/Lb				
Benzene	0.5	<ql< td=""><td>3500</td><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	3500	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Toluene	1.0	<ql< td=""><td>1000</td><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	1000	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Ethyl Benzene	1.0	<ql< td=""><td>1300</td><td><ql< td=""><td>2.8</td></ql<></td></ql<>	1300	<ql< td=""><td>2.8</td></ql<>	2.8
Xylenes (total)a	5.0	<ql< td=""><td>3700</td><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	3700	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
BTEX (total)	-	÷**	9500		2.8
Methyl tert-Butyl Ether	a 10.0	13	2800	19	31
Quantitation Limit Mult	iplier ^C	1	100	1	1

a b

Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770. QL = Quantitation Limit The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation limits due to sample dilutions.

С

Project Number: ITC16MAP01 Project ID: 10203 Lem Turner Rd. Store Number: 6207 Work Order Number: F304224

ANALYTICAL RESULTS

Volatile Organics in Water EPA Method 602 (modified)^a

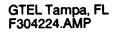
in the second					
GTEL	Sample Number	0422409	0422410	0422411	0422412
Client Identification		OW 5 930414 /771	MW 1D 930414 /771	MW 2 930414 /771	MW 3 930414 /771
	Date Sampled		04-14-93	04-14-93	04-14-93
· · · · · · · · · · · · · · · · · · ·	Date Analyzed	04-19-93	04-19-93	04-19-93	04-19-93
Analyte	QL, ug/Lb	Concentration, ug/L			
Benzene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td>610</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>610</td></ql<></td></ql<>	<ql< td=""><td>610</td></ql<>	610
Toluene	1.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td>100</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>100</td></ql<></td></ql<>	<ql< td=""><td>100</td></ql<>	100
Ethyl Benzene	1.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Xylenes (total) ^a	5.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td>-<ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>-<ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td>-<ql< td=""></ql<></td></ql<>	- <ql< td=""></ql<>
BTEX (total)		· · ·		-	710
Methyl tert-Butyl Ethera	10.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Quantitation Limit Multiplie	ər ^C	1	1	. 1	100

a Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770.

b QL = Quantitation Limit c The Quantitation Limit M

The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation limits due to sample dilutions.

ANALYTICAL RESULTS


Volatile Organics in Water EPA Method 602 (modified)^a

GTEL S	Sample Number	0422413	0422414	0422415	· ••
Clie	nt Identification	MW 5 930414 /771	MW 6 930414 /771	MW 7 930414 /771	
	Date Sampled	04-14-93	04-14-93	04-14-93	
	Date Analyzed	04-20-93	04-20-93	04-20-93	
Analyte	QL, ug/L ^b		Concentratio	on, ug/L	
Benzene	0.5	20	<ql< td=""><td><ql< td=""><td></td></ql<></td></ql<>	<ql< td=""><td></td></ql<>	
Toluene	1.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td>-</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>-</td></ql<></td></ql<>	<ql< td=""><td>-</td></ql<>	-
Ethyl Benzene	1.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td></td></ql<></td></ql<>	<ql< td=""><td></td></ql<>	
Xylenes (total) ^a	5.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td>·</td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>·</td></ql<></td></ql<>	<ql< td=""><td>·</td></ql<>	·
BTEX (total)	·	20	-		
Methyl tert-Butyl Ethera	10.0	240	<ql< td=""><td>350</td><td></td></ql<>	350	
Quantitation Limit Multiplie	۰C _	1	1	10	

Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770. QL = Quantitation Limit а

b

The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation limits due to sample dilutions. С

		105 TAN (813	00 L MPA 3) 97	JNIV , FL '9-90	ERSI 33612 92	TY 2	CEN	TEI	R DF	RIV	E			Ci Ai	HAII ND /	N-C AN	OF-C	CUS YSI:	STO S RI	DY I EQU	REQ IES	COP	RD			21	LO	5	9	P	٩g	e	1 .		2
mpany Name:			Pho	one #:	40	7- U	79	· B	299						ļ			I	1	1							1	1	ł	1					
17 Corp			FA)	(#:	407	- 4	,79	- 8	28C	2						Screen []												e							
mpany Address:			Site	loca	lion:						******	-																۳ ۲	¥.		3				
119 University	Blvd Wir	nter Ri	rK. Clie	nt Pr	10a Dject IC	20): (#	<u>3</u> l	_ <u>_</u> ^	1 Ti	<u>111</u>	ver	Rd.	_	Def	with M	Diesei		N 503 D						(+ 15) 🗆	□ (\$2 +	-	bicides	Dest			Š	Reactivity			
G. Roberts			(NA	ME)	Ma	n	າ [⊭]	÷ 1	ふ ろ	7				Ĕ	P	Š								VBS (NBS (Ĩ	ð				Reg			
ittest that the proper field a ocedures were used during	ampling the collection	<u></u>	San	npier	Md	(Prin	nt):	U						With MTBE BU	NOL SU) (SIQNIS	132	14	0		0	CB only	MON	IME		sticides [Semi-	Pollutant			Flash Point			
these samples.	OTE	• •	g		Matrix	<	F		thod erve		Sa	mplin	-	888	drocarbo		Profile (S	Ke 413.1		EPA 50	PA 8010	PA 8020		0828	222	310 []		No l	Attor						
Field Sample ID	GTE Lab (Lab use	#	# Containers	VATER	AIR SLUDGE	PRODUCT	Ŷ	H,SO,	3 V	WHEN WEN	DATE	TIME		BIEX602 E	BTEX/Gas Hydrocarbons PID/FID I with MTBE I		Hydrocarbon	Oil and Grease 413.1 🗆 413.2 🗂 SM 503 🗇 TPUND 418 1 M SM 5M 5M 7	EDB by 504 [] DBCP by	EPA 503.1 [] EPA 502.2 []	EPA 601 C EPA 8010 C	EPA 602 🗆 EPA 8020 🗆	EPA 608 🗆 8080 🗆 PC8 only 🗆	EPA 624PPL [] 8240TAL [] NBS (+ 15)	EPA 625/PPL [] 8270/TAL [] NBS (+25) []	EPA 610 GT 8310 []	EP TOX Metals C Pesticides C Herbicides C	TCLP Metals VOA Semi-VOA Pest Herb	EPA Metals - Phontry Pollutant CITAL CI RCRA CI	UAM METAS IILO U SILC U Lead 230 2 0 200 7 1 2420 1 2424 1 6444 1	Oroanic Lead	Corrosivity			
rip Blank			2			+	X	╧		1	14			x		+	-	<u> </u>	+-	-	-	-	-	-	-+	=+	-+-	- -	╪	-+-	+-	+			\vdash
A1/430444 771	02-	01	13		$\uparrow \uparrow \uparrow$	+	12	+	15	1		- 11 1		X	+	+	+		+					-	+	x	+	\uparrow		+	\uparrow	+			\square
2/430++/771	03	02	3	17	╏╴┨╶┨	1	3	+	1,	\dot{c}		15		_	1	\uparrow	1		\top							×					Τ	1			
3/430+1+/771	04	03	3	1			2	1		3		151		<		T	T		Τ						T	×				Τ	Ι	Γ			
1/ 430414/771	05	04	3	x			X	T	,	$\overline{\mathbf{c}}$		143	_	_					Τ						1	x									
2/930+14/771	C/6	05	3/2			Τ	4	Τ		<		145	01	ĸ												ĸ									
13/430+1+/771	67	06	K	1		Τ	2	Τ				144	6	d											1	K									
14/ 920414/771	ck	5	1/2	X			*			<u>(</u>		141	S ×												2	ĸ									
15/ 930414/771	0]	08	え	x			X		X	(•	134	ر ک	<												x				ľ					
MD/430+14/771	10	09	1/2	X			*		×	:	•	121	5 *					×	_							<u>×</u>									
TAT	5	Special Ha	ndling				SPE	CIAL	. DET	EC.	TION L	IMITS							RE	MAR		~			.1			~ ^		, ,					
nority (24 hr)	GTEL Contact			_														- 1		17		6	ro	j°	5	#	•	28	22.	77	- [
pedited (48 hr)	Quote/Contract	•				.																													
	. Confirmation # _						COF	CIAL	050		TING	REQUI	DEM					-+	Lab	Use	00	hulo	• #						tore	ae L	ocat	00:			
	PO #	<u> </u>				•	OFE		ner	Un		הבעטוו		Ç IN	0				Lau	030			· · ·				\sim			/~	4/	3			
	DA / QC LEVEL					-																	F	ZV J	22	?5	6)		4	2	- -			
	OTHER						FAX	П											Wo	rk Or	der		F	30	42	24	A	5		ť					
Γ	Relinquished b	y Sampler	r:	<u></u>								T	Dat	e ,		Ti	mø	-+		elve					-1			1			نينيون ا	~~~~~			-
	Mon	ne o	Sp	ac	kn	-						4	14	19	E	16	00	5																	
	Relinquished b	* 1/ nn	J	1/	· ·)	•							Dat	8			me		Rec	eive	d by	:			- <u></u>										
1		Tull	U	Ye	igh 1	Ł						4	<u>-6</u>		5										1	1									
RECORD	Relinquished by	y: (•	v								Date	8		Ti	me		Rec	eivec	d by	Lab	orate	ory:	I.	- 1	37	FI	•						
												1	116	lip	X	ĊĨ	12	>	Way	/bill A	Ą		• .	١,	Ťμ	67	$\frac{1}{\sqrt{2}}$	5 C	55	. E(6	6	51	<u>e 1</u> 2	~	

 - 1 **(**

	······								-						011		00	- 01	OT.	001	100	-00	~~											
		TAN	600 U MPA, 3) 97	FL	336	SITY 12	' CE	NTE	ERI	DRIN	٧E				CH. AN	AIN D A	-OF NAL	-CU LYS		9EQ	UE	ST	HIJ			2:	10	6	0	Y		ye	2	of
ipany Name:			Pho	ne #:	40	27	6	79	-	82	90	}			1	1	1			1	1	1	Ĺ					1	1	ł	1			1
T Corp	•		FAX	C#:	-4	67	· 6	79	4 -	8 3	28	0	r n e / 11															e e						
pany Address:	** ~*		Site	loca	tion:		10	>>	03	Le	?m	Tu	rne	r	Ë	i ŝ							1					리	R S					
119 Univer	sity Blue	d Wir	Her	Pa	sh				Ta_	ck	S	541	<u>, 11</u>	en				503 [15) C	22) L		cides	Pest		8		ivity [
						ID: (#)			1	_					je se l		NS I						+) 52	+) SS		Pet		Z	7421		Reactivity 🗆		
G. Rober est that the proper field	sampling		(NA) Sam	ME)	<u> </u>	$\frac{1}{1}$	<u>pc</u>	_0	-#	6.	20	-+	· · · ·				S) D	3.2						Ž	Ž			ž						}
odures were used durin ese samples.				(p.c.)	, tearr											D Gas	idwis)	1041	283	9 PA 20			PCB o	40TAL	70/TAL		esticide	A D Se	y Pollut			Flash Point		
Field	GTE	:1	lers		Mat	rix		M Pre	eth ser	od ved		San	nplin	- IN	Ndrocal	S GCF	Profile	ise 413.			EPA 20	EPA 80	800	1080	L 🗆 82	8310 []		0 0	Priorit	2007	ő			
Sample ID	Lab (Lab use	#	# Containers	WATER	AIR	PRODUCT	OTHER HCI	HNO,	H ₂ SO,	UNPRESERVED	SPECEN SPECEN		TIME	DTCVIEW D	BTEX/Gas Hydrocarbons PID/FID [] with	Hydrocarbons GC/FID Gas	Hydrocarbon Profile (SIMDIS)	Oil and Grease 413.1 🗆 413.2 🗆 SM 503 🗆	TPH//R 418.1 C SM 503 C	EDB by 504 D DBCP by 504 D	EPA 601 TI EPA 8010 TI	EPA 602 [] EPA 8020 []	EPA 608 0 8080 0 PCB only 0	EPA 624PPL C 8240/TAL C NBS (+15) C	EPA 625/PP	EPA 610 2 8310	EP TOX Metals 🗆 Pesticides 🗆 Herbicides 🗆	TCLP Metals D VOA D Semi-VOA D Pest D Herb D	EPA Metals - Priority Pollutant C TAL C RCRA C	Lead 239.2 D 200.7 D 7420 D 7421 D 6010 D	Organic Lead	Corrosivity 🗆		
2/930+1+/77		(0	1/2	x	1.1	11	X			X		414	13	20 1												X								
3/930414/77	1 12	0	1/2	K			5			K		` f '	150	0	3											X								
	4 7	R	14	4			X			5				- 4	4											×				1	ļ			
5/970414 /77	14 +43	12	2/2	K			12			X			14	25 1	4	<u> </u>			$-\downarrow$			1			$ \rightarrow $	X								
6, 930+1+/77	17 -184	13	1/2	K	\downarrow	++	2	$\left \right $		 \		<u> </u>	125	<u>is</u> *	4_	<u> </u>										X								
1930+1+ /771	14/01/015	14	1.	<u>×</u>	┢╌┟╴	┿	12	┡─╊		1		1	123	ر اک	4_											X					+			+-
			$\left - \right $		┝┼╴	++		\vdash	-+-	++	+				+	╉	-		-+-				$\left - \right $		-+	-+					$\left\{ -\right\}$			+
					┢┼╋	╉╋		┝─╋		┼╌┼	+				+-	+	-+	-+	-+-	-+-	+	+	\vdash		-+	-+		-+-	+	+	$\left\{ -\right\}$			+
					$\uparrow \uparrow$	\dagger	+	\vdash	+-	++	+			-1-	1-			-†	+	-+-	+	+		\neg	+	\neg	-†-	-	-1-	1-				1
TAT		Special Ha	ndling	 	L	<u> </u>	SF	ECI	AL D	ETEC	CTIC	N LI	MITS			i	L		R	EMA	RKS		L						····			-		
y (24 hr)	GTEL Contact																		1	100	-4	-	nó	T	sa	lm	·P	£ (d					
filed (48 hr)	Quote/Contract	/																																
	PO #						SP	ECI/	AL R	EPOF	RTIN		EQUI	REME	INTS	}				ab U	se O	nly L	ot #					5	Stora	ge Lo	ocatio	n:	······	
ess Days							[[C	212	127	DI.	(A))	1	- 4	ŀΒ			
	QA / QC LEVEL																							דעק הייני	127	21	ッ		4	1-	Z	-		
	OTHER	0		<u></u>			FA	×С]					0		-	Time			ork (<u> </u>	V	2.0	76	$\underline{\mathcal{Y}}$							
	Relinquished b	y Sampler	r:											Date		J	Time	,		eceiv	90 D	y:												
USTODY	Relinquished b	y:											+	Date	لــــــ	L	Time)	Re	eceiv	ed b	y:	- <u></u>								<u></u>		:12	
RECORD	Relinquished by	y:				· ·	ب ، رو در مر ور	,					+	Date		L	Time	••••••	Re	ceiv	ed b	y Lat	oral	огу		C	71	7						
													1	1					1					- t	- Z.	\sim	716	- (

Southeast Region

Tampa, FL 33612

FAX: 813-979-6914

10500 University Center Drive, Suite 160

(813) 979-9092 800-933-GTEL (4835)

Project Number: ATC16MAP01 Project ID: 10203 Lem Turner Rd. Store Number: 6207 Work Order Number: F304225

APR 2 8 1993

April 27, 1993

Mr. Greg Roberts IT Corporation 7119 University Blvd. Winter Park, FL 32792

Dear Mr. Roberts

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on April 16, 1993 under chain of custody record 21059 and 21060.

A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified (approved) by the State of Florida under Certificate Number HRS#E84196 and by the State of South Carolina under Certificate Number #96025.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely, GTEL Environmental Laboratories, Inc.

Harold Vernon Laboratory Director

GTEL Tampa, FL F304225.AMP Page 1

ANALYTICAL RESULTS

Total Recoverable Petroleum Hydrocarbons in Water by Infrared Spectrometry EPA Method 418.1^a

GTEL S	ample Number	0422509		••	
Clier	nt Identification	MW 1D 930414 /771		•••	
	Date Sampled	04-14-93			
-	Date Extracted	04-19-93			-
	Date Analyzed	04-19-93			-
Analyte	QL, mg/Lb		Concentratio	n, mg/L	
ТКРН	0.2	<ql< td=""><td></td><td>. ••</td><td></td></ql<>		. ••	
Quantitation Limit Multiplier ^C		1			

GTEL	Sample Number	**			**
Cli	ent Identification	•••			
	Date Sampled			• -	
	Date Extracted	**		·	·
	Date Analyzed	**	· -		· · .
Analyte	QL, mg/L ^b		Concentration	, mg/L	
	·				
TRPH	0.2		-		
Quantitation Limit Multiplier ^C				**	

EPA 600/4-79-020, March 1983 revision

QL = Quantitation Limit. The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation limits due to sample dilutions.

а

b С

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 610 (modified)^a

GTEL Sa	mple Number	0422501	0422502	0422503	0422504
	Identification	QA 1 930414 /771	QA 2 930414 /771	QA 3 930414 /771	OW 1 930414 /771
[Date Sampled	04-14-93	04-14-93	04-14-93	04-14-93
D	ate Extracted	04-21-93	04-21-93	04-21-93	04-21-93
۵	ate Analyzed	04-22-93	04-27-93	04-22-93	04-22-93
Analyte	QL, ug/L ^b		Concentra	tion, ug/L	
Naphthalene	2.0	<ql< td=""><td>270</td><td><ql< td=""><td>9.0</td></ql<></td></ql<>	270	<ql< td=""><td>9.0</td></ql<>	9.0
Acenaphthylene	3.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td>∘<ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td>∘<ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td>∘<ql< td=""></ql<></td></ql<>	∘ <ql< td=""></ql<>
1-Methylnaphthalenea	2.0	<ql< td=""><td>18</td><td><ql< td=""><td>3.9</td></ql<></td></ql<>	18	<ql< td=""><td>3.9</td></ql<>	3.9
2-Methylnaphthalenea	2.0	<ql< td=""><td>12</td><td><ql< td=""><td>3.2</td></ql<></td></ql<>	12	<ql< td=""><td>3.2</td></ql<>	3.2
Acenaphthene	2.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Fluorene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Phenanthrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[a]anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Chrysene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[b]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo/k]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[a]pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Indeno[1,2,3-cd]pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Dibenzo[a,h]anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[g,h,i]perylene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Quantitation Limit Multiplier ^C		1	1	1	1

Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770. QL = Quantitation Limit. а

b

The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation С limits due to sample dilutions.

GTEL Tampa, FL F304225.AMP

Page 3

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 610 (modified)^a

GTEL Sar	nple Number	0422505	0422506	0422507	0422508
Client	Identification	OW 2 930414 /771	OW 3 930414 /771	OW 4 930414 /771	OW 5 930414 /771
C	Date Sampled	04-14-93	04-14-93	04-14-93	04-14-93
D	ate Extracted	04-21-93	04-21-93	04-21-93	04-21-93
C	ate Analyzed	04-27-93	04-22-93	04-22-93	04-22-93
Analyte	QL, ug/L ^b		Concentra	tion, ug/L	
Naphthalene	2.0	670	<ql< td=""><td>72</td><td><ql< td=""></ql<></td></ql<>	72	<ql< td=""></ql<>
Acenaphthylene	3.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
1-Methylnaphthalenea	2.0	24	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
2-Methylnaphthalenea	2.0	100	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Acenaphthene	2.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Fluorene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Phenanthrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Fluoranthene	0.5	_ <ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[a]anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Chrysene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[b]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo/k]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[a]pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Indeno[1,2,3-cd]pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Dibenzo[a,h]anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[g,h,i]perviene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Quantitation Limit Multiplier ^C		1	. 1	1	1

Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770. QL = Quantitation Limit. The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation а

b

С limits due to sample dilutions.

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 610 (modified)^a

GTEL Sa	nple Number	0422509	0422510	0422511	0422512
Client	Identification	MW 1D 930414 /771	MW 2 930414 /771	MW 3 930414 /771	MW 5 930414 /771
[Date Sampled	04-14-93	04-14-93	04-14-93	04-14-93
D	ate Extracted	04-21-93	04-21-93	04-21-93	04-21-93
C	ate Analyzed	04-22-93	04-22-93	04-22-93	04-22-93
Analyte	QL, ug/L ^b		Concentra	tion, ug/L	
Naphthalene	2.0	<ql< td=""><td><ql< td=""><td>300</td><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td>300</td><td><ql< td=""></ql<></td></ql<>	300	<ql< td=""></ql<>
Acenaphthylene	3.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
1-Methylnaphthalene ^a	2.0	<ql< td=""><td><ql< td=""><td>20</td><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td>20</td><td><ql< td=""></ql<></td></ql<>	20	<ql< td=""></ql<>
2-Methylnaphthalenea	2.0	<ql< td=""><td><ql< td=""><td>21</td><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td>21</td><td><ql< td=""></ql<></td></ql<>	21	<ql< td=""></ql<>
Acenaphthene	2.0	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Fluorene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Phenanthrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[a]anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Chrysene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[b]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo(k]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[a]pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Indeno[1,2,3-co]pyrene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Dibenzo[a,h]anthracene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Benzo[g,h,i]perylene	0.5	<ql< td=""><td><ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""><td><ql< td=""></ql<></td></ql<></td></ql<>	<ql< td=""><td><ql< td=""></ql<></td></ql<>	<ql< td=""></ql<>
Quantitation Limit Multiplier ^C		1	1	1	1

Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770. а

b

QL = Quantitation Limit. The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation limits due to sample dilutions. С

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 610 (modified)^a

GTEL Sa	mple Number	0422513	0422514		
Client	Identification	MW 6 930414 /771	MW 7 930414 /771		
	Date Sampled	04-14-93	04-14-93		
D	ate Extracted	04-21-93	04-21-93		
C	ate Analyzed	04-22-93	04-22-93		
Analyte	QL, ug/L ^b	с	Concentra	tion, ug/L	
Naphthalene	2.0	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Acenaphthylene	3.0	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
1-Methylnaphthalene ^a	2.0	<ql< td=""><td><ql< td=""><td></td><td>-</td></ql<></td></ql<>	<ql< td=""><td></td><td>-</td></ql<>		-
2-Methylnaphthalenea	2.0	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Acenaphthene	2.0	<ql< td=""><td><ql< td=""><td>-</td><td></td></ql<></td></ql<>	<ql< td=""><td>-</td><td></td></ql<>	-	
Fluorene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Phenanthrene	0.5	<ql< td=""><td><ql< td=""><td>-</td><td></td></ql<></td></ql<>	<ql< td=""><td>-</td><td></td></ql<>	-	
Anthracene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Fluoranthene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Pyrene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Benzo[a]anthracene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Chrysene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Benzo[b]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Benzo/k]fluoranthene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Benzo[a]pyrene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Indeno[1,2,3-cd]pyrene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Dibenzo[a,h]anthracene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Benzo[g,h,i]perylene	0.5	<ql< td=""><td><ql< td=""><td></td><td></td></ql<></td></ql<>	<ql< td=""><td></td><td></td></ql<>		
Quantitation Limit Multiplier ^C		1	1		

Federal Register, Vol. 49, October 26, 1984. Method modified to include additional compounds as per FAC 17.770. QL = Quantitation Limit. а

b

The Quantitation Limit Multiplier indicates the factor necessary for the adjustment of the quantitation С limits due to sample dilutions.

Page 6

GTEL	10500 UNIN						HAII	V-OF	-CU	ISTO	DY	REC	OR	D		2.	10	50		0.0	a P		04	-
ENVIRONMENTAL LABORATORIES, INC		·33612					ND /	4/V/41	L73	13 H	EQL	/23	,		÷	۲.	τU	55	1	٢.	je	· ·	01	2
mpany Name:	Phone #	: 407-6	79-820	19		-		1										.	1					
mpany Address:	FAX #: Site loca	407-6	79-82	80																				
119 University	Blvd Winter Birk. Client P	10よ0、 roject ID: (#)	3 Lem	Turner	Rd.	M	IM thin (M 503 []					1510	1 22) []		rbicides [1 0 601		Reactivity []		
G. Roberts						with MTBE K		5		ſ					NBS		Ť	NOV I		142				
ittest that the proper field s ocedures were used during	sampling Sampler	Name (Print	t):	×-/		Į	Q I		413.2					ŝ			ides	Semi-		420				
these samples.							Suct	SiN S		1503	502.2	2			TOT		Pestic			0		Flash Point		
Field	GTEL	Matrix	Metho Preser	ved S	ampling	8020	Hydroca	on Profile	ease 413	8.1 K SA	D EPA	J EPA 8 0	J EPA 80		PL [] 82	K 8310 []	letais 🗆 I	als LI VO	Is The	2 2 200.				
Sample ID	GTEL Lab # (Lab use only) (Lab use only) (Lab use only)	SUL AIR SLUDGE PRODUCT OTHER	HCI H ₂ SO	UNPRESERVED OTHER (SPECIETY DATE	TIME	BTEX/602	BTEX/Gas Hydrocarbons PID/FID C with MTBE C	Hydrocarbon Profile (SIMDIS)	Oil and Grease 413.1 🗆 413.2 🗆 SM 503 🗆	TPH/IR 418.1 K SM 503 C	EPA 503.1 [] EPA 502.2 []	EPA 601 🗆 EPA 8010 🗆	EPA 602 C	EPA 608 0 8080 0 PCB only 0 EPA 624/PPI 0 824/TAI 0 NRS / 4 151 0	EPA 625/PPL C 8270/TAL CI NBS (+25) CI	EPA 610 🕱 8310 🗆	EP TOX Metals Pesticides Herbicides	I CLP Metals D VOA D Semi-VOA D Pest D Herb D EPA Metals - Priority Pollutant D TAL D RCRA D		Lead 239.2 C 200.7 C 7420 C 7421 C 6010 C	Organic Lead	Corrosivity 🗆		
Trip Blank		$\frac{1}{1}$	3			X																		
A1/430H4/771	02 01 3/2 X		X	X 4	4 11 15	×										X								
12/930++/771	03 02 3/2 5		X	X		×							-+			x							_	
A3/ 430+1+/771	04 03 V25		4	<	1515	X										×							_ <u> </u> '	
1/ 430414/771	05 04 1/2 x	╻╻╻	X	X	1425	tx										x								
N2/ 930+14 (771	05 3/2 x	┼┼┽┥	5	X	1450	1					<u> </u>					x							'	
w3/430414/771	07 06 75 x	┼┼┼┤┤	2	<	1440									<u> </u>		X		_					_	
W4/, 970414/771	US OT 1/2 X	<u>╄╶┨╌┨╶</u> ┨	¥-	X	1415										┼╌┤	X						_ <u>_</u>	- 	
NS/ 93041+/771	07 08 225	┼┼┼┥	x X	X	1345	1 . 1						· ·		_		×		_	-					
WD/430+14/771	10 09 1/2 N Special Handling	<u>↓_↓_↓</u> ↓	SPECIAL D	K	1 1215	×				×						×								\square
101	Special Handling		SPECIAL D	ELECTION	LIMITO								0.		ہ م	4	L	583	57	71				
Priority (24 hr)	GTEL Contact										ก่	۱ • ٦	•	ັງ		• •	•	- •	•		-			
Expedited (48 hr)	. Quote/Contract #										39	42												
Expedited (48 hr)	Confirmation # PO #		SPECIAL R	EPORTING	REQUIRE	MEN	ITS			La	b Us	e Oni	y Lo	#				St	orag	e Loc	ation	1:		
Susiness Days														FZ	172.	74	fe)		1-4	50			
	QA/QC LEVEL													$\int \mathcal{L} $	042 042	د 7 ->			4	-2				·
	OTHER Relinquished by Sampler:					Date		Tim				rder d by:		<u>[]</u>	040	2.	10)						
e		1			1.1	.1	• • •				00140	u by	•											
OU OTODY +	Maryse Spec	kru			<u>41</u>	ate	75	16 C		Re	ceive	d by:										<u> </u>		-+
CUSTODY	Killi Vi	hight				69	31									,					."	,		
RECORD	Relinquished by:					ate		Tim	0	Re	ceive	d by	Labo	rator	Y: A	E	07	Er				<u>, </u>		
					1		1								Y	5 '	5	U	-	_				
					141,	11,14	74	693	v	Wa	ybill	#		44 ()	57	toi	51	0 B	58	36 <i>[</i> ,	5-	18,	12_	

GTEL ENVIRONMENTA ABORATORIES. IN	-	TAM	PA,	FL :	33612	2		TER					A	ND	.41	OF-C	SUS VSIS	TOL S RE	OY F QU	REC	OR	D		2	210	06	0		۴	 ال	je	201	F2
ENVIRONMENTA (ABORATORIES, IN Company Name: <u>IT</u> <u>Corp</u> Company Address: <u>J</u> <u>FII9</u> <u>Univere</u> Project Manager: <u>G. Rober</u> I attest that the proper field a procedures were used during of these samples.	sity Blvd, ts sampling g the collection	Win	Phor FAX Site Ler Clier (NAN Sam	ne #: #: locati <u>Pa</u> nt Pro ME) pler 1	40 on: fect IE Mame	7 (7)): (#) (Priht)	07 67 107 107	9 - .9 - .9 - .9 - .9 - .9 - .9 - .7	82 8 L c k 6	28 28 28 20	0 Tur 7	rner ille	D with MTBE C	BTEX/Gas Hydrocarbons PID/FID 🗆 with MTBE	D Gas Diesel Screen			by 504 🗆	220			PCB only [EP TOX Metals D Pesticides D Herbicides D	TCLP Metals C VOA C Semi-VOA C Pest C Herb C	EPA Metals - Priority Pollutant 🖸 TAL 🗂 RCRA 🗆	I STLC D	Lead 239.2 🗆 200.7 🗆 7420 🗆 7421 🗆 6010 🗆		Flash Point 🛛 Reactivity 🗆		
Field Sample ID	GTEL Lab # (Lab use or	aly) B)	# Containers		Vatri) SrnDge		P	Meth reser	ved ເວ	OTHER (SPECIEN) DATE		pling	BTEX/602 E 8020 [BTEX/Gas Hydrocart	Hydrocarbons GC/FID Gas	Hydrocarbon Profile (SIMDIS)		EDB by 504 DBCP by 504	EPA 503.1 C EPA 502.2 C	EPA 601 🗆 EPA 8010 🗆	EPA 602 🗆 EPA 8020 🗆	EPA 608 [] 8080 [] PCB only	EPA 624/PPL [] 824	EPA 625/PPL 1 82/	EP TOX Metals D	TCLP Metals C VOA	EPA Metals - Priority		Lead 239.2 🗆 200.7	Organic Lead	Corrosivity Flast		
MW2/930414/77 MW3/930414/771 MW4- 930414/771 MW5/970414/771 MW5/930414/771 MW7/930414/771	12 (13 1 1 + 413 1 1 + 413 1	2. 13	KY KY KYY	XXVXX			X X X X X X X X			4	14	1330 1500 1405 1255 1235	XXX																				
OtherBusiness Days	GTEL Contact Quote/Contract # PO # QA / QC LEVEL	cial Han				-		CIAL E				AITS	MEN	ITS				Mu		4 -	y Lot	#		22				rage [- 4		catio B	<u>n:</u>		
	OTHER Relinquished by Si Relinquished by: Relinquished by:	ampler:					FAX					D	ate ate		7	rime rime		Wor Rec Rec Way	eivec eivec	i by: i by: i by				ATT	5 5 10	TEI	2	- - - - -	66	·		12	

Project Number: ITC16MAP01 Project ID: #6207 10203 LEM TURNER RD. JACKSONVILLE FL Work Order Number: F307221

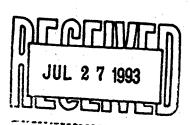
Southeast Region 10500 University Center Drive, Suite 160 Tampa, FL 33612 (813) 979-9092 800-933-GTEL (4835) FAX: 813-979-6914

July 26, 1993

Mr. Greg Roberts I T Corporation 7119 University Blvd. Winter Park, FL 32792

Dear Mr. Roberts,

Enclosed please find the analytical results for the samples received by GTEL Environmental Laboratories, Inc. on July 21, 1993 under chain of custody record 26313.


A formal Quality Assurance/Quality Control (QA/QC) program is maintained by GTEL, which is designed to meet or exceed the EPA requirements. Analytical work for this project met QA/QC criteria unless otherwise stated in the footnotes.

GTEL is certified (approved) by the State of Florida under Certificate Number HRS#E84196 and by the State of South Carolina under Certificate Number #96025.

If you have any questions concerning this analysis or if we can be of further assistance, please call our Customer Service Representative.

Sincerely, GTEL Environmental Laboratories, Inc.

Harold Vernon Laboratory Director

Project Number: ITC16MAP01 Project ID: #6207 10203 LEM TURNER RD. JACKSONVILLE

FL Work Order Number: F307221

ANALYTICAL RESULTS

Volatile Organics in Water EPA Method 602 (modified)^a

G	FEL Sample Number	07221-01	07221-02	07221-03	
· · · ·	Client Identification	TRIP BLANK	MW-8/ 930720/ 771	MW-9/ 930720/ 771	
·	Date Sampled	07-20-93	07-20-93	07-20-93	
	Date Analyzed	07-24-93	07-24-93	07-24-93	
Analyte	RL, ug/L ^b		Concentratio	on, ug/L	•
Benzene	0.5	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
Toluene	1.0	<rl< td=""><td><rl< td=""><td>1.3</td><td></td></rl<></td></rl<>	<rl< td=""><td>1.3</td><td></td></rl<>	1.3	
Ethyl Benzene	1.0	<rl< td=""><td><rl< td=""><td><rl< td=""><td></td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td></td></rl<></td></rl<>	<rl< td=""><td></td></rl<>	
Xylenes (total) ^a	5.0	<rl< td=""><td><rl< td=""><td><rl< td=""><td>-</td></rl<></td></rl<></td></rl<>	<rl< td=""><td><rl< td=""><td>-</td></rl<></td></rl<>	<rl< td=""><td>-</td></rl<>	-
BTEX (total)		·		1.3	
Methyl tert-Butyl Ether	a 10.0	<rl< td=""><td><rl< td=""><td>11</td><td></td></rl<></td></rl<>	<rl< td=""><td>11</td><td></td></rl<>	11	
Dilution Multiplier ^C	· .	1	1	1	

a b

С

CFR 40, July 1, 1989. Method modified to include additional compounds. RL = Reporting Limit The Dilution Multiplier indicates the factor necessary for the adjustment of the reporting limits due to sample dilutions.

Project Number: ITC16MAP01 Project ID: #6207 10203 LEM TURNER RD. JACKSONVILLE

Work Order Number: F307221

ANALYTICAL RESULTS

Polynuclear Aromatic Hydrocarbons in Water EPA Method 610 (modified)^a

OTEL CA	nalo Numbor	07221-02	07221-03	1	
	mple Number				
Client	Identification	MW-8/ 930720/ 771	MW-9/ 930720/ 771		*•
C	Date Sampled	07-20-93	07-20-93		
D	ate Extracted	07-23-93	07-23-93		
	ate Analyzed	07-23-93	07-23-93		
Analyte	RL, ug/L ^b		Concentra	tion, ug/L	
Naphthalene	2.0	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Acenaphthylene	3.0	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
1-Methyinaphthalenea	2.0	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
2-Methylnaphthalenea	2.0	<rl< td=""><td><rl< td=""><td></td><td>-</td></rl<></td></rl<>	<rl< td=""><td></td><td>-</td></rl<>		-
Acenaphthene	2.0	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Fluorene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Phenanthrene	0.5	< RL.	<rl< td=""><td></td><td></td></rl<>		
Anthracene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Fluoranthene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Pyrene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Benzo[a]anthracene	0.5	<rl< td=""><td><rl< td=""><td>·</td><td></td></rl<></td></rl<>	<rl< td=""><td>·</td><td></td></rl<>	·	
Chrysene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Benzo[b]fluoranthene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Benzo/k]fluoranthene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Benzo[a]pyrene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Indeno[1,2,3-cd]pyrene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Dibenzo[a,h]anthracene	0.5	<rl< td=""><td><rl< td=""><td>·</td><td></td></rl<></td></rl<>	<rl< td=""><td>·</td><td></td></rl<>	·	
Benzo[g,h,i]perylene	0.5	<rl< td=""><td><rl< td=""><td></td><td></td></rl<></td></rl<>	<rl< td=""><td></td><td></td></rl<>		
Dilution Multiplier ^C		1	1		

а CFR 40, July 1, 1989. Method modified to include additional compounds.

b

RL = Reporting Limit. The Dilution Multiplier indicates the factor necessary for the adjustment of the reporting limits due to sample dilutions.

С

GTEL ENVIRONMENTAL LABORATORIES, INC	TAN	00 U 1PA, 3) 97	FL	. 33	612	ΥĊ	EN	TER	I DI	RIVE				HAI ND								D			28	53	1:	3					· .	2
ompany Name: <u> IT</u> <u>COYP</u> ompany Address:		Pho FAX Site					7-8 <u>1-</u> 8								Screen										-		Herb 🗆	AD						
119 University B	1/d	Clie	nt P	rojec	03 ;t ID:	(#)	XT	urne	ev	Rd			3E D	C with MTB	Diesel C								5 (+ 15) 🗆	S (+25) 🗆		lerbicides 🗆		TAL D RCR			Reactivity []			
S. Roberts attest that the proper field su ocedures were used during these samples.	ampling the collection	(NAI Sam Dei	ME) Ipler	Nar SC		Print R)#):)27	<u>162</u> 2à	oy na	י כ			C with MTBE C	bons PID/FID		C (SIQNIS)	111413.21		02.2 0	0	0	PCB only 🗆	OTAL D NB			esticides	V C Semi-VO	Pollutant			Flash Point 🗆 R			
Field Sample ID	GTEL Lab # (Lab use only)	# Containers	WATER		SLUDGE SLUDGE		P	Met res '0S ² H	erv	UNPRESERVED OTHER		will	BTEX/602 th 8020	BTEX/Gas Hydrocarbons PID/FID 🗆 with MTBE	Hydrocarbons GC/FID Gas	Hydrocarbon Profile (SIMDIS)	UII and Grease 413.1 LJ 413.2 LJ 5M 503		EPA 503.1 [] EPA 502.2 []	EPA 601 🗆 EPA 8010 🗆	EPA 602 🗆 EPA 8020 🗆	EPA 608 🗆 8080 🗆 PCB only 🗆	EPA 624/PPL	EPA 625/PPL	EPA 610 24 8310 []	EP TOX Metals 🗆 Pesticides 🗆 Herbicides 🛛	TCLP Metals 🗆 VOA 🗆 Semi-VOA 🗆 Pest 🗆 Herb 🗆	EPA Metals - Priority Pollutant 🗆 TAL 🗆 RCRA	CAM Metals TTLC CI STLC CI 1 201 220 21 200 21 2220 CI 2201 CI 2010 CI	Organic Lead	Corrosivity 🗆 Flasl			
Trip BLnt 1W-8/930720/771 1W-9/930720/771	01 02 03	255	X X X				X 3 3		- Y ¥	2	7/20 7/20	1240 1310																						
TAT Priority (24 hr) Expedited (48 hr) Business Days	Special Ha GTEL Contact Quote/Contract # Confirmation #						SPE	CIAL	. DE	TEC	I FION LI	MITS				I		RE	I MAF	RS	·	I	I.		- ł.	L			L		↓ ↓			
Other	PO #					-	SPE		RE	POR	TING R	EQUIRI	EME	NTS						e On Order	-		07.	22	1	G	ŕ	Stora	age I	.ocat - 7	ion:	5-	1	
	Refinquished by Sample OUUDI Refinquished by: UU o Vor Alt Refinquished by:	r: 30)	G	:								72	ate	3	<u> </u>	Time 7: D Time	D	Re Re	ceive ceive	ad by	/: /: / Lat	porat	ory:				22				4	· · · · · · · · · · · · · · · · · · ·		

March 21, 2016

Project Number 112C07871

FDEP-Petroleum Restoration Program Section 2 BMC RM 430 MS 4545 2600 Blair Stone Rd Tallahassee, FL 32399

- Attention: Ms. Vanetta Thomas
- Subject: Remedial Action Interim Report Trout River Food Mart 10203 Lem Turner Rd, Jacksonville, Duval County, Florida Fac. ID. No. 168507541 Purchase Order AE6188 PR No.: PR9256112

Dear Ms. Thomas:

Tetra Tech, Inc. (Tetra Tech) is pleased to submit this Interim Report for the Trout River Food Mart Site (hereinafter, Trout River or the Site) located at 10203 Lem Turner Road, Jacksonville, Duval County, Florida (Figure 1). The work performed at the Site tasked under Florida Department of Environmental Protection's (FDEP) Purchase Order AE6188.

The Site is located at the northeast corner of Lem Turner Road and Broward Road in Jacksonville, Duval County, Florida. The Site currently operates as an active petroleum and retail site. Currently there are two access points to the site: one on Broward Road, and one on Lem Turner Road (Figure 2). Adjacent properties include: residential lots the south, the Comfort Zone Salon to the west, Stalvey-Matthews Realty and Alpha & Omega Dry Cleaners to the east, and Buggs-Bellamy Funeral Services to the northeast.

This report presents a summary and the results of the groundwater sampling event that was conducted on March 8, 2016.

BACKGROUND INFORMATION

The Site was close to achieving no further action status when a groundwater sample from one monitoring well, MW-5, exhibited a concentration of Methyl Tertiary Butyl Ether (MTBE) in excess of the applicable Florida Groundwater Cleanup Target Levels (GCTLs). The groundwater sample from Monitoring well MW-5 was the only sample with contaminant concentrations of concern over an applicable Florida GCTL, and the observed MTBE level only slightly exceeded the regulatory limit. The City of Jacksonville Environmental Quality Division (EQD) in consultation with Environmental Consulting and Technology, Inc. (ECT) decided to over drill monitoring well MW-5 and replace it in the same location with a new monitoring well, MW-5R. The rationale was that it is possible that residual MTBE contamination was present in the sand pack surrounding monitoring well MW-5. Following the installation of replacement monitoring well MW-5R, a groundwater sample was collected on May 18, 2015. The MTBE concentration from the May 2015 sampling event was 18.3 micrograms per liter (μ g/L), which is below its 20 μ g/L Florida GCTL.

On August 17, 2015, ECT collected an additional groundwater sample from monitoring well MW-5R. The MTBE concentration from the August 2015 sampling event was 6.6 μ g/L, below its 20 μ g/L Florida GCTL and a decrease of 11.7 μ g/L since the May 2015 sampling event.

SUMMARY OF WORK PERFORMED

Prior to performing site assessment activities, access to the property was obtained from the owner; the signed access form is provided in Attachment A.

On March 8, 2016, Tetra Tech personnel mobilized to the Site to collect water levels from three onsite monitoring wells MW-3R, MW-4R, and OW-3 and to collect a groundwater sample (including water level measurement) from monitoring well MW-5R. During the field event monitoring well OW-3 could not be located and review of historic document indicated the monitoring well had previously been abandoned. The groundwater sample from monitoring well MW-5R was analyzed for BTEX & MTBE. The laboratory reports and associated Chain of Custody are provided in Attachment B.

FDEP's Groundwater Sampling Log in effect at the time of the field event was filled out at each monitoring well and FDEP's Equipment Calibration Log in effect at the time of the field event was used to document proper calibration of the groundwater sampling, the field forms are provided in Attachment C. Groundwater samples were collected in general accordance with FDEP Standard Operating Procedure (SOP) FS2000 and FDEP's Chain of Custody Record was used to document proper transport of the soil samples to the laboratory.

Groundwater accumulated during monitoring well purging, parameter stabilization and collection of groundwater samples was purged slowly to a paved surface for evaporation, where surface runoff to an unpaved area did not occur in accordance with BPSS SOPs.

DATA SUMMARY

The groundwater analytical results indicate that none of the petroleum-related constituents were detected at concentrations that exceed their Florida GCTL (Table 1, Figure 2). MTBE was the only analyte detected above instrument detection limits in the groundwater sample collected from monitoring well MW-5R. The MTBE concentration from the March 8, 2016 sampling event was 4.8 μ g/L, which is below its 20 μ g/L Florida GCTL and a decrease of 1.8 μ g/L since the August 2015 sampling event.

The depth to water was measured on March 8, 2016 and the recorded measurements are provided in Table 2 and are as follows: monitoring well MW-3R, water level 1.78 feet below land surface (bls); monitoring well MW-4R, water level 2.02 feet bls; and monitoring well MW-5R, 2.04 feet bls. Monitoring well OW-3 was previously abandoned. Based on the depth to water measurements, groundwater elevations for monitoring wells MW-3R and MW-4R was determined using the previously surveyed Top of Casing elevations. Monitoring well MW-5R had not previously been surveyed so a groundwater elevation could not be determined. Although the groundwater flow direction cannot be conclusively stated because only two groundwater elevation points are available and typically three points are needed, it appears that groundwater flow is toward the southwest, which is consistent with the historic groundwater flow direction (see Figure 3).

RECOMMENDATIONS

Based on the analytical results for this sampling event and the previous two sampling events, the site qualifies for No Further Action. Historic analytical data indicated only monitoring well, MW-5R to contain an exceedance of Florida GCTLs (MTBE). Since the reported MTBE exceedance, three separate groundwater sampling events (May 2015, August 2015 and March 2016) have been completed with MTBE concentrations less than the Florida GCTL of 20 μ g/L and each detected MTBE concentration was less than the previous one. Therefore additional assessment and sampling is not warranted and the site qualifies for No Further Action status.

If you have any questions or concerns, please call me at (850) 536-8126. Thank you.

Sincerely yours,

Gersed Walker

Gerald Walker, P.G. Project Manager

TABLES

Florida Department of Environmental Protection -- Bureau of Petroleum Storage Systems -- Monitoring Only

TABLE 1: GROUNDWATER ELEVATION TABLE

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

Facility I. D. No. 168507541

*TOC as of 3/7/07 NM = Not Measured

All Measurements = Feet

Facility I. D. No. 16	0001041												/	urements				
													WA = W	ell Abano	doned			
WELL NO.		MW-1D			MW-2			MW-3			MW-4			MW-5			MW-6	
DIAMETER		2"			2"			2"			2"			2"			2"	
WELL DEPTH		24.40'			10.40'			10.80'			10.45			10.50'			10.65'	
SCREEN	1	19.4'-24.4	l,	C).4'-10.4'			0.8'-10.8	I	0	.45'-10.4	5'	0.	50'-10.5	0'	0	.65'-10.6	5'
INTERVAL												-	_		-	_		-
TOC ELEVATION		97.55			97.68			97.56			97.75			97.72			98.72	
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
9/28/04	96.95	0.60		95.72	1.96		96.00	1.56		95.75	2.00	1.40	96.52	1.20		97.62	1.10	
4/28/05		NM		94.82	2.86		95.01	2.55		95.43	2.32		95.37	2.35		96.14	2.58	ļ
4/6/06		WA			NM			WA			WA						WA	ļ
6/21/06		WA			NM			WA			WA		94.42	3.30			WA	ļ
10/25/06		WA			NM			WA			WA		94.41	3.31			WA	
1/19/07		WA			NM		ļ	WA			WA		95.07	2.65			WA	
5/1/07		WA			NM			WA			WA		94.65	3.07			WA	ļ
8/9/07		WA			NM			WA			WA		95.73	1.99			WA	ļ
11/1/07		WA			NM			WA			WA		96.02	1.70			WA	<u> </u>
2/19/08		WA			NM			WA			WA		94.76	2.96			WA	ļ
5/20/08		WA			NM			WA			WA		94.74	2.98			WA	L
6/3/08		WA			NM			WA			WA			NM			WA	ļ
9/11/08		WA			NM			WA			WA		95.48	2.24			WA	
10/10/08		WA			NM			WA			WA			NM			WA	ļ
1/8/09		WA			NM			WA			WA		94.47	3.25			WA	<u> </u>
1/26/09		WA			NM			WA			WA			NM			WA	ļ
4/22/09		WA			NM			WA			WA		95.02	2.70			WA	L
7/23/09		WA			NM			WA			WA		95.55	2.17			WA	ļ
11/16/09		WA			NM			WA			WA		94.86	2.86			WA	<u> </u>
2/10/10		WA		96.43	1.25			WA			WA		95.95	1.77			WA	ļ
5/13/10		WA		94.66	3.02			WA			WA		94.81	2.91			WA	ļ
8/6/10		WA		94.48	3.20			WA			WA		94.58	3.14			WA	ļ
3/28/11		WA			NM			WA			WA		95.41	2.31			WA	
5/31/11		WA		94.58	3.10			WA			WA		94.55	3.17			WA	ļ
8/2/11		WA			NM			WA			WA		95.10	2.62			WA	
11/15/11		WA			NM			WA			WA		94.82	2.90			WA	
2/2/12		WA		ļ	NM		ļ	WA			WA		94.41	3.31			WA	
5/14/12		WA			NM			WA			WA		94.40	3.32			WA	
9/10/12		WA		L	NM		L	WA			WA		95.48	2.24		ļ	WA	
12/27/12		WA			NM			WA			WA		95.03	2.69			WA	ļ
3/7/13		WA		ļ	NM		ļ	WA			WA		95.45	2.27			WA	
9/16/13		WA			NM			WA			WA		95.28	2.44			WA	L
10/21/13		WA			NM			WA			WA		95.86	1.86			WA	
7/31/14		WA			NM			WA			WA		95.09	2.63			WA	
5/6/15		WA		1	NM			WA			WA			WA		1	WA	
5, 6, 15							+						<u> </u>				•••	

Florida Department of Environmental Protection -- Bureau of Petroleum Storage Systems -- Monitoring Only

TABLE 1: GROUNDWATER ELEVATION TABLE

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

Facility I. D. No. 168507541

*TOC as of 3/7/07 NM = Not Measured All Measurements = Feet

													WA = W	ell Aband	oned			
WELL NO.		MW-7			MW-8			OW-1			OW-2			OW-3			OW-4	
DIAMETER		2"			2"			2"			2"			2"			2"	
WELL DEPTH		11.10'			11.05'			10.10'			9.40'			11.50'			10.45'	
SCREEN INTERVAL	1.	10'-11.10)'	1.	05'-11.05	5'		NA			0.50-9.4'		1.	.50'-11.50)'	0	.45'-10.4	5'
TOC ELEVATION		96.54			96.06			NA			NA			98.28			NA	
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
9/28/04	96.54	0.00		95.76	0.30			WA			WA		96.82	1.46			WA	
4/28/05		NM		94.01	2.05			WA			WA							
4/6/06		NM			NS			WA			WA			WA			WA	<u> </u>
6/21/06	95.22	1.32			NS			WA			WA			WA			WA	
10/25/06	94.39	2.15			NS			WA			WA			WA			WA	L
1/19/07	95.62	0.92			NS			WA			WA			WA			WA	
5/1/07	94.43	2.11			NS			WA			WA			WA			WA	<u> </u>
8/9/07	95.42	1.12			NS			WA			WA			WA			WA	L
11/1/07	95.44	1.10			NS			WA			WA			WA			WA	<u> </u>
2/19/08		NM			NS			WA			WA			WA			WA	L
5/20/08	94.49	2.05			NS			WA			WA			WA			WA	L
6/3/08	94.03	2.51			NS			WA			WA			WA			WA	<u> </u>
9/11/08	95.54	1.00			NS			WA			WA			WA			WA	L
10/10/08	95.54	1.00			NS			WA			WA			WA			WA	
1/8/09	95.44	1.10			NS			WA			WA			WA			WA	L
1/26/09	95.40	1.14			NS			WA			WA			WA			WA	<u> </u>
4/22/09	95.34	1.20	-		NS			WA			WA			WA			WA	L
7/23/09	D	ESTROYE	D		NS			WA			WA			WA			WA	
11/16/09				93.56	2.50			WA			WA			WA			WA	<u> </u>
2/10/10					NM			WA			WA			WA			WA	<u> </u>
5/13/10					NM			WA			WA			WA			WA	<u> </u>
8/6/10					NM			WA			WA			WA			WA	<u> </u>
3/28/11					NM			WA			WA			WA			WA	
5/31/11					NM			WA			WA			WA			WA	
8/2/11					NM			WA			WA			WA			WA	
11/15/11					NM			WA			WA			WA		ļ	WA	
2/2/12					NM			WA			WA			WA			WA	
5/14/12					NM			WA			WA			WA			WA	
9/10/12					NM			WA			WA			WA			WA	
12/27/12					NM			WA			WA			WA		ļ	WA	
3/7/13					NM			WA			WA			WA			WA	

Florida Department of Environmental Protection -- Bureau of Petroleum Storage Systems -- Monitoring Only

TABLE 1: GROUNDWATER ELEVATION TABLE

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

Facility I. D. No. 168507541

*TOC as of 3/7/07 NM = Not Measured

All Measurements = Feet	
WA - Well Abandoned	

													WA = W	ell Abano	loned			
WELL NO.		OW-5			MW-3R			MW-4R			MW-6R			OW-2R			MW-5R	
DIAMETER		2"			2"			2"			2"			2"			2"	
WELL DEPTH		13.00			12.00			12.00			12.00			12.00			11.00	
SCREEN		FOL 42.0			2.42			2.42			2.42			2.42				
INTERVAL	0.	.50'-13.0	0.		2-12			2-12			2-12			2-12			1-11	
TOC ELEVATION		NA			* 97.27		1	* 97.66			* 98.89			* 98.17				
DATE	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP	ELEV	DTW	FP
9/28/04		WA																
4/28/05		WA																
4/6/06		WA																
6/21/06		WA		94.75	2.52		94.79	2.87		94.90	3.99		94.94	3.23				
10/25/06		WA		94.45	2.82		94.55	3.11		94.71	4.18		94.67	3.50				
1/19/07		WA		95.14	2.13		95.30	2.36		95.59	3.30		95.42	2.75				
5/1/07		WA		94.44	2.83		94.53	3.13		95.02	3.87		94.82	3.35				L
8/9/07		WA		95.51	1.76		95.60	2.06		96.48	2.41		96.08	2.09				
11/1/07		WA		96.27	1.00		96.56	1.10		96.39	2.50		96.87	1.30				1
2/19/08		WA		94.71	2.56		94.80	2.86		95.27	3.62		95.04	3.13				
5/20/08		WA		94.69	2.58		94.77	2.89		95.24	3.65		95.01	3.16				
6/3/08		WA			NM		94.44	3.22			NM			NM				
9/11/08		WA		95.60	1.67		95.76	1.90		96.39	2.50		96.12	2.05				
10/10/08		WA			NM			NM			NM			NM				
1/8/09		WA		94.51	2.76		94.37	3.29		94.84	4.05		94.67	3.50				
1/26/09		WA			NM			NM			NM			NM				
4/22/09		WA		94.91	2.36		94.86	2.80		95.42	3.47		94.97	3.20				
7/23/09		WA		95.66	1.61		95.75	1.91		96.31	2.58		96.08	2.09				
11/16/09		WA		95.00	2.27		95.06	2.60		95.29	3.60		95.17	3.00				
2/10/10		WA		96.21	1.06		96.31	1.35		96.89	2.00		96.54	1.63				
5/13/10		WA		94.70	2.57		94.81	2.85		95.27	3.62		95.00	3.17				
8/6/10		WA		94.42	2.85		94.51	3.15		94.87	4.02		94.59	3.58				(
3/28/11		WA		95.19	2.08		95.28	2.38		95.59	3.30		95.57	2.60				
5/31/11		WA		94.40	2.87		94.46	3.20		94.74	4.15		92.66	5.51				
8/2/11		WA		95.12	2.15		95.20	2.46		95.33	3.56		95.40	2.77				i
11/15/11		WA		94.90	2.37		94.98	2.68		95.24	3.65		95.15	3.02				
2/2/12		WA		94.35	2.92		94.45	3.21		94.74	4.15		94.57	3.60				
5/14/12		WA		94.19	3.08		94.31	3.35		94.66	4.23		94.50	3.67				
9/10/12		WA		95.49	1.78		95.59	2.07		95.75	3.14		95.78	2.39				
12/27/12		WA		95.12	2.15		95.20	2.46		95.38	3.51		95.27	2.90				
3/7/13		WA		95.30	1.97		95.93	1.73		96.06	2.83		95.87	2.30				
9/16/13		WA		95.12	2.15		95.74	1.92		95.67	3.22		95.61	2.56			2.78	
7/31/14		WA		95.02	2.25		95.14	2.52		95.37	3.52		95.29	2.88			1.80	
5/18/15		WA			NS			NS			NS			NS			2.78	Í
8/17/15		WA			NS			NS			NS			NS			1.80	Í
3/8/2016		WA		95.49	1.78		95.64	2.02			NS			NS			2.04	

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

Facility I. D. No. 168507541

ility I. D. No. 16850754	1													NA =	Not analyzed f	or this parameter	NS = Not Samp	led	
Sample		Benzene	Toluene	Ethyl-	Total	МТВЕ	TRPH	EDB	Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-	Flourene	Phenan-	Pyrene	Fluoran
Location	Date	Denzene	Toluelle	Benzene	Xylenes	WITDL	INFI	100	Lead	Lead	thalene	Naph-thalene	Naph-thalene	thylene	thene	riourene	threne	ryrene	thene
Chapter 62-777, F.A.	C. GCTL	(1) μg/L	(40) μg/L	(30) µg/L	(20) µg/L	(20) µg/L	(5000) μg/L	(0.02) µg/L	(15) µg/L		(14) µg/L	(28) μg/L	(28) µg/L	(210) μg/L	(20) µg/L	(280) μg/L	(210) µg/L	(210) μg/L	(280) µg
Chapter 62-777, N	IADC	(100) µg/L	(400) µg/L	(300) µg/L	(200) µg/L	(200) µg/L	(50,000) μg/L	(2) µg/L	(150) µg/L		(140) µg/L	(280) μg/L	(280) μg/L	(2,100) μg/L	(200) µg/L	(2,800) µg/L	(2,100) μg/L	(2,100) µg/L	(2,800) µg
OW-1																			
	*6/16/1 992	ND	ND	ND	16.7	72.4	ND	ND	182	ND		12.5							
	*4/14/1 993	ND	ND	ND	16.7	13	NA					16.1							
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10	NA					<2.0							
OW-2																			
	*6/16/1 992	291	192	208	259	893	ND	ND	37			235.8							
	*4/14/1 993	3500	1000	1300	3700	2800	NA					794							
	*4/94 or 6/94	4100	3200	1800	5300	1800	NA					1222							
OW-3																			
	*6/16/1 992	ND	ND	ND	ND	13.2	ND	ND	24			ND							
	*4/14/1 993	ND	ND	ND	ND	19	NA					ND							
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	15	NA					<2.0							
	9/28/04	<1.0	<1.0	<1.0	<2.0	<2.0	< 200				< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
																			l
OW-4	*6/16/1	69.8	ND	35.4	38.6	ND	ND	ND	95	ND		100							
	992 *4/14/1 993	ND	ND	2.8	ND	31	NA					72							
	*4/94 or 6/94	63	<10	58	<10	<10	NA					76							
	6/94																		
OW-5																			
	*6/16/1 992	ND	ND	ND	ND	ND	ND	ND	127	ND		ND							
	*4/14/1 993	ND	ND	ND	ND	ND	NA					ND							
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10	NA					<2.0							

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

Facility I. D. No. 168507541

Sample												1-Methyl	2-Methyl			or this parameter			
Location	Date	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	TRPH	EDB	Total Lead	Dissolved Lead	Naph- thalene	Naph-thalene	Naph-thalene	Acenaph- thylene	Acenaph- thene	Flourene	Phenan- threne	Pyrene	Fluoran- thene
Chapter 62-777, F.A.C. 0	GCTL	(1) µg/L	(40) µg/L	(30) µg/L	(20) µg/L	(20) µg/L	(5000) μg/L	(0.02) µg/L	(15) μg/L		(14) μg/L	(28) μg/L	(28) μg/L	(210) μg/L	(20) µg/L	(280) µg/L	(210) μg/L	(210) μg/L	(280) μg/L
Chapter 62-777, NAD	ос	(100) µg/L	(400) μg/L	(300) µg/L	(200) µg/L	(200) µg/L	(50,000) μg/L	(2) µg/L	(150) µg/L		(140) µg/L	(280) μg/L	(280) µg/L	(2,100) µg/L	(200) µg/L	(2,800) μg/L	(2,100) µg/L	(2,100) µg/L	(2,800) μg/l
MW-1D																			
	*7/20/9 2	ND	ND	ND	ND	ND	3630	ND				ND							
	*4/14/1 993	ND	ND	ND	ND	ND	NA					ND							
	*4/94 or	<0.5	<1.0	<1.0	<5.0	<10	NA				10.50	<2.0	10.50	0.25	10.10	10.10	10.10	.0.10	10.10
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.6	2.1	< 200				< 0.50	< 0.50	< 0.50	0.25	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
MW-1Shallow BASELINE																			
	2/9/06	414	27.5	75.5	74.5	113	NS	NS			40.9	52.1	90.3	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
MW-2																			
	*7/20/9 2	ND	ND	ND	ND	ND	NA	NA				ND							
	*4/14/1 993	ND	ND	ND	ND	ND	NA					ND							
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10	NA					<2.0							
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	4.7	< 200				< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	1.1	160 U	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	5/13/10	0.50 U	0.50 U	0.50 U	1.0 U	0.72 I	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.0 U	0.79 I	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	1.3	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
MW-3	*6/16/1																		
	992	403	71	123	734	336	NA	NA				ND							
	*4/14/1 993	610	100	ND	ND	ND	NA					341							
	*4/94 or 6/94	890	<100	170	<5.0	1300	NA					<2.0							
MW-4	* 11 1 1																		
	*6/16/1 992	NA	NA	NA	NA	NA	NA	NA				NA							
	*4/14/1 993	NA	NA	NA	NA	NA	NA	NA				NA							
	*4/94 or 6/94	4500	8100	800	5000	NA	NA					500							

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142) Facility I. D. No. 168507541

Sam	nple			Calcul	Tatal				Total	Disastuad	Namh	1-Methyl	2-Methyl	Assumption	Assume	l .	Dhanan	l.	Fluence
Location	Date	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	TRPH	EDB	Total Lead	Dissolved Lead	Naph- thalene	Naph-thalene	Naph-thalene	Acenaph- thylene	Acenaph- thene	Flourene	Phenan- threne	Pyrene	Fluoran- thene
Chapter 62-77	7, F.A.C. GCTL	(1) μg/L	(40) μg/L	(30) μg/L	(20) µg/L	(20) µg/L	(5000) μg/L	(0.02) µg/L	(15) μg/L		(14) µg/L	(28) μg/L	(28) µg/L	(210) µg/L	(20) µg/L	(280) µg/L	(210) µg/L	(210) µg/L	(280) µg/L
MW-3 (R)																			
	9/28/04	16	1.7	13	15.4	38	620				100	13	23	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	2/9/06	0.50 U	0.50 U	0.50 U	1.8	1.9	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	6/22/06	0.50 U	0.50 U	0.50 U	1.0 U	20.1	NS	NS			1.1 U	0.54 U	0.54 U	1.1 U	1.1 U	1.1 U	1.1 U	0.54 U	0.54 U
	10/25/06	0.50 U	0.87	0.50 U	1.0 U	12.8	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	1/19/07	0.50 U	0.50 U	0.50 U	1.0 U	12.9	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48U	0.48 U
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	10.7	210	NS			1.1 U	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	0.56 U
	8/9/07	0.50 U	0.50 U	0.50 U	1.0 U	13.4	NS	NS			0.97 U	0.49 U	0.49 U	0.97 U	1.0 I	0.97 U	0.97 U	0.49 U	0.49 U
	11/1/07	0.50 U	0.50 U	0.50 U	1.0 U	15.7	160 U	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	18.4	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/20/08	0.50 U	0.50 U	0.50 U	1.0 U	19.2	NS	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/11/08	0.50 U	0.50 U	0.50 U	1.0 U	14.4	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	14.0	197	NA	NA	NA	1.9	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	16.5	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	12.7	NA	NA	NA	NA	1.0 U	0.51 U	0.51 U	1.0U	1.0U	1.0U	1.0 U	0.51 U	0.51 U
	11/16/09	0.50 U	0.50 U	0.50 U	1.0 U	8.2	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	10.6	160 U	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/13/10	0.50 U	0.50 U	0.50 U	1.0 U	11.3	NA	NA	NA	NA	0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.0 U	39.4	NA	NA	NA	NA	0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.97 U
	8/27/10	0.50 U	0.50 U	0.50 U	1.0 U	43.6	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	3/24/11	0.50 U	0.50 U	0.50 U	1.0 U	13.1	NA	NA	NA	NA	0.77 U	0.38 U	0.38 U	0.77 U	0.77 U	0.77 U	0.77 U	0.38 U	0.38 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	28.6	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	27.3	319	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	9.7	199	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.25 U	0.25 U	0.25 U
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	8.9	NA	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.25 U	0.25 U	0.25 U
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	33	NA	NA	NA	NA	0.053 U	0.018 U	0.045 U	0.030 U	0.13 I	0.030 U	0.036 U	0.033 U	0.027 U
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	12	NA	NA	NA	NA	0.053 U	0.048 U	0.045 U	0.030 U	0.034 U	0.030 U	0.036 U	0.033 U	0.027 U
	12/27/12	0.21 U	0.20 U	0.29 U	0.50 U	12.2	140 U	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	9.2	411	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	9/16/13	0.21 U	0.31 I	0.29 U	0.50 U	2.0	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	7/31/14	0.21 U	0.23 U	0.24 U	0.53 U	8.4	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

Sam	ple			Ethyl-	Total				Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-		Phenan-		Fluoran
Location	Date	Benzene	Toluene	Benzene	Xylenes	MTBE	TRPH	EDB	Lead	Lead	Napn- thalene	Naph-thalene	Naph-thalene	thylene	thene	Flourene	threne	Pyrene	thene
Chapter 62-77	7, F.A.C. GCTL	(1) µg/L	(40) μg/L	(30) μg/L	(20) µg/L	(20) µg/L	(5000) μg/L	(0.02) µg/L	(15) µg/L		(14) µg/L	(28) μg/L	(28) μg/L	(210) µg/L	(20) µg/L	(280) µg/L	(210) µg/L	(210) μg/L	(280) µg/
MW-4 (R)																			
BASELINE	9/28/04	NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/9/06	140	356	163	954	143	2530	0.0096 U			76.9	17.8	22.4	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	6/22/06	3.5	0.50 U	1.3	1.9	74.3	NS	NS			1.1 U	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	0.56 U
	10/25/06	5.4	1.8	4.3	1.0 U	62.5	NS	NS			1.8	0.48 U	0.80	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	1/19/07	3.9	0.50 U	0.50 U	1.0 U	44.9	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/1/07	10.6	0.50 U	3.0	1.0 U	103	774	NS			2.3	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	8/9/07	3.3	0.50 U	0.50 U	1.0 U	57.9	NS	NS			1.3 I	0.49 U	0.49U	0.97U	0.97U	0.97U	0.97U	0.49U	0.49 U
	11/1/07	1.4	0.50 U	0.50 U	1.0 U	21	376	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	11/29/07	0.50 U	0.50 U	0.50 U	1.0 U	13.5	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	13.2	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/20/08	1.0	0.50 U	0.50 U	1.0 U	61.8	NS	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08	1.4	0.50 U	0.50 U	1.0 U	80.7	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/11/08	0.50 U	0.50 U	0.50 U	1.0 U	16.4	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	7.8	720	NA	NA	NA	10.1	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/22/09	1.9	0.50 U	0.50 U	1.0 U	71.8	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	34	NA	NA	NA	NA	1.0U	0.50 U	0.50 U	1.0U	1.0U	1.0U	1.0U	0.50 U	0.50 U
	11/16/09	0.50 U	0.50 U	0.50 U	1.0 U	21.9	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	12.5	160 U	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	5/13/10	0.50 U	0.50 U	0.50 U	1.0 U	79.4	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.0 U	84.8	NA	NA	NA	NA	0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
	8/27/10	0.50 U	0.50 U	0.50 U	1.0 U	89	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	3/24/11	0.50 U	0.50 U	0.50 U	1.0 U	74.9	NA	NA	NA	NA	0.78 U	0.39 U	0.39 U	0.78 U	0.78 U	0.78 U	0.78 U	0.39 U	0.39 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	90.3	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	61.5	781	NA	NA	NA	0.77 U	0.38 U	0.38 U	0.77 U	0.77 U	0.77 U	0.77 U	0.38 U	0.38 U
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	25.6	551	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	12.1	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	90	NA	NA	NA	NA	0.69	0.018 U	0.11	0.030 U	0.15	0.030 U	0.036 U	0.033 U	0.027 L
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	36	NA	NA	NA	NA	0.17	0.053 I	0.050 I	0.030 U	0.0991	0.033 I	0.036 U	0.033 U	0.0391
	12/27/12	0.21 U	2.0	0.29 U	0.50 U	5.0	636	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.24 U	0.24 U	0.24 U
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	11.5	144 I	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	9/16/13	0.21 U	0.20 U	0.29 U	0.50 U	11.2	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	7/31/14	0.63 U	0.69 U	0.72 U	1.6 U	11.0	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS
					l l													İ	1

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142) Facility I. D. No. 168507541

Facility I. D. No. 16	08507541													NA = Not	analyzed for the	s parameter N	IS = Not Sam	pled	
Sam	ple	Bonzors	Toluon-	Ethyl-	Total	MTRE	TRPH	EDB	Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-	Flourene	Phenan-	Duronc	Fluoran-
Location	Date	Benzene	Toluene	Benzene	Xylenes	MTBE	ТКРН	EDB	Lead	Lead	thalene	Naph-thalene	Naph-thalene	thylene	thene	Flourene	threne	Pyrene	thene
Chapter 62-777	7, F.A.C. GCTL	(1) µg/L	(40) μg/L	(30) μg/L	(20) μg/L	(20) µg/L	(5000) μg/L	(0.02) µg/L	(15) μg/L		(14) μg/L	(28) μg/L	(28) μg/L	(210) µg/L	(20) μg/L	(280) µg/L	(210) µg/L	(210) µg/L	(280) μg/l
MW-5																			
	*7/20/92	ND	ND	ND	ND	181	NA	NA				ND							1
	*4/14/1993	20	ND	ND	ND	240	NA					ND							
	*4/94 or 6/94	47	<1.0	<1.0	10	61	NA					<2.0							
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	14	< 200				< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	6/22/06	9.0	0.50 U	0.50 U	1.0 U	9.0	NS	NS			1.1	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	0.56 U
	10/25/06	1.9	0.50 U	0.50 U	1.0 U	11.5	NS	NS			3.5	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	1/19/07	0.50 U	0.50 U	0.50 U	1.0 U	11.5	NS	NS			0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	7.2	624	NS			17.5	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	0.56 U
	8/9/07	0.50 U	0.50 U	0.50 U	1.0 U	4.9	NS	NS			4.8	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
	11/1/07	0.50 U	0.50 U	0.50 U	1.0 U	11.2	228	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	11.9	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/20/08	0.50 U	0.50 U	0.50 U	1.0 U	12.9	NS	NS			7.4	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	N	NS	NS	NS
	9/11/08	0.50 U	0.86	0.50 U	1.0 U	10.1	NA	NA	NA	NA	2.5	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	11.5	208	NA	NA	NA	4.2	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	5.4	NA	NA	NA	NA	2.1	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	10.8	NA	NA	NA	NA	1.0 U	0.51 U	0.51 U	1.0U	1.0U	1.0U	1.0 U	0.51 U	0.51 U
	11/16/09	0.50 U	0.50 U	0.50 U	1.0 U	11.1	NA	NA	NA	NA	0.98 U	0.49 U	0.49 U	0.98 U	0.98 U	0.98 U	0.98 U	0.49 U	0.49 U
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	13.2	160 U	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	5/13/10	0.50 U	0.50 U	0.50 U	1.0 U	4.8	NA	NA	NA	NA	2.3	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.0 U	3.8	NA	NA	NA	NA	3.9	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	3/24/11	0.50 U	0.50 U	0.50 U	1.0 U	8.8	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	3.5	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	3.6	648	NA	NA	NA	0.78 U	0.38 U	0.38 U	0.78 U	0.78 U	0.78 U	0.78 U	0.39 U	0.39 U
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	8.9	348	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.24 U	0.24 U	0.24 U
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	0.34 U	NA	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.24 U	0.24 U	0.24 U
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	2.1	NA	NA	NA	NA	0.52	0.018 U	0.098 I	0.030 U	0.034 U	0.030 U	0.036 U	0.033 U	0.027 U
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	6.7	NA	NA	NA	NA	0.053 U	0.048 U	0.045 U	0.030 U	0.034 U	0.030 U	0.036 U	0.033 U	0.027 U
	12/27/12	0.21 U	0.20 U	0.29 U	0.50 U	13.6	182	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	15.1	217	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	9/16/13	0.21 U	0.20 U	0.29 U	0.50 U	22.5	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	10/21/13	0.21 U	0.20 U	0.29 U	0.50 U	3.4	NA	NA	NA	NA	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.35 U	0.22 U	0.22 U	0.22 U
	7/31/14	0.21 U	0.23 U	0.24 U	0.53 U	18	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS
MW-5R	5/18/15	0.10 U	0.50	0.50	0.50	18.3	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
IVIVV-5K	8/17/15	0.10 U 0.21 U	0.50 0.23 U	0.50 0.24 U	0.50 0.53 U	18.3	NS	NS NS	NS NS	NS	NS	NS	NS	NS NS	NS NS	NS	NS NS	NS	NS
								-	-	-			-	-	-	-	-	-	NS NS
	3/8/2016	0.16 U	0.23 U	0.24 U	0.53 U	4.8	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

Facility I. D. No. 168507541

Facility I. D. No.														$m_{A} = m_{01} a$	nalyzed for this		NG = NUL Sall	ipieu	
Sam		Benzene	Toluene	Ethyl-	Total	MTBE	TRPH	EDB	Total	ved	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-	Flourene	Phenan-	Pyrene	Fluoran-
Location	Date			Benzene	Xylenes				Lead	Lead	thalene	Naph-thalene	Naph-thalene	thylene	thene		threne	1	thene
Chapter 62-77		(1) μg/L	(40) μg/L	(30) μg/L	(20) µg/L	(20) µg/L	(5000) μg/L	(0.02) µg/L	(15) µg/L		(14) μg/L	(28) μg/L	(28) μg/L	(210) μg/L	(20) μg/L	(280) µg/L	(210) µg/L	(210) μg/L	(280) µg/L
MW-6 R	*7/20/92	ND	ND	ND	ND	ND	NA	NA				ND							
	*4/14/1993	ND	ND	ND	ND	ND	NA					ND							
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	61	NA					<2.0							
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 200				< 0.50	< 0.50	< 0.50	< 0.10	2.3	< 0.10	< 0.10	< 0.10	< 0.10
	6/22/06	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NS	NS			1.1 U	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	0.56 U
	10/25/06	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.95 U	0.48 U	1.5	0.95 U	8.5	0.95 U	0.95 U	0.48 U	0.48 U
	1/19/07	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.96 U	0.48 U	0.48 U	0.96 U	4.9	0.96 U	0.96 U	0.48 U	0.48 U
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	184	NS			0.97 U	0.49 U	0.49 U	0.97 U	7.2	0.97 U	0.97 U	0.49 U	0.49 U
	8/9/07	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NS	NS			0.98 U	0.49 U	0.49 U	0.98 U	4.2	0.98 U	0.98 U	0.49 U	0.49 U
	11/1/07	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	193	NS			0.95U	0.48 U	0.48 U	0.95 U	1.2 I	0.95 U	0.95 U	0.48 U	0.48 U
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NS	NS			0.95U	0.48 U	0.48 U	0.95 U	1.3 I	0.95 U	0.95 U	0.48 U	0.48 U
	5/20/08	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.96U	0.48 U	0.48 U	0.96 U	6.5	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	Ν	NS	NS	NS
	9/11/08	0.50 U	1.3	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	1.9	0.96 U	0.96 U	0.48 U	0.48 U
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/8/09	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	170	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	3.1	0.96 U	0.96 U	0.48 U	0.48 U
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	2.1	0.96 U	0.96 U	0.48 U	0.48 U
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	11/16/09	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.98 U	0.49 U	0.49 U	0.98 U	2.6	0.98 U	0.98 U	0.49 U	0.49 U
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	233 I	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	1.2 I	0.95 U	0.95 U	0.48 U	0.48 U
	5/13/10	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	1.9 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	1.5 I	0.96 U	0.96 U	0.48 U	0.48 U
	3/24/11	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.78 U	0.39 U	0.39 U	0.78 U	0.78 U	0.78 U	0.78 U	0.39 U	0.39 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.76 U	0.38 U	1.9 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	216	NA	NA	NA	0.77 U	0.38 U	0.38 U	0.77 U	0.77 U	0.77 U	0.77 U	0.38 U	0.38 U
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	0.34 U	342	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	1.1	0.38 U	0.24 U	0.24 U	0.24 U
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	48.1	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	4/5/12	0.21 U	0.28 U	0.24 U	0.62 U	0.32 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	0.96 U	NA	NA	NA	NA	0.053 U	0.018 U	0.045 U	0.030 U	1.0	0.030 U	0.036 U	0.033 U	0.027 U
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	0.32 U	NA	NA	NA	NA	0.053 U	0.048 U	0.045 U	0.030 U	0.29	0.030 U	0.036 U	0.033 U	0.027 U
	12/27/12	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	180	NA	NA	NA	0.40 I	0.38 U	0.38 U	0.38 U	0.56	0.38 U	0.24 U	0.24 U	0.24 U
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	236	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	9/16/13	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.44	0.38 U	0.24 U	0.24 U	0.24 U
	7/31/14	0.21 U	0.23 U	0.24 U	0.53 U	0.32 U	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142) Facility I. D. No. 168507541

Sample		_	1	Ethyl-	Total				Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-		Phenan-		Fluoran-
Location	Date	Benzene	e Toluene	Benzene	Xylenes	MTBE	TRPH	EDB	Lead	Lead	thalene	Naph-thalene	Naph-thalene	thylene	thene	Flourene	threne	Pyrene	thene
Chapter 62-7	77, F.A.C. GCTL	(1) µg/L	(40) μg/L	(30) μg/L	(20) μg/L	(20) µg/L	(5000) μg/L	(0.02) μg/L	(15) μg/L		(14) μg/L	(28) μg/L	(28) μg/L	(210) μg/L	(20) μg/L	(280) µg/L	(210) µg/L	(210) µg/L	(280) µg/L
MW-7																			Í
	*7/20/92	ND	ND	ND	ND	488	NA	NA				ND							
	*4/14/1993	ND	ND	ND	ND	350	NA					ND							Í
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	320	NA					<2.0							
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	34	< 200				< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	2/9/06	0.50 U	0.50 U	0.50 U	1.0 U	3.2	NS	NS			0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
	6/22/06	0.50 U	0.50 U	0.50 U	1.0 U	10.9	NS	NS			1.1 U	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	0.56 U
	10/25/06	0.50 U	0.50 U	0.50 U	1.0 U	20.7	NS	NS			1.0U	0.50 U	0.50 U	1.0U	1.0U	1.0U	1.0U	0.50 U	0.50 U
	1/19/07	0.50 U	0.50 U	0.50 U	1.0 U	1.8	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	26.6	216	NS			0.98 U	0.49 U	0.49 U	0.98 U	0.98 U	0.98 U	0.98 U	0.49 U	0.49 U
	8/9/07	0.50 U	0.80 I	0.50 U	1.0 U	20.3	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	11/1/07	0.50 U	0.50 U	0.50 U	1.0 U	20.5	318	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	11/29/07	0.50 U	0.50 U	0.50 U	1.0 U	14	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/19/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/20/08	0.50 U	0.50 U	0.50 U	1.0 U	37.6	NS	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08	0.50 U	0.50 U	0.50 U	1.0 U	53.4	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/11/08	0.50 U	0.50 U	0.50 U	1.0 U	34.8	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	10/10/08	0.50 U	0.50 U	0.50 U	1.0 U	18.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	25.7	271	NA	NA	NA	10.8	3.8 U	3.8 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	1/26/09	0.50 U	0.50 U	0.50 U	1.0 U	7.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	1.7	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
																			1
MW-8																			1
	*7/20/1993	ND	ND	ND	ND	ND	NA					ND							
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10	NA					<2.0							
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 200	NS			< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	11/16/09	0.50 U	0.50 U	0.50 U	1.0 U	3.7	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
																			l
MW-9	*= /= = / + = = =												-					-	
	*7/20/1993	ND	1.3	ND	ND	11	NA					ND							1
	*4/94 or 6/94	1	<1.0	<1.0	<5.0	13	NA					<2.0							
DPT-25	4/28/05	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	NS	NS			<1.0	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<0.50	<0.50
DPT-26	4/28/05	< 0.50	< 0.50	< 0.50	< 1.0	< 0.50	215	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Facility Name: Trout River Food Store (aka Island Food Store No. 142)

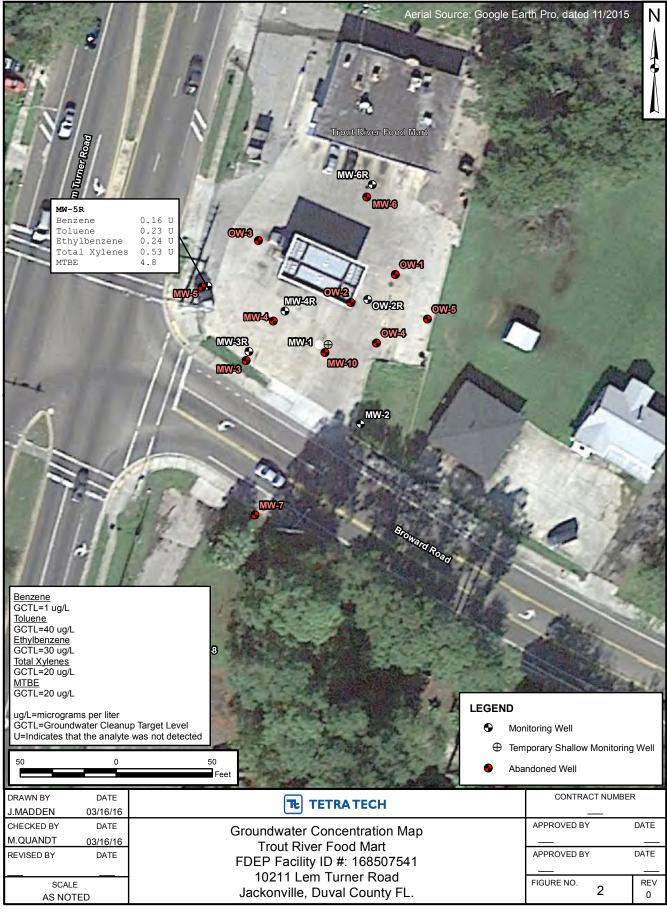
I = Result >= MDL but < RL U = Not Detected µg/L = Micrograms Per Liter

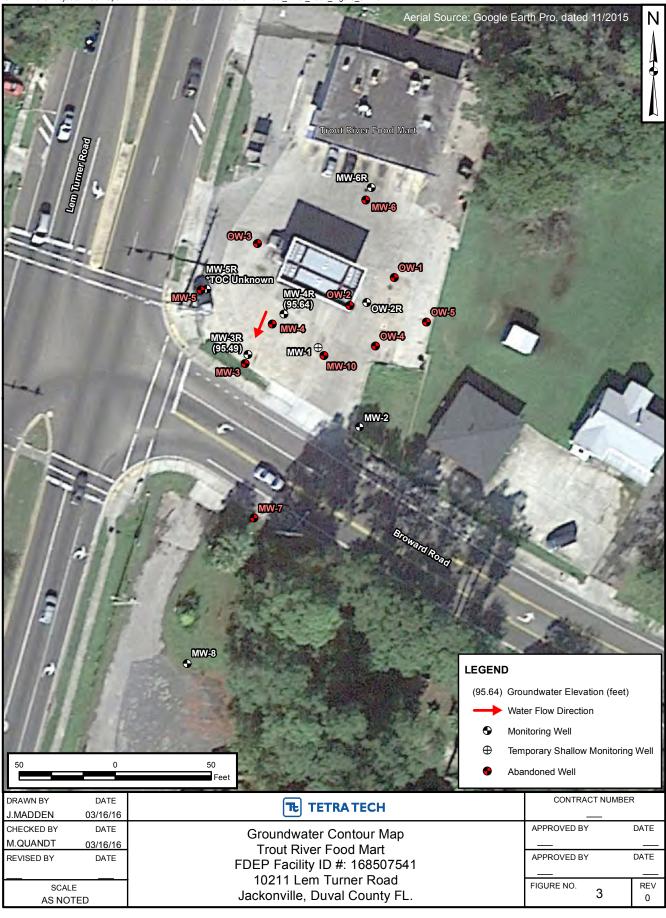
Facility I. D. No. 16	68507541													NA = Not analyzed for this parameter NS = Not Sampled							
San	Sample			Ethyl-	Total				Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-		Phenan-		Fluoran-		
Location	Date	Benzene	e Toluene	Benzene	Xylenes	MTBE	TRPH	EDB	Lead	Lead	thalene	Naph-thalene	Naph-thalene	thylene	thene	Flourene	threne	Pyrene	thene		
Chapter 62-77	Z FAC GCTI	(1) µg/L	(40) μg/L	(30) µg/L	(20) µg/L	(20) µg/L	(5000) μg/L	(0.02) µg/L	(15) µg/L	Leau	(14) µg/L	(28) µg/L	(28) μg/L	(210) µg/L	(20) µg/L	(280) µg/L	(210) µg/L	(210) µg/L	(280) µg/L		
		(-) 46/-	(10) µb/ 2	(50) µ6/ 2	(20/ µB/ 2	(20) 46/2	(5000) μg/ 2	(0102) µg/ 2	(10) 46/ 2		(1 1/ MB/ C	(20) µb/ 2	(20) 46/ 2	(210/ µ6/ 2	(20) 46/2	(200/ µ6/ 2	(220/ µ8/ 2	(220) 48/2	(200) µg/ 2		
DPT-27	4/28/05	1.5	10.1	3.5	19.3	< 0.50	462	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS		
	, , .,		-								_			-		-					
DPT-28	4/28/05	< 0.50	1.6	< 0.50	2.2	0.86	776	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS		
DPT-29	4/28/05	1.5	0.63	5.8	4.2	24.1	400	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS		
*DPT-30	4/28/05	104	674	248	1300	65.3	7960	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS		
*OW-2R																					
	2/9/06	8440	15400	2390	11800	553	42400	0.0094 U			744	113	211	9.5 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U		
	6/22/06	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			1.0U	0.50 U	0.50 U	1.0U	1.0U	1.0U	1.0U	0.50 U	0.50 U		
	10/25/06 1/19/07	0.50 U 0.50 U	4.6	0.50 U 0.50 U	1.0U 1.0U	0.50 U 0.50 U	NS NS	NS NS			0.95 U 0.95 U	0.48 U 0.48 U	0.48 U 0.48 U	0.95 U 0.95 U	0.95 U 0.95 U	0.95 U 0.95 U	0.95 U 0.95 U	0.48 U 0.48 U	0.48 U 0.48 U		
	5/1/07	0.50 U	0.50 U 0.50 U	0.50 U	1.0U 1.0 U	0.50 U	NS 297	NS			0.95 U 0.98 U	0.48 U 0.49 U	0.48 U 0.49 U	0.95 U 0.98 U	0.95 U 0.98 U	0.95 U 0.98 U	0.95 U 0.98 U	0.48 U 0.49 U	0.48 U 0.49 U		
	8/9/07	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	297 NS	NS			0.98 U 0.96 U	0.49 U	0.49 U	0.98 U 0.96 U	0.98 U 0.96 U	0.98 U 0.96 U	0.98 U 0.96 U	0.49 U	0.49 U		
	11/1/07	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	259	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U		
	2/19/08	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.95 U	0.48 U	0.48 U	0.93 U	0.93 U	0.93 U	0.95 U	0.48 U	0.48 U		
	5/20/08	0.50 U	0.30 0	0.50 U	1.0U	0.50 U	NS	NS			0.93 U	0.48 U	0.48 U	0.93 U	0.93 U	0.93 U	0.93 U	0.48 U	0.48 U		
	6/3/08	NA	NA	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	N	NS	NS	NS		
	9/11/08	0.50 U	1.1	0.50 U	1.00	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U		
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	1/8/09	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	173	NA	NA	NA	3.5	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U		
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS		
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U		
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NA	NA	NA	NA	0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U		
	11/16/09	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.48 U	0.95 U	0.48 U	0.48 U		
	2/10/10	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	160 U	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U		
	5/13/10	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U		
	8/6/10	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U		
	3/24/11	0.50 U	0.50 U	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	0.78 U	0.39 U	0.39 U	0.78 U	0.78 U	0.78 U	0.78 U	0.39 U	0.39 U		
	5/31/11	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U		
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	160 I	NA	NA	NA	1.9 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U		
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	0.34 U	140 U	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U		
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	0.34 U	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	1.7	0.38 U	0.24 U	0.24 U	0.24 U		
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	0.96 U	NA	NA	NA	NA	0.053 U	0.018 U	0.045 U	0.030 U	0.034 U	0.030 U	0.036 U	0.033 U	0.027 U		
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	0.32 U	NA	NA	NA	NA	0.053 U	0.048 U	0.045 U	0.030 U	0.034 U	0.030 U	0.036 U	0.033 U	0.027 U		
	12/27/12	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	140 U	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U		
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	147	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U		
	9/16/13	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U		
	7/31/14	0.21 U	0.23 U	0.24 U	0.53 U	0.32 U	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS		
			L		ļ								<u> </u>	L							

** Wells MW-4R and MW-7 were re-sampled on November 29, 2007 due to the results from November 1, 2007 being so close to the CTL.

*** Wells MW-4R and MW-7 were re-sampled on June 3, 2008 due to the results from May 20, 2008 event exceeding MTBE CTLs.

+ Well MW-7 was re-sampled on October 10, 2008 due to the results from the September 11, 2008 event exceeding MTBE CTLs.


++ Well MW-7 was re-sampled on January 26, 2009 due to the results from Januray 08, 2008 event exceeding MTBE CTLs.


+++ Well MW-3R and MW-4R were re-sampled on August 27, 2010 due to results from August 6, 2010 exceeding MTBE CTLs.

FIGURES

JAX: M:\GIS\Projects\Misc Maps\MXD\Petro Sites\Island Food Store 142\Trout_River_Food_Figure_2.mxd

ATTACHMENT B

Advanced Environmental Laboratories, Inc 6681 Southpoint Pkwy Jacksonville, FL 32216 Payments: P.O. Box 551580 Jacksonville, FL 32255-1580

> Phone: (904)363-9350 Fax: (904)363-9354

March 14, 2016

Gerry Walker Tetra Tech, Inc. 1558 Village Square Blvd. Suite 2 Tallahassee, FL 32309

RE: Workorder: J1602185 Trout River Food Mart

Dear Gerry Walker:

Enclosed are the analytical results for sample(s) received by the laboratory on Tuesday, March 08, 2016. Results reported herein conform to the most current NELAC standards, where applicable, unless otherwise narrated in the body of the report. The analytical results for the samples contained in this report were submitted for analysis as outlined by the Chain of Custody and results pertain only to these samples.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

5halet

Shane Poston SPoston@AELLab.com

Enclosures

Report ID: 414280 - 6665268

Page 1 of 6

CERTIFICATE OF ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Advanced Environmental Laboratories, Inc.

SAMPLE SUMMARY

Workorder: J1602185 Trout River Food Mart

Lab ID	Sample ID	Matrix	Date Collected	Date Received
J1602185001	MW-5R	Water	3/8/2016 08:00	3/8/2016 09:05

Report ID: 414280 - 6665268

Page 2 of 6

CERTIFICATE OF ANALYSIS

ANALYTICAL RESULTS

Workorder: J1602185 Trout River Food Mart

Lab ID: J1602185001 Sample ID: MW-5R				Date Received: Date Collected:		Matrix:	Water	
Sample Description:				Location:				
					Adjusted	Adjusted		
Parameters	Results	Qual	Units	DF	PQL	MDL	Analyzed	Lab
VOLATILES								
Analysis Desc: 8260B Analysis, Water	Prep	aration I	Method: S	W-846 5030B				
	Anal	ytical Me	ethod: SW	/-846 8260B				
Benzene	0.16	U	ug/L	1	1.0	0.16	3/12/2016 18:01	J
Ethylbenzene	0.24	U	ug/L	1	1.0	0.24	3/12/2016 18:01	J
Methyl tert-butyl Ether (MTBE)	4.8		ug/L	1	1.0	0.17	3/12/2016 18:01	J
Toluene	0.23	U	ug/L	1	1.0	0.23	3/12/2016 18:01	J
Xylene (Total)	0.53	U	ug/L	1	2.0	0.53	3/12/2016 18:01	J
1,2-Dichloroethane-d4 (S)	101		%	1	77-125		3/12/2016 18:01	
Toluene-d8 (S)	109		%	1	80-121		3/12/2016 18:01	
Bromofluorobenzene (S)	106		%	1	80-129		3/12/2016 18:01	

Report ID: 414280 - 6665268

Page 3 of 6

ANALYTICAL RESULTS QUALIFIERS

Workorder: J1602185 Trout River Food Mart

PARAMETER QUALIFIERS

- U The compound was analyzed for but not detected.
- I The reported value is between the laboratory method detection limit and the laboratory practical quantitation limit.

LAB QUALIFIERS

J DOH Certification #E82574(AEL-JAX)(FL NELAC Certification)

Report ID: 414280 - 6665268

Page 4 of 6

CERTIFICATE OF ANALYSIS

QUALITY CONTROL DATA

Workorder: J1602185 Trout River Food Mart

QC Batch: QC Batch Method: Associated Lab Sam	MSVj/1344 SW-846 5030B ples: J1602185001		Analysis Method: Prepared:	SW-846 8260B 03/11/2016 12:20	
METHOD BLANK: 1	994962				
		Blank	Reporting		

Parameter	Units	Result	Limit Qualifiers	
VOLATILES				
Methyl tert-butyl Ether (MTBE)	ug/L	0.17	0.17 U	
Benzene	ug/L	0.16	0.16 U	
Toluene	ug/L	0.23	0.23 U	
Ethylbenzene	ug/L	0.24	0.24 U	
Xylene (Total)	ug/L	0.53	0.53 U	
1,2-Dichloroethane-d4 (S)	%	100	77-125	
Toluene-d8 (S)	%	108	80-121	
Bromofluorobenzene (S)	%	106	80-129	

Report ID: 414280 - 6665268

Page 5 of 6

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Workorder: J1602185 Trout River Food Mart

Lab ID	Sample ID	Prep Method	Prep Batch	Analysis Method	Analysis Batch
J1602185001	MW-5R	SW-846 5030B	MSVj/1344	SW-846 8260B	MSVj/1345

Report ID: 414280 - 6665268

Page 6 of 6

Chain of Custody Record

	1	6	0	2	1	8	5	
~ 7								

Comp		Tr	ch		<i></i>									Constraint of the second second second second second second second second second second second second second s	of /
Addre	1. Streament	V:I	lase St	guare	Blud							3504	сала гонця: o2-770.9	00(2)	
Į	Ialla	has	see, F	2 32	307							010107774502	Form Title: Chain of Cu	stody Record	
Conta	ct Person: Gerr	v l	Nalk	0									Effective Date: 4-17-05		
Phone	: <u>850536 81</u>	2.6	Fax:										FDEP Facility No.:	an an an an an an an an an an an an an a	Alloholarətələrin ve zənəma azərməsin
	led by [Print Name			v					Preserva	atives (see	e codes)		Project Name and A	ddress:	
	Misty (lua	ndt /	111				H					Trout River	Frend M	les or A
Sampl	ler(s) Signature(s)				9	2l			Analy	/ses Requ	ested		ADEPT		
	essential and a second	27		6	nd	A		1.3					REQUESTE	D DUE DA	ГE
Item		\	Sam		Grab or	Matrix	Number of	XEV					/	/	
No.	Field ID No	• Jeansonalaiseasseasaa	Date	Time	Composit	(see codes)	Containers		analaminekanineminin				Remarks	L	ab. No.
j	MW-5R		3/8/16	0801	6	GW	3	3							
														ĺ	
	·					1									
							[

									_				······		
	······					<u> </u>									
	L Shipmen	t Meth	L l	1				Cota	l Number (f Contair	ners				
)ut: / /	Via:			Item No.	Relinquis	hed by / Affilia	and the second second second second second second second second second second second second second second second	Date	Time		cented	by / Affiliation	Date	Time
					1001113 40.	- The - con						77 77			
Returr	11130000001064200140000000000000000000000000	Via:				<u> 10 an</u>	<u>I fand</u>	A	<u> </u>	0905	Bound	2	and the second	<u>3/8/16</u>	9:05
Additi	ional Comments:														
													······		
						Cooler No.(s)	/ Temperature	(s) (°C)			 Sampling Ki	t No.	Equi	pment ID No). D.
1000000							3° C				- <u>·</u>				
AND DESCRIPTION OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF THE OWNER OF T	CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A CONTRACTOR OF A	A = Aiı	r GW =	Groundv	vater SE =	= Sediment	SO = Soil	SW = Su	rface Wat	Sector manufacture and the sector of the sec	- Water (Blan	talainteeta farmeitainmaka	O = Other (specify)		
PRES	ERVATIVE COD	ES:	H = Hye	drochloric	e acid + ice	I = Ice onl	y N = Ni	tric acid -	+ ice	S = Sulfu	ric acid + ice	() = Other (specify)		

	Food
ciient: Tetra Tech	Project name: Trout River Mart
Date/Time Rovd: 3-8-16 9:05	Log-in request number: J1602185
Received by: BA	Completed by: BP
Cooler/Shipping Information:	
Courier: DIAEL Client DUPS D Blue Streak	□ FedEx □ AES □ ASAF □ Othe: (describe)

Type: Z Cooler 🗆 Box 🗔 Other (describe) ____

Cooler temperature, identify the cooler and document the temperature blank or ice water measurement

Copier ID					
Temp (°C)	3°C				
Temp taken from	🖻 Sample Bottle	□ Sample Bottle □ Cooier	🖾 Sample Bottle 🗔 Cooler	k □ Sample Bottle k □ Couler	Sampic Bottie Gooler
Temp measured		□ IR gun S/N 9333779 □ Thermometer (ente		D IR put S/N 9333779	D Thermospherer center
with	(II);	10	§ 11.))	\$ 10 m	

Other information:

Any discrepancies should be explained in the "Comments" section below

	CHECKLISU	N DA	N()	N A.
	Were sustody seats on sninning container(s) intact?		: 	- ANTANGARAN
	Were custody papers properly included with samples		:	
	Were custody papers properly filleo out (mk. signed, match arbeits).			
4	Did all bottles arrive in good condition (unbroken)?		: 	
15.	Were all bottle labels complete (sample h , date, signed, analysis, preservatives?)	Ballandar		
<u>і</u> ц.	Did the sample labels agree with the chain of custody"			
7.	Were correct bottles used for the tests indicated?		:	:
18	Were proper sample preservation techniques indicated on the label?		<u>.</u>	
U.	Were samples received within holding times?	and the second	<u> </u>	3
$ 10\rangle$	Were all V(1A vials free of the presence of an publice?)	. March March	:	
	Have all Soil VOA Vials and Encores been placed in a freezer within 4% hours of collection"	·		
	Were samples in direct contact with wet ice? If "No," check one: DINCUCE, DIBLUE ICE	Jane		<u></u>
	Was the cooler temperature less than 6°C?	rannan		
	Where nH preservation is required, are sample pFill checked and any anomalies recorded in Sample control? Are all 1 or 10° (sore, VDA samples are checked by aborators) analysi.	. NEW MARKAN		
	Vras sufficient sample volume provided is perform all test:	- Second and a		
lic	Were the sample containers provided by ABL?			
	Were samples accepted line the laboratory?	- water		
12	When necessary to split samples into other bottles, is it noted in the comments?	and the second second	1	

Comments: (Note all sample(s) and container (s)' with a "No" checklist response us this comment section:

U.S. Postal Service[™] CERTIFIED MAIL[®] RECEIPT Domestic Mail Only

For delivery information, visit our website at www.usps.com®.

Adult Signature Required \$

R. Driber

Extra Services & Fees (check box, add fee as appropriate Cardinal (hardcopy)

Return Receipt (electronic)

Certified Mail Restricted Delivery

Postmark Here

astructions

Postage

Total Pos

Sent To

Street an City, Stai

DC Form 2000

Facility ID 168507541 Mr. Basel F. Brkat 9440 Beauclerc Cove Rd. Jacksonville, FL 32257-5452

Certified Mail service provides the following benefits:

- A receipt (this portion of the Certified Mail label).
- A unique identifier for your mailplece.
- Electronic verification of delivery or attempted delivery.
- A record of delivery (Including the recipient's signature) that is retained by the Postal Service^{**} for a specified period.

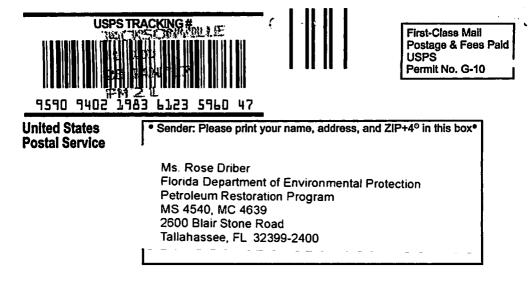
Important Reminders:

- You may purchase Certified Mall service with First-Class MaiP, First-Class Package Service^o, or Priority Mall^o service.
- Certified Mall service is not available for international mail.
- Insurance coverage is not available for purchase with Certified Mail service. However, the purchase of Certified Mail service does not change the insurance coverage automatically included with certain Priority Mail items.
- For an additional fee, and with a proper endorsement on the mailpiece, you may request the following services:
 - Return receipt service, which provides a record of delivery (including the recipient's signature).
 You can request a hardcopy return receipt or an electronic version. For a hardcopy return receipt complete PS Form 3811, Damostic Return Receipt; attach PS Form 3811 to your mailpiece;

- 🖌 for an electronic return receipt, see a retall
- associate for assistance. To receive a duplicate return receipt for no additional fee, present this USPSØ-postmarked Certified Mail receipt to the retail associate.
- Restricted dailvery service, which provides delivery to the addressee specified by name, or to the addressee's authorized agent.
- Adult signature service, which requires the signee to be at least 21 years of age (not available at retail).
- Adult signature restricted dolivery service, which requires the signee to be at least 21 years of ago and provides delivery to the addressee specified by name, or to the addressee's authorized agent (not available at retail).
- To ensure that your Certified Mail receipt is accepted as legal proof of mailing, it should bear a USPS postmark. If you would like a postmark on this Certified Mail receipt, please present your Certified Mail item at a Post office" for postmarking. If you don't need a postmark on this Certified Mail receipt, detach the barcoded portion of this label, affix it to the mailplece, apply appropriate postage, and deposit the mailplece.

IMPORTANT: Save this receipt for your records.

PS Form 3800, April 2015 (Roverso) PSN 7530-02-000-9047


	. C.A. *
SENDER: COMPLETE THIS SECTION	COMPLETE THIS SECTION ON DELIVERY
 Complete items 1, 2, and 3. Print your name and address on the reverse so that we can return the card to you. Attach this card to the back of the mailpiece, or on the front if space permits. 	A. Signature X Agent B. Received by (Printed Name) C. Date of Delivery
 Article Addressed to: Facility ID 168507541 Mr. Basel F. Brkat 9440 Beauclerc Cove Rd. 	D. is delivery address different from item fr U Yes If YES, enter delivery address below: INO INO INO INO INO INO INO INO
Jacksonville, FL 32257-5452	3. Service Type Priority/Mail Express® Adult Signature Bogistered Mail™ Adult Signature Restricted Delivery Certified Mail® Certified Mail® Certified Mail® Collect on Delivery Restricted Delivery Collect on Delivery Restricted Delivery Signature Confirmation™ Mail Signature Confirmation Vall Restricted Delivery Bignature Confirmation Signature Confirmation

PS Form 3811, July 2015 PSN 7530-02-000-9053

Ì

Domestic Return Receipt

.

3-240099

Florida Department of Environmental Protection

Bob Martinez Center 2600 Blair Stone Road Tallahassee, Florida 32399-2400 Rick Scott Governor

Carlos Lopez-Cantera Lt. Governor

Jonathan P. Steverson Secretary

January 23, 2017

CERTIFIED MAIL #7016 1370 0001 1920 1490 RETURN RECEIPT REQUESTED

Mr. Basel F. Brkat 9440 Beauclerc Cove Rd. Jacksonville, FL 32257-5452

Subject: <u>Site Rehabilitation Completion Order</u> Trout River Food Mart 10203 Lem Turner Road Jacksonville, Duval County FDEP Facility ID Number 168507541 Discharge Dates: February 6, 1987 (EDI) and June 27, 1987 (EDI-partial eligibility)

Dear Mr. Brkat:

The City of Jacksonville, Neighborhoods Department, Environmental Quality Division (EQD), on behalf of the Florida Department of Environmental Protection (Department), has reviewed the Site Rehabilitation Completion Report (SRCR) and No Further Action Proposal (NFAP) dated September 22, 2015 (received September 24, 2015); along with information dated March 21, 2016 (received March 21, 2016), and the Monitoring Well Abandonment/Closure Report dated August 2, 2016 (received August 2, 2016), for the petroleum product discharges referenced above. Documentation submitted with the SRCR/NFAP confirms that criteria set forth in Subsection 62-780.680(1), Florida Administrative Code (F.A.C.)., have been met.

Please refer to the attached maps of the source property and analytical summary tables, Exhibits A and B respectively and hereby incorporated by reference. The SRCR/NFAP is hereby incorporated by reference in this Site Rehabilitation Completion Order (Order). Therefore, you are released from any further obligation to conduct site rehabilitation at the facility for petroleum product contamination associated with the discharges referenced above, except as set forth below.

In the event concentrations of contaminants of concern are detected above the levels approved in this Order, the department will reevaluate the contamination and reinitiate State-funded site or discharge rehabilitation to reduce concentrations of contaminants of concern to the levels approved in the Order or otherwise allowed by Chapter 62-780, F.A.C., in accordance with the State-funded eligibility provisions that are applicable for the site or discharge. This includes any confirmed impacts found to be migrating beyond the site's property boundary. If groundwater is being used for potable uses in the area affected by the contamination, the Department will take all necessary steps to protect public health, safety and welfare under Chapter 376, F.S., as necessary. If a new or subsequent discharge occurs at the facility that is not eligible for state funding, the contamination must be evaluated and addressed as provided in Chapter 62-780, F.A.C.

www.dep.state.fl.us

Mr. Basel F. Brkat FDEP Facility ID# 168507541 Page 2 January 23, 2017

Legal Issues

The Department's Order shall become final unless a timely petition for an administrative hearing is filed under Sections 120.569 and 120.57, Florida Statutes (F.S.), within 21 days of receipt of this Order. The procedures for petitioning for an administrative hearing are set forth below.

Persons affected by this Order have the following options:

- (A) If you choose to accept the Department's decision regarding the SRCR/NFAP you do not have to do anything. This Order is final and effective on the date filed with the Clerk of the Department, which is indicated on the last page of this Order.
- (B) If you choose to challenge the decision, you may do the following:
- (1) File a request for an extension of time to file a petition for an administrative hearing with the Department's Agency Clerk in the Office of General Counsel within 21 days of receipt of this Order; such a request should be made if you wish to meet with the Department in an attempt to informally resolve any disputes without first filing a petition for an administrative hearing; or
- (2) File a petition for an administrative hearing with the Department's Agency Clerk in the Office of General Counsel within 21 days of receipt of this Order.

Please be advised that mediation of this decision pursuant to Section 120.573, F.S., is not available.

How to Request an Extension of Time to File a Petition for an Administrative Hearing

For good cause shown, pursuant to Subsection 62-110.106(4), F.A.C., the Department may grant a request for an extension of time to file a petition for an administrative hearing. Such a request must be filed (received) by the Department's Agency Clerk in the Office of General Counsel at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida, 32399-3000, within 21 days of receipt of this Order. Petitioner, if different from Mr. Basel F. Brkat, shall mail a copy of the request to Mr. Basel F. Brkat at the time of filing. Timely filing a request for an extension of time tolls the time period within which a petition for an administrative hearing must be made.

How to File a Petition for an Administrative Hearing

A person whose substantial interests are affected by this Order may petition for an administrative hearing under Sections 120.569 and 120.57, F.S. The petition must contain the information set forth below and must be filed (received) by the Department's Agency Clerk in the Office of General Counsel at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida, 32399-3000, within 21 days of receipt of this Order. Petitioner, if different from Mr. Basel F. Brkat, shall mail a copy of the petition to Mr. Basel F. Brkat at the time of filing. Failure to file a petition within this time period shall waive the right of anyone who may request an administrative hearing under Sections 120.569 and 120.57, F.S.

Mr. Basel F. Brkat FDEP Facility ID# 168507541 Page 3 January 23, 2017

Pursuant to Subsection 120.569(2), F.S. and Rule 28-106.201, F.A.C., a petition for an administrative hearing shall contain the following information:

- (a) The name, address, and telephone number of each petitioner; the name, address, and telephone number of the petitioner's representative, if any; the facility owner's name and address, if different from the petitioner; the FDEP facility number, and the name and address of the facility;
- (b) A statement of when and how each petitioner received notice of the Department's action or proposed action;
- (c) An explanation of how each petitioner's substantial interests are or will be affected by the Department's action or proposed action;
- (d) A statement of the disputed issues of material fact, or a statement that there are no disputed facts;
- (e) A statement of the ultimate facts alleged, including a statement of the specific facts the petitioner contends warrant reversal or modification of the Department's action or proposed action;
- (f) A statement of the specific rules or statutes the petitioner contends require reversal or modification of the Department's action or proposed action; and
- (g) A statement of the relief sought by the petitioner, stating precisely the action petitioner wishes the Department to take with respect to the Department's action or proposed action.

This Order is final and effective on the date filed with the Clerk of the Department, which is indicated on the last page of this Order. Timely filing a petition for an administrative hearing postpones the date this Order takes effect until the Department issues either a final order pursuant to an administrative hearing or an Order Responding to Supplemental Information provided to the Department pursuant to meetings with the Department.

Judicial Review

Any party to this Order has the right to seek judicial review of it under Section 120.68, F.S., by filing a notice of appeal under Rule 9.110 of the Florida Rules of Appellate Procedure with the Department's Agency Clerk in the Office of General Counsel at 3900 Commonwealth Boulevard, Mail Station 35, Tallahassee, Florida, 32399-3000, and by filing a copy of the notice of appeal accompanied by the applicable filing fees with the appropriate district court of appeal. The notice of appeal must be filed within 30 days after this Order is filed with the Department's clerk (see below).

Questions

Any questions regarding the EQD's review of the SRCR/NFAP should be directed to Vanetta Thomas at (904) 255-7100. Questions regarding legal issues should be referred to the Department's Office of General Counsel at (850) 245-2242. Contact with any of the above does not constitute a petition for an administrative hearing or a request for an extension of time to file a petition for an administrative hearing.

The FDEP Facility Number for this facility is 168507541. Please use this identification on all future correspondence with the Department.

Mr. Basel F. Brkat FDEP Facility ID# 168507541 Page 4 January 23, 2017

Sincerely,

Diane D. Pickett Program Administrator Petroleum Restoration Program

DDP/vt

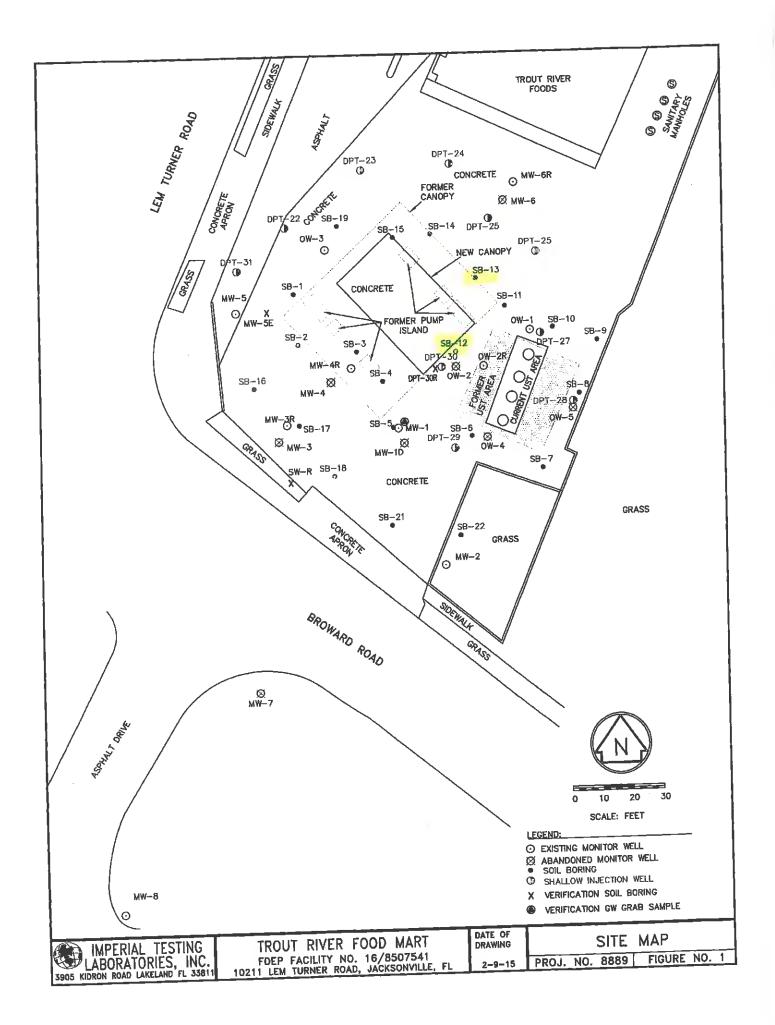
FILING AND ACKNOWLEDGMENT FILED, on this date, pursuant to §120.52 Florida Statutes, with the designated Department Clerk, receipt of which is hereby acknowledged.

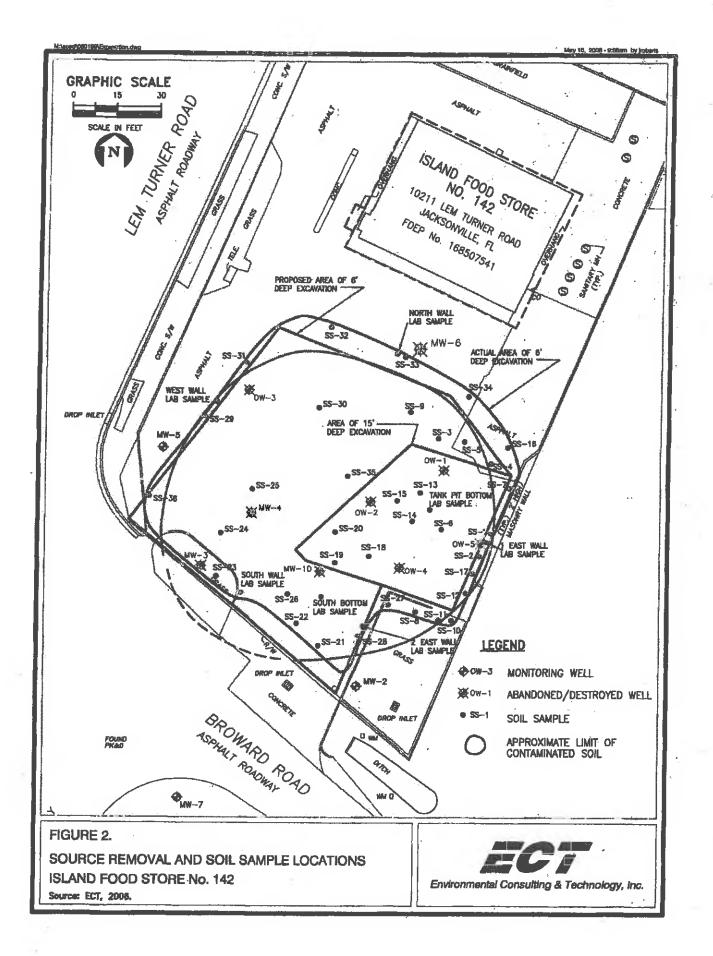
Clerk (or Deputy Clerk)

Exhibit: updated analytical summary tables and map of the source property

- cc: Henry Vaness Dobson Sr Trust, 126 Will Scarlet Ln., Williamsburg, VA 23185
- ec: Timothy Dohaney, FDEP Northeast District office timothy.dohaney@dep.state.fl.us
 Vanetta Thomas, EQD vthomas@coj.net
 J. Chris Mickler, P.E., Environmental Consulting and Technology, Inc. cmickler@ectinc.com
 Wesley Curtis, St. Johns River Water Management District wcurtis@sjrwmd.com
 File

P.G. CERTIFICATION


Site Rehabilitation Completion Report (SRCR) and No Further Action Proposal (NFAP) dated September 22, 2015 (received September 24, 2015); along with information dated March 21, 2016 (received March 21, 2016), and the Monitoring Well Abandonment/Closure Report dated August 2, 2016 (received August 2, 2016) for Trout River Food Mart, 10203 Lem Turner Road, Jacksonville, FDEP Facility ID# 168507541.


I hereby certify that in my professional judgment, the components of this Site Rehabilitation Completion Report (SRCR) and No Further Action Proposal (NFAP) prepared for the February 6, 1987 and June 27, 1987 petroleum product discharges discovered at the above-referenced facility satisfy the requirements set forth in Chapter 62-780, Florida Administrative Code (F.A.C.), and that the conclusions in this report provide reasonable assurances that the site rehabilitation objectives stated in Chapter 62-780, F.A.C., have been met.

I personally completed this review.

X This review was conducted by <u>Vanetta Thomas</u> working under my direct supervision.

George R. Maihack, P.G. Professional Geologist #1353 City of Jacksonville, EQD

Table 3A: Soil Analytical Summary

Facility Name: Trout River Food Mart

*

1	Sample		Sample	Total	Screening Carbon		+					aboratory Analy	min (me f)			Facility I. D. N		
Boring	1	to	Interval					1	Ethyl	Total	<u>`</u>	Naph-	/sis (mg/kg)					
No.	Date	Wate		(ppm)			Ben-	Tol-	ben-	Xy-	TRPH	tha	1-Methyl	2-Methyl	Ace-	Ace-	An	Ber
			1 (10:0)	Industria	(ppm)	(ppm)	zene	uene	zene	lenes	ma/ka	lene	Naphtha-	Naphtha-	naphth-	naphthyl-	thra	ап
Soil Cleanup Go	bals			Pepident	al (mg/kg)		1.7	60,000	9,200	700	2,700	300	lene	lene	ene	lene	cene	c
				Loophine	ai (mg/kg)		1.2	7,500	1,500	130	460	55	1800	2100	20,000	20,000	300,000	
SB-1	9/29/04	1.5	2	Leaching >10000			0.007	0.5	0.6	0.2	340	1.2	200	210	2,400	1,800	21,000	1
SB-6	9/29/04	1.5	1			>7600	4.9	1.3 U	64.000	211.3	1700	16.000	3.1	8.5	2.1	27	2,500	
SB-9	9/29/04	1.5		820	180	640	0.01	0.0012 U	0.018	0.0035	8.6U		6.000	13,000	0.100	0.039 U	0.130	1 0
SB-12	9/29/04	1.5	1	20	9		0.0013 U	0.001 U	0.001 U	0.0033 U	20	0.130	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	
SB-12	9/29/04		1	>10000	2900	>7100	14.000	250.000	150.000	1010.000		0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	0.043 U	
SB-12		1.5	2	>10000	3200	>6800	20.000	370.000	210.000	1310.000	5700	110.000	50.000	120,000	.140,000	0.060	0.190	-
	9/29/04	1.5	1	>10000	1500	>8500	0.210	3,200	7.000		1800	55,000	26.000	62.000	0.068	0.040 U		11
<u>SB-17</u>	9/29/04	1.5	1	4300	2100	2200	0.001	0.001	0.001 U	68.000	1300	26.000	12.000	26.000	0.710	0.300	0.060	4
SB-19	9/29/04	1.5	1	710	540	170	0.0011 U	0.0011 U		0.004	49	0.190	0.042 U	0.054	0.042 U	0.042 U	2.400	6
SS-28	4/28/05	3	8-9				0.0659	0.304	0.0011 U	0.0034 U	30	0.040 U	0.040 U	0.040 U	0.042 U		0.042 U	
55-28	4/28/05	j 3	14-15	<u> </u>	·		0.0027 U		0.190	0.998	28.9			0.0400	0.040 0	0.040 U	0.040 U	0
SS-29	4/28/05	3	14-15			<u> </u>	0.0031 U	0.0027 U	0.0027 U	0.0061 U	7.4 U						·	
SS-30	4/28/05	3	8-9				0.0031 0	0.0031 U	0.0031 U	0.0069 U	18.0							
South Wall	4/24/06	6	3			0		1.520	103.0	4.660	223	1						·
2-East Wall	4/24/06	6	4	<u> </u>	;i	5.0	0.0033 U	0.0033 U	0.0033 U	0.0083 U	7.34	0.093 U	0.093 U	0.093 U	0.45			
West Wall	4/24/06	6	3			<u> </u>	0.0032 U	0.0032 U	0.0032 U	0.0079 U	6.0 U	0.087 U	0.093 U		0.190 U	0.190 U	0.190 U	0.0
South Bottom	4/24/06	6	7			3.0	0.0035 U	0.0035 U	0.0035 U	0.0087 U	12.6	0.094 []	0.094 U	0.087 U	0.170 U	0.170 U	0.170 U	0.1
Tank Pit Bottom	4/24/06	6	14			7.0	01.0052 U	0.0052 U	0.0052 U	0.13 U	6.9	0.100 U	0.100 U	0.094 U	0.190 U	0.190 U	0.190 U	0,
North Wali	4/24/06	6	5				0.0022 U	0.0022 U	0.0022 U	0.0056 U	6.2 U	0.092 U		0.100 U	0.200 U	0.200 LI	0.200 U	0.
1-East Wall	4/24/06	6	6			3.0	0.0037 U	0.0037 U	0,0037 U	0.00983 U	5.9 U	0.087 U	0.092 U	0.092 U	0.180 U	0.180 U	0.180 U	0.
DPT-30R	1/20/15	~2'	0-1'	20		2.0	0.0034 U	0.0034 U	0.0034 U	0.0085 U	24.1	0.097 U	0.087 U	0.087 U	0,170 U	0.170 U	0.170 U	0.0
MW-5E	1/20/15	~2'	0-1	18	18	2	0.00130 U	0.00126 U	0.00162 U	0.00642 U	22.3	0.037 0	0.097 U	0.097 U	0.190 U	0.190 U	0.190 U	0.0
			V-1	10	105	0	0.00132 U	0.00440.11	0.001			1.		1			· · · · · · · · · · · · · · · · · · ·	0,0
SW-R	1/20/16	-2	0.1	0				0.00128 U	0.00164 U	0.0065211	3381/			<u> </u>			i !	
<u>\$W-R</u>	1/20/15 Sample	-2	0-1	0 OVA S	Screening F	Results	0.00130 U	0.00126 U	0.00164 U 0.00162 U	0.00652 U 0.00642 U	3.38 U 30.4							
		Depth	Sample	OVA S	Carbon	Results	0.00130 U		0.00162 U	0.00642 U	30.4	iboratory Analys	is (mg/kg)					
Boring	Sample	Depth	Sample Interval	OVA S Total reading	Carbon Filtered	Results Net Reading		0.00126 U	0.00162 U Benzo.	0.00642 U Benzo[k]	30.4	Dibenzo[a,h]	Fluor-		Indeno	Phen-		
		Depth	Sample	OVA S Total reading (ppm)	Carbon Filtered (ppm)	Results	0.00130 U Benzo[a] pyrene	0.00126 U Benzo[b]	0.00162 U	0.00642 U Benzo[k] fluoran-	30.4	Dibenzo[a,h] anthra-	Fluor- an-	Fluor-	Indeno (1,2,3-cd)			
Boring No.	Sample	Depth	Sample Interval	OVA S Total reading (ppm) Industrial (Carbon Filtered (ppm) mg/kg)	Results Net Reading	0.00130 U Benzo[a] pyrene 0.7	0.00126 U Benzo[b] fluoran-	0.00162 U Benzo. (g.h,i)pery- lene	0.00642 U Benzo[k] fluoran- thene	30.4 La	Dibenzo[a,h] anthra- cene	Fillior- an- thene	ene		anth	Pyrene	
Boring No.	Sample	Depth	Sample Interval	OVA S Total reading (ppm) Industrial (Residenta	Carbon Filtered (ppm) mg/kg) (mg/kg)	Results Net Reading	0.00130 U Benzo[a] pyrene 0.7 0,1	0.00126 U Benzo[b] fluoran- thene	0.00162 U Benzo. (g.h,i)pery- lene 2,500	0.00642 U Benzo[k] fluoran- thene #	30.4 La Chrysene #	Dibenzo[a,h] anthra- cene #	Fluor- an- thene 59,000	ene 33,000	(1,2,3-cd)	anth rene	Pyrene 45 000	
Boring No. Soll Cleanup Gog	Sample Date	Depth to Water	Sample Interval (fbls)	OVA S Total reading (ppm) Industrial (Residenta Leaching (Carbon Filtered (ppm) mg/kg) (mg/kg) mg/kg)	Results Net Reading (ppm)	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0	0.00126 U Benzo[b] fluoran- thene #	0.00162 U Benzo. (g.h,i)pery- lene 2,500 5,200	0.00642 U Benzo[k] fluoran- thene # #	30.4 La Chrysene # #	Dibenzo[a,h] anthra- cene # #	Fluor- an- thene 59,000 3,200	ene 33,000 2,600	(1,2,3-cd) pyrene	anth rene 36,000	45,000	
Boring No. Soll Cleanup Goa	Sample Date als 9/29/04	Depth to Water	Sample Interval (fbls)	OVA S Total reading (ppm) Industrial (Residental Leaching (>10000	Carbon Filtered (ppm) mg/kg) (mg/kg) mg/kg) 2400	Results Net Reading (ppm) >7600	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120	0.00126 U Benzo[b] fluoran- thene # #	0.00162 U Benzo. (g.h,i)pery- lene 2.500 5,200 32,000	0.00642 U Benzo[k] fluoran- thene # # 24	30.4 	Dibenzo[a,h] anthra- cene # 	Fluor- ap- thene 59,000 3,200 1200	ene 33,000 2,600 160	(1,2,3-cd) pyrene #	anth rene 36,000 2,200	45,000 2,400	
Boring No. Soll Cleanup Gog SB-1 SB-6	Sample Date als 9/29/04 9/29/04	Depth to Water	Sample Interval (fbls)	OVA S Total reading (ppm) Industrial (Residental Leaching (>10000 820	Carbon Filtered (ppm) (mg/kg) (mg/kg) 2400 180	Results Net Reading (ppm) >7600 640	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0	0.00126 U Benzo[b] fluoran- thene # 2.4	0.00162 U Benzo. (g.h,i)pery- lene 2,500 5,200 32,000 0.055	0.00642 U Benzo[k] fluoran- thene # 24 0.062	30.4 La Chrysene # 77 0.200	Dibenzo[a,h] anthra- cene # 	Fluor- an- thene 59,000 3,200 1200 0.620	ene 33,000 2,600 160 0,120	(1,2,3-cd) pyrene # #	anth rene 36,000 2,200 250	45,000 2,400 880	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9	Sample Date als 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5	Sample Interval (fbls)	OVA S Total reading (ppm) Industrial Residenta Leaching (>10000 820 20	Carbon Filtered (ppm) (mg/kg) (mg/kg) 2400 180 9	Results Net Reading (ppm) >7600 640 11	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 32,000 32,000 0.055 0.043 U	0.00642 U Benzo[k] fluoran- therne # # 24 0.062 0.043 U	30.4 Lz Chrysene # 77 0.200 0.043 U	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U	Fluor- an- thene 59,000 3,200 1200 0.620 0.043 U	ene 33,000 2,600 160 0.120 0.043 U	(1,2,3-cd) pyrene # 6.6	anth rene 36,000 2,200 250 0,520	45,000 2,400 880 0.490	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12	Sample Date als 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5 1.5	Sample Interval (fbls) 2 1 1 1	OVA S Total reading (ppm) Industrial (Residenta Leaching (>10000 820 20 >10000	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900	Results Net Reading (ppm) >7600 640 11 >7100	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U	0.00126 U Benzo(b) fluoran- thene # 2.4 0.160 0.043 U 0.043 U	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 32,000 0.055 0.043 U 0.043 U	0.00642 U Benzo[k] fluoran- thene # 24 0.062 0.043 U 0.043 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U	Filior- an- thene 59,000 3,200 1200 0,620 0.043 U 0,043 U	ene 33,000 2,600 160 0,120	(1,2,3-cd) pyrene # 6.6 0.050	anth rene 36,000 2,200 250 0.520 0.043 U	45,000 2,400 880 0.490 0.043 U	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5 1.5 1.5	Sample Interval (fbls) 2 1 1 2	OVA S Total reading (ppm) Industrial (Residenta Leaching (>10000 820 20 >10000 >10000	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200	Results Net Reading (ppm) >7600 640 11 >7100 >6800	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.043 U 0.043 U	0.00126 U Benzo(b) fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.099	0.00162 U Benzo. (g,h,i)pery- lene 2,500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U	0.00642 U Benzo[k] fluoran- thene # 24 0.062 0.043 U 0.043 U 0.043 U 0.040 U	30.4 Chrysene # # 77 0.200 0.043 U 0.043 U 0.043 U 0.110	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U	Filior- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.043 U 0.250	ene 33,000 2,600 160 0.120 0.043 U	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.043 U	anth rene 36,000 2,200 250 0.520 0.043 U 0.043 U	45,000 2,400 880 0.490 0.043 U 0.043 U	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12 SB-13	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5	Sample Interval (fbls) 2 1 1 2 1 2	OVA S Total reading (ppm) Industrial (Residental >10000 20 >10000 >10000 >10000	Carbon Filtered (ppm) (mg/kg) (mg/kg) 2400 180 9 2900 3200 1500	Results Net Reading (ppm) >7600 640 11 >7100	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.071	0.00126 U Benzo(b) fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.099 0.080	0.00162 U Benzo. (g,h,i)pery- lene 2,500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.040 U	0.00642 U Benzo[k] fluoran- thene # 24 0.062 0.043 U 0.043 U 0.040 U 0.040 U	30.4 La Chrysene # 77 0.200 0.043 U 0.043 U 0.110 0.071	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.044 U	Filior- an- 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.043 U 0.250 0.130	ene 33,000 2,600 160 0.120 0.043 U 0.043 U	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.043 U 0.043 U	anth rene 36,000 2,200 250 0.520 0.043 U 0.043 U 0.043 U 0.260	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12 SB-12 SB-13 SB-17	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Sample Interval (fbls) 2 1 1 1 1 1 1 1 1	OVAS Total reading (ppm) Industrial (Residenta Leaching (>10000 820 20 >10000 >10000 >10000 >10000 >10000 >10000	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >6800	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.043 U 0.071 0.060	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.080 4.800	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 2.000	0.00642 U Benzo[k] fluoran- thene # 24 0.062 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 1.700	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.110 0.071 6.000	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.730	Filuor- an- 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 18,000	ene 33,000 2,800 160 0.120 0.043 U 0.043 U 0.043 U 0.160	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.043 U 0.044 U 0.044 U	anth rene 36,000 2,200 250 0.520 0.043 U 0.043 U 0.260 0.110	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12 SB-12 SB-13 SB-17 SB-19	Sample Date 9/28/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Sample Interval (fbls) 2 1 1 2 1 1 1 1	OVA S Total reading (ppm) Industrial (Residental >10000 20 >10000 >10000 >10000	Carbon Filtered (ppm) (mg/kg) (mg/kg) 2400 180 9 2900 3200 1500	Results Net Reading (ppm) >7600 640 11 >7100 >6800 >8500	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.043 U 0.060 3.600	0.00126 U Benzo(b) fluoran- thene # 2.4 0.043 U 0.043 U 0.043 U 0.043 U 0.099 0.080 4.800 0.059	0.00162 U Benzo. (g,h,i)pery- lene 2.500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 2.000 0.042 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 1.700 0.042 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.0110 0.071 6.000 0.079	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.0730 0.042 U	Filior- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16,000 0,120	ene 33,000 2,600 160 0.120 0.043 U 0.043 U 0.160 0.060	(1,2,3-cd) pyrene # 6,6 0.050 0.043 U 0.043 U 0.043 U 0.044 U 1.900	anth rene 36,000 2,200 250 0.520 0.043 U 0.043 U 0.043 U 0.260 0.110 10.000	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13.000	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12 SB-12 SB-13 SB-17 SB-19 SS-28	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3	Sample Interval (fbls) 2 1 1 2 1 1 8-9	OVAS Total reading (ppm) Industrial (Residenta Leaching (>10000 820 20 >10000 >10000 >10000 >10000 >10000 >10000	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8800 >8500 2200	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.043 U 0.043 U 0.071 0.060 3.600 0.050	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.080 4.800	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 2.000	0.00642 U Benzo[k] fluoran- thene # 24 0.062 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 1.700	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.110 0.071 6.000	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.730	Filtor- an- 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 18,000	ene 33,000 2,600 160 0,120 0,043 U 0,043 U 0,043 U 0,160 0,060 1,500	(1,2,3-cd) pyrene # 	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13.000 0.150	
Boring No. Soll Cleanup Goz SB-1 SB-6 SB-9 SB-12 SB-12 SB-13 SB-13 SB-17 SB-19 SB-19 SS-28 SS-28	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5	Sample Interval (fbls) 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OVAS Total reading (ppm) Industrial (Residenta Leaching (>10000 820 20 >10000 >10000 >10000 >10000 >10000 >10000	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8800 >8500 2200	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.043 U 0.043 U 0.071 0.060 3.600 0.050	0.00126 U Benzo(b) fluoran- thene # 2.4 0.043 U 0.043 U 0.043 U 0.043 U 0.099 0.080 4.800 0.059	0.00162 U Benzo. (g,h,i)pery- lene 2.500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 2.000 0.042 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 1.700 0.042 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.0110 0.071 6.000 0.079	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.0730 0.042 U	Filior- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16,000 0,120	ene 33,000 2,600 160 0,120 0.043 U 0.043 U 0.160 0.060 1,500 0.042 U	(1,2,3-cd) pyrene # 6,6 0.050 0.043 U 0.043 U 0.043 U 0.044 U 1.900	anth rene 36,000 2,200 250 0.520 0.043 U 0.043 U 0.043 U 0.260 0.110 10.000	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13.000	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12 SB-12 SB-13 SB-17 SB-19 SS-28 SS-28 SS-29	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3	Sample Interval (fbls) 2 1 1 1 1 1 1 1 8-9 14-15	OVAS Total reading (ppm) Industrial (Residenta Leaching (>10000 820 20 >10000 >10000 >10000 >10000 >10000 >10000	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8800 >8500 2200	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.043 U 0.043 U 0.071 0.060 3.600 0.050	0.00126 U Benzo(b) fluoran- thene # 2.4 0.043 U 0.043 U 0.043 U 0.043 U 0.099 0.080 4.800 0.059	0.00162 U Benzo. (g,h,i)pery- lene 2.500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 2.000 0.042 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 1.700 0.042 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.0110 0.071 6.000 0.079	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.0730 0.042 U	Filior- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16,000 0,120	ene 33,000 2,600 160 0,120 0.043 U 0.043 U 0.160 0.060 1,500 0.042 U	(1,2,3-cd) pyrene # 	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13.000 0.150	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12 SB-12 SB-13 SB-17 SB-19 SS-28 SS-28 SS-29 SS-30	Sample Date 9/28/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3	Sample Interval (fbls) 1 1 1 2 1 1 1 2 1 1 8-9 14-15 14-15 8-9	OVAS Total reading (ppm) Industrial (Residentia Leaching >10000 820 >10000 >10000 4300 710	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8800 >8500 2200	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.043 U 0.043 U 0.071 0.060 3.600 0.050	0.00126 U Benzo(b) fluoran- thene # 2.4 0.043 U 0.043 U 0.043 U 0.043 U 0.099 0.080 4.800 0.059	0.00162 U Benzo. (g,h,i)pery- lene 2.500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 2.000 0.042 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 1.700 0.042 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.0110 0.071 6.000 0.079	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.0730 0.042 U	Filior- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16,000 0,120	ene 33,000 2,600 160 0,120 0.043 U 0.043 U 0.160 0.060 1,500 0.042 U	(1,2,3-cd) pyrene # 	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13.000 0.150	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-13 SB-13 SB-13 SB-13 SB-13 SB-13 SS-28 SS-28 SS-28 SS-28 SS-29 SS-30 South Wall	Sample Date Date 3/29/04 9/29/05 9/29/04 9/29/05 9/20/05 9/200/05 9/20	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 6	Sample Interval (fbls) 2 1 1 2 1 1 2 1 1 2 1 1 8-9 14-15 14-15 8-9 3	OVAS Total reading (ppm) Industrial (Residenta Leaching (>10000 820 20 >10000 >10000 >10000 >10000 >10000 >10000	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8800 >8500 2200	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.043 U 0.043 U 0.071 0.060 3.600 0.050	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.059 0.180	0.00162 U Benzo. (g,h,i)pery- lene 2,500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.044 U 0.044 U	0.00642 U Benzo[k] fluoran- there # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U	30.4 La Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.043 U 0.071 6.000 0.079 0.170	Diberzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U	Filtor- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16.000 0.120 0.380	ene 33,000 2,600 160 0,120 0.043 U 0.043 U 0.160 0.060 1,500 0.042 U	(1,2,3-cd) pyrene # 	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13.000 0.150	
Boring No. Soll Clearup Goz SB-1 SB-6 SB-9 SB-12 SB-12 SB-13 SB-17 SB-13 SB-17 SB-13 SB-17 SB-19 SS-28 SSS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SSS-28 SS-28 SS-28 SS-28 SSS	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 6 6	Sample Interval (fbls) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 4-15 14-15 8-9 3 3 4	OVAS Total reading (ppm) Industrial (Residentia Leaching >10000 820 >10000 >10000 4300 710	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8800 >8500 2200	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.043 U 0.071 0.060 3.600 0.055 0.130	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.059 0.080 4.800 0.059 0.180	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 1.700 0.042 U 0.069 0.069 0.019 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.043 U 0.071 6.000 0.079 0.170 0.093 U	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.730 0.042 U 0.040 U 0.730	Filior- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16,000 0,120	ene 33,000 2,600 160 0,120 0.043 U 0.043 U 0.160 0.060 1,500 0.042 U	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.043 U 0.044 U 0.040 U 1.900 0.042 U 0.076	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120 0,180	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13,000 0.150 0.290	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-12 SB-12 SB-13 SB-17 SB-19 SS-28 SS-28 SS-28 SS-29 SS-29 SS-30 South Wall 2-East Wall West Wall	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3 6 6 6 6	Sample Interval (fbls) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OVAS Total reading (ppm) Industrial (Residentia Leaching >10000 820 >10000 >10000 4300 710	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8500 2200 170	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.043 U 0.043 U 0.043 U 0.071 0.060 3.600 0.050 0.130 0.130	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.099 0.080 4.800 0.059 0.180	0.00162 U Benzo. (g,h,i)pery- lene 2.500 5.200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.045 U	0.00642 U Benzo[k] fluoran- thene # # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 0.044 U 0.044 U 0.045 U 0.069 0.015 U 0.017 U	30.4 Chrysene # # 77 0.200 0.043 U 0.043 U 0.043 U 0.043 U 0.071 6.000 0.079 0.170 0.093 U 0.093 U 0.087 U	Diberzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.730 0.042 U 0.040 U 0.040 U	Filtor- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16.000 0.120 0.380	ene 33,000 2,600 160 0,120 0,043 U 0,043 U 0,043 U 0,043 U 0,060 1,500 0,042 U 0,040 U	(1,2,3-cd) pyrene # # 6.6 0.050 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 1.900 0.042 U 0.076 0.076 0.019 U	anth rene 36,000 2,200 250 0.520 0.043 U 0.260 0.110 0.260 0.110 0.120 0.180	45,000 2,400 880 0.490 0.043 U 0.230 0.110 13.000 0.150 0.290 0.290	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-13 SB-13 SB-17 SB-19 SS-28 SS-29 SS-29 SS-29 SS-30 South Wall 2-East Wall West Wall South Bottom	Sample Date 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3 6 6 6 6 6	Sample Interval (fbls) (fbls) 1 1 2 1 1 2 1 1 1 8-9 14-15 14-15 8-9 3 4 4 3 3 7	OVAS Total reading (ppm) Industrial (Residentia Leaching >10000 820 >10000 >10000 4300 710	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >6800 >8500 2200 170 170 5.0 1.0	0.00130 U Benzo[a] pyrene 0.7 0.1 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.050 0.050 0.130	0.00126 U Benzo(b) fluoran- thene # 2.4 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.059 0.080 4.800 0.059 0.180	0.00162 U Benzo. (g,h,i)pery- lene 2.500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.045	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.045 U 0.045 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.043 U 0.071 6.000 0.079 0.170 0.093 U 0.087 U 0.094 U	Dibenzo[a,h] anthra- cene # # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U	Filior- an- thene 59,000 3,200 1200 0,620 0,043 U 0,043 U 0,043 U 0,250 0,130 16,000 0,120 0,360	ene 33,000 2,600 160 0,120 0,043 U 0,043 U 0,043 U 0,043 U 0,043 U 0,043 U 0,044 U 0,040 U 0,044 U 0,0	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.042 U 0.042 U 0.045 U 0.045 U 0.076	anth rene 36,000 2,200 250 0,520 0,043 U 0,260 0,110 10,000 0,120 0,180 0,190 U 0,170 U	45,000 2,400 880 0.490 0.043 U 0.230 0.110 13.000 0.150 0.290 0.290 0.290 0.290 0.290 0.290 0.093 U 0.087 U	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-13 SB-13 SB-13 SB-13 SB-13 SB-13 SB-13 SS-28 SSS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SSS-28 SS-28 SS-28 SS-28 SSS-28 SSS-28 SSS-28 SSSSSSSSSS	Sample Date Date 3/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3 6 6 6 6 6 6	Sample Interval (fbls) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OVAS Total reading (ppm) Industrial (Residentia Leaching >10000 820 >10000 >10000 4300 710	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >6800 2200 170 170 5.0 1.0 3.0	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.050 0.130 0.130	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.059 0.180 0.180 0.017 U 0.017 U 0.017 U 0.020 U	0.00162 U Benzo. (g,h,i)pery- lene 2,500 5,200 32,000 0.055 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.0040 U	0.00642 U Benzo[k] fluoran- thene # 24 0.062 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 0.044 U 0.069 0.069 0.019 U 0.019 U 0.020 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.071 6.000 0.079 0.170 0.079 0.170 0.093 U 0.093 U 0.094 U 0.094 U 0.004 U	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U	Filior- an- thene 59,000 3,200 1200 0,620 0,043 U 0,043 U 0,043 U 0,250 0,130 16,000 0,120 0,380 0,380 0,093 U 0,093 U 0,097 U	ene 33,000 2,800 160 0,120 0,043 U 0,043 U 0,043 U 0,043 U 0,043 U 0,040 U 0,040 U 0,040 U 0,170 U 0,170 U 0,190 U	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.042 U 0.076 0.075 0.019 U 0.019 U 0.019 U	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120 0,180 0,180 0,190 U 0,190 U	45,000 2,400 880 0.490 0.043 U 0.043 U 0.230 0.110 13,000 0.150 0.290 0.290 0.290 0.290 0.093 U 0.093 U 0.093 U 0.094 U	
Boring No. Soll Clearup Goz SB-1 SB-6 SB-9 SB-12 SB-13 SB-17 SB-13 SB-17 SB-13 SB-17 SB-13 SB-17 SB-13 SB-17 SB-13 SS-28 SSS-28 SS-28 SS-28 SSS-28 SS-28 SS-28 SS-28 SSS	Sample Date als 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/06 4/24/06 4/24/06 4/24/06 4/24/06	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3 6 6 6 6 6	Sample Interval (fbls) (fbls) 1 1 2 1 1 2 1 1 1 8-9 14-15 14-15 8-9 3 4 4 3 3 7	OVAS Total reading (ppm) Industrial (Residentia Leaching >10000 820 >10000 >10000 4300 710	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8500 2200 170 5.0 1.0 3.0 7.0	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.050 0.050 0.130 0.050 0.130	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.099 0.080 4.800 0.059 0.180 0.059 0.180 0.019 U 0.019 U 0.019 U 0.020 U 0.020 U 0.020 U 0.020 U	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 3.200 0.055 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.019 U 0.019 U 0.019 U 0.020 U 0.018 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 1.700 0.042 U 0.040 U 1.700 0.042 U 0.069 0.019 U 0.019 U 0.019 U 0.020 U 0.020 U 0.020 U 0.018 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.079 0.110 0.079 0.170 0.093 U 0.093 U 0.094 U 0.100 U 0.092 U	Dibenzo[a,h] anthra- cene # # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U	Filtor- an- thene 59,000 3,200 1200 0,620 0,043 U 0,043 U 0,250 0,130 16,000 0,120 0,380 0,380 0,380 0,093 U 0,093 U 0,093 U 0,094 U 0,009 U	ene 33,000 2,600 160 0,120 0,043 U 0,043 U 0,043 U 0,043 U 0,043 U 0,040 U 0,040 U 0,040 U 0,040 U 0,190 U 0,190 U 0,200 U	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.042 U 0.076 0.019 U 0.019 U 0.019 U 0.020 U	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120 0,180 0,180 0,180 0,190 U 0,170 U 0,190 U 0,200 U	45,000 2,400 880 0.490 0.043 U 0.230 0.110 13.000 0.150 0.290 0.290 0.290 0.290 0.290 0.093 U 0.093 U 0.094 U 0.094 U 0.100 U	
Boring No. Soll Cleanup Goa SB-1 SB-6 SB-9 SB-12 SB-13 SB-13 SB-13 SB-13 SB-13 SB-13 SB-13 SS-28 SSS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SS-28 SSS-28 SS-28 SS-28 SS-28 SSS-28 SSS-28 SSS-28 SSSSSSSSSS	Sample Date Date 3/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3 6 6 6 6 6 6	Sample Interval (fbls) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OVAS Total reading (ppm) Industrial (Residentia Leaching >10000 820 >10000 >10000 4300 710	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2900 3200 1500 2100	Results Net Reading (ppm) >7600 640 11 >7100 >8800 >8800 2200 170 2200 170 5.0 1.0 3.0 7.0 3.0	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.071 0.060 3.600 0.050 0.130 0.050 0.130 0.015 U 0.017 U 0.018 U 0.017 U	0.00126 U Benzo(b) fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.059 0.180 0.059 0.180 0.019 U 0.019 U 0.019 U 0.019 U 0.019 U 0.019 U 0.019 U 0.017 U	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 0.055 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.019 U 0.017 U 0.011 U 0.011 U 0.011 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.040 U 1.700 0.042 U 0.069 0.019 U 0.019 U 0.019 U 0.019 U 0.019 U 0.019 U 0.019 U 0.019 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.071 6.000 0.079 0.170 0.093 U 0.093 U 0.093 U 0.093 U 0.093 U 0.094 U 0.094 U 0.094 U 0.095 U	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U	Filior- an- thene 59,000 3,200 1200 0.620 0.043 U 0.043 U 0.250 0.130 16,000 0.120 0.380 	ene 33,000 2,600 160 0,120 0,043 U 0,043 U 0,043 U 0,043 U 0,040 U 0,040 U 0,040 U 0,040 U 0,170 U 0,170 U 0,200 U 0,180 U	(1,2,3-cd) pyrene # # 6.6 0.050 0.043 U 0.043 U 0.044 U 0.044 U 0.040 U 1.900 0.042 U 0.076 0.075 0.019 U 0.017 U 0.017 U 0.020 U 0.020 U 0.020 U 0.018 U	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120 0,180 0,180 0,190 U 0,190 U 0,190 U 0,190 U 0,200 U 0,180 U	45,000 2,400 880 0.490 0.043 U 0.230 0.110 13,000 0.150 0.290 0.290 0.093 U 0.093 U 0.097 U 0.094 U 0.092 U	
Boring No. Soll Clearup Goz SB-1 SB-6 SB-9 SB-12 SB-13 SB-17 SB-13 SB-17 SB-13 SB-17 SB-13 SB-17 SB-13 SB-17 SB-13 SS-28 SSS-28 SS-28 SS-28 SSS-28 SS-28 SS-28 SS-28 SSS	Sample Date Date 3/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 9/29/04 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05 4/28/05	Depth to Water 1.5 1.5 1.5 1.5 1.5 1.5 1.5 1.5 3 3 3 3 3 6 6 6 6 6 6 6 6 6	Sample Interval (fbls) 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OVA 5 Total reading (ppm) Industrial (Residental Leaching (>10000 \$20 >10000 >10000 >10000 >10000 >10000 0 0	Carbon Filtered (ppm) mg/kg) (mg/kg) 2400 180 9 2200 3200 180 2100 540	Results Net Reading (ppm) >7600 640 11 >7100 >88500 2200 170 2200 170 5.0 1.0 3.0 7.0 3.0 2.0	0.00130 U Benzo[a] pyrene 0.7 0.1 8.0 0.120 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.050 0.050 0.130 0.050 0.130	0.00126 U Benzo[b] fluoran- thene # 2.4 0.160 0.043 U 0.043 U 0.043 U 0.043 U 0.099 0.080 4.800 0.059 0.180 0.059 0.180 0.019 U 0.017 U 0.019 U 0.020 U 0.020 U 0.020 U 0.020 U	0.00162 U Benzo. (g.h.i)pery- lene 2.500 5.200 3.200 0.055 0.043 U 0.043 U 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.044 U 0.019 U 0.019 U 0.019 U 0.020 U 0.018 U	0.00642 U Benzo[k] fluoran- thene # 24 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 1.700 0.042 U 0.040 U 0.040 U 0.049 U 0.099 0.019 U 0.019 U 0.019 U 0.020 U 0.018 U	30.4 Chrysene # 77 0.200 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.079 0.110 0.079 0.170 0.093 U 0.093 U 0.094 U 0.100 U 0.092 U	Dibenzo[a,h] anthra- cene # 0.7 0.039 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U 0.040 U	Filtor- an- thene 59,000 3,200 1200 0,620 0,043 U 0,043 U 0,250 0,130 16,000 0,120 0,380 0,380 0,380 0,093 U 0,093 U 0,093 U 0,094 U 0,009 U	ene 33,000 2,600 160 0.120 0.043 U 0.043 U 0.043 U 0.043 U 0.043 U 0.040 U 0.040 U 0.040 U 0.040 U 0.190 U 0.190 U 0.200 U	(1,2,3-cd) pyrene # 6.6 0.050 0.043 U 0.043 U 0.044 U 0.044 U 0.044 U 0.042 U 0.076 0.019 U 0.019 U 0.019 U 0.020 U	anth rene 36,000 2,200 250 0,520 0,043 U 0,043 U 0,260 0,110 10,000 0,120 0,180 0,180 0,180 0,190 U 0,170 U 0,190 U 0,200 U	45,000 2,400 880 0.490 0.043 U 0.230 0.110 13.000 0.150 0.290 0.290 0.290 0.290 0.290 0.093 U 0.093 U 0.094 U 0.094 U 0.100 U	

1

Facility I. D. No. 168507541

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

	ample	Benzene	Toluene	Ethyl- Benzene	Total	МТВЕ	TRPH	EDB	Total	Dissolved	Naphthalene	1-Methyl	2-Methyl	Acenaph-	Acenaph-		Phenan-		Fluoran-
Location	Date				Xylenes			200	Lead	Lead		Naphthalen	Naph-thalene	thylene	thene		threne	Pyrene	thene
hapter 62-777, 1	F.A.C. GCTL	(1) μg/L	(40) μg/L	(30) μg/L	(20) µg/L	(20) µg/L	(5000) με/L	(0.02) µg/L	(15) µg/L		(14) µg/L	(28) µg/L	(28) µg/L	(210) µg/L	(20) µg/L		(210) µg/L	(210) µg/L	(280) µg
hapter 62-777, i	NADC	(100) µg/L	(400) µg/L	(300) μg/L	(200) µg/L	1	(50,000) μg/L	(2) µg/L	(150) μg/l		(140) μg/L	(280) µg/L	(280) μg/L	(2,100) µg/L	(200) µg/L	(2,800) µg/L	(2,100) µg/L	(2,100) µg/L	(2,800) µg/L
OW-1	6/16/1992	ND	ND	ND	16.7	72.4	ND	ND	182	ND		12.5		<u> </u>				<u> </u>	
	7/20/1992	<u> </u>							ND			12.5							·
	4/14/1993	ND	ND	ND	16.7	13	NA					16.1					<u> </u>		
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10	NA					<2.0							
OW-2														<u> </u>					<u> </u>
	6/16/1992	291	192	208	259	893	ND	ND	37			235.8							1
	4/14/1993	3500	1000	1300	3700	2800	NA					794							<u> </u>
	*4/94 or 6/94	4100	3200	1800	5300	1800	NA		<u> </u>			1222							
OW-3	6/16/1992	ND	ND	ND	ND	13.2	ND	ND	24			ND				<u> </u>			
	*4/14/1	ND	ND	ND	ND	19	NA	1	-			ND				<u> </u>	·		
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	15	NA		Î			<2.0							
	9/28/2004	<1.0	<1.0	<1.0	<2.0	<2.0	< 200				< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.1
OW-4	6/16/1992	69.8							-							<u> </u>	· · · · · · · · · · · · · · · · · · ·		
	7/20/1992	09.8	ND	35.4	38.6	ND ·	ND	ND	95	ND		100							
	4/14/1993	ND	AID.					<u> </u>	ND						_				
	*4/94 or 6/94	63	ND <10	2.8	ND <10	<u>31</u> <10	NA NA	<u> </u>				72							
			~10			<10	na 					76							
OW-5	6/16/1992	ND	ND	ND	ND	ND	ND	ND	127	ND		ND							
	7/20/1992		· · ·			<u>†</u>			ND										—
	4/14/1993	ND	ND	ND	ND	ND	NA	1				ND		<u> </u>	— <u> </u>	<u> </u>			<u> </u>
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10	NA		<u> </u>			<2.0							
			T		i									<u> </u>					┣──

I = Result >= MDL but < RL U = Not Detected µg/L = Micrograms Per Liter

NA = Not analyzed for this parameter NS = Not Sampled

Facility I. D. No. 168507541

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

Sam	nple	D	Tabuana	Ethyl-	Total				Total	Dissolve	Naphthalen	1-Methyl	2-Methyl	Acenaph-	Acenaph-		Phenan-	<u> </u>	Fluoran-	Benzo(b)f	Under
Location	Date	Benzene	Toluene	Benzene	Xylenes	MTBE	TRPH	EDB	Lead	d	e	Naph-	1 '		thene	Flourene	threne	Pyrene	thene	uoranther	
Chapter 62-777,	F.A.C. GCTL	(1) µg/L	(40) µg/L	(30) µg/L	(20) µg/L	(20) µg/L	(5000) µg/L	(0.02) µg/L	(15) µg/L		(14) µg/L	(28) µg/L	(28) μg/L	(210) µg/L	(20) µg/L	(280) µg/L	(210) µg/L	(210) µg/L	(280) µg/L	(0.05) µg/i	
Chapter 62-777,	NADC	(100) µg/L	(400) . µg/L	(300) µg/L	(200) µg/L	(200) µg/L	(50,000) µg/L	(2) ug/L	(150) ug/L		(140) µg/L	(280) µg/L	(280) µg/L	(2,100) µg/L	(200) µg/L	(2,800) µg/L	(2,100) µg/L	(2,100) µg/L		(5) µg/L	(5) μg/L
MW-1D					-		PB/ C		1 HB/ C	<u> </u>				<u> </u>		<u> </u>			µg/L	<u> </u>	<u> </u>
I	7/20/1992	ND	ND	ND	ND	ND	3630	ND	ND	1		ND	†	<u> </u>		 				<u> </u>	
	4/14/1993	ND	ND	ND	ND	ND	NA	+	<u> </u>	<u> </u>		ND	<u> </u>	 			<u> </u>	<u> </u>			<u> </u>
	9/28/2004	< 1.0	< 1.0	< 1.0	< 2.6	2.1	< 200				< 0.50	< 0.50	< 0.50	0.25	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10		┢───
MW-1Shallow						-									<u> </u>	— —–					
BASELINE	2/9/06	414	27.5	75.5	74.5	113	NS	NS			40.9	52.1	90.3	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U		
MW-1 Grab	1/202015	0.450 U	0.680	0.500 U	1.89 U	0.250 U				 	0.0280 U	0.0630 U	0.0670 U	0.0520 U	0.0260 U	0.00600 U	0.00700 U	0.0500 U	0.0500 U		
MW-15	2/18/2015								-		0.0280 U	0.0630 U	0.0670 U	0.0520 U			0.00700 U	0.0500 U	0.0500 U	0.149 0.0200 U	0.307
MW-2	7/20/1992	ND	ND	ND.	ND	ND	NA	NA		F		ND	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
	4/14/1993	ND	ND	ND	ND	ND	NA	100	<u> </u>	+			·		<u> </u>						
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10				<u> </u>		ND	<u> </u>	L							
	9/28/04	<1.0	<1.0	< 1.0	< 2.0	4.7	NA < 200	-		<u> </u>		<2.0			<u> </u>						
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	4.7	160 U	NA	NA	NA	< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	5/13/10	0.50 U	0.50 U	0.50 U	1.00	0.721	NA	NA	NA	NA NA	0.96 U	0.48 U 0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U	0.48 U	0.48 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.00	0.721	NA	NA	NA NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U	0.48 U	0.48 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	1.3	NA	NA	NA	NA	0.38 U	0.48 0	0.48 U 0.38 U	0.96 U 0.76 U	0.96 U 0.76 U	0.96 U 0.76 U	0.96 U 0.76 U	0.48 U 0.38 U	0.48 U	0.48 U 0.38 U	0.48 U 0.38 U
 MW-3	-																	0.500	0.300	0.360	0.58 0
	6/16/1992	403	71	123	734	336	NA	NA				ND							<u> </u>		
	4/14/1993	610	100	ND	ND	ND	NA					341									<u> </u>
	*4/94 or 6/94	890	<100	170	<5.0	1300	NA					<2.0									
MW-4	6/16/1992	NA	NA	 NA	ŇA	NA	NA	NA													<u> </u>
	4/14/1993	NA	NA	NA	NA	NA	NA NA	NA			<u> </u>	NA	<u> </u>	<u> </u>	<u> </u>	<u> </u>					
	*4/94 or 6/94		8100	800	5000	NA	NA	AM	<u> </u>			NA	<u> </u>			<u> </u>					
	2/9/2006	-300	0100		5000	11//5			3.01			500	<u> </u>		<u> </u>						<u> </u>

I = Result >= MDL but < RL U = Not Detected $\mu g/L$ = Micrograms Per Liter NA = Not analyzed for this parameter NS = Not Sampled

Facility I. D. No. 168507541

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

	Sample			Ethyl-	Total	1			Total	Dissolve	Naph-	1-	2-Methyl	Acenaph-	Acenaph-		Phenan-		Fluora
ocation	Date	Benzene	Toluene	Benzene	Xylenes	MTBE	TRPH	EDB	Lead	d	thalene	Met	Naphthalene		thene	Flourene	threne	Pyrene	thene
hapter 62-77	7, F.A.C. GCTL	(1) µg/L	(40) µg/L	(30) µg/L	(20) µg/L	(20) µg/L	(5000)	(0.02)	(15) µg/L		(14) µg/L		(28) µg/L	(210) µg/L	(20) μg/L	(280) µg/L		(210)	(280)
						· · · · ·	µg/L	μg/L			() -@ -	μg/L	() Page -	(220) MB/C	(20) HB/ 2	(200) MB/ C	(210) μg/ C	μg/L	μg/L
W-3 (R)				1			<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> </u>						+	P-6/ -	ив/ с
														1				{	
	9/28/04	16	1.7	13	15.4	38	620				100	13	23	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.1
	2/9/06	0.50 U	0.50 U	0.50 U	1.8	1.9	NS	NS			0.95 U	0.48	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48
	6/22/06	0.50 U	0.50 U	0.50 U	1.0 U	20.1	NS	NS			1.1 U	0.54	0.54 U	1.1 U	1.1 U	1.1 U	1.1 U	0.54 U	0.54
	10/25/06	0.50 U	0.87	0.50 U	1.0 U	12.8	NS	NS			0.95 U	0.48	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48
	1/19/07	0.50 U	0.50 U	0.50 U	1.0 U	12.9	NS	NS			0.95 U	0.48	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.480	0.48
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	10.7	210	NS			1.1 U	0.56	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	0.56
	8/9/07	0.50 U	0.50 U	0.50 Ú	1.0 U	13.4	NS	NS			0.97 U	0.49	0.49 U	0.97 U	1.01	0.97 U	0.97 U	0.49 U	0.49
	11/1/07	, 0.50 U	0.50 U	0.50 U	1.0 U	15.7	160 U	NS			0.96 U	0.48	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.45
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	18.4	NS	NS			0.95 U	0.48	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48
	5/20/08	0.50 U	0.50 U	0.50 U	1.0 U	19.2	NS	NS			0.96 U	0.48	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48
	6/3/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/11/08	0.50 U	0.50 U	0.50 U	1.0 U	14.4	NA	NA	NA	NA	0.96 U	0.48	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NŞ	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	14.0	197	NA	NA	NA	1.9	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.46 NS
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	16.5	NA	NA	NA	NA	0.96 U	0.48	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	12.7	NA	NA	NA	NA	1.0 U	0.51	0.51 U	1.00	1.0U	1.00	1.0 U	0.51 U	0.51
	11/16/09	0.50 U	0.50 U	0.50 U	1.0 U	8.2	NA	NA	NA	NA	0.96 U	0.48	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	10.6	160 U	NA	NA	NA	0.95 U	0.48	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48
	5/13/10	0.50 U	0.50 U	0.50 U	1.0 U	11.3	NA	NA	NA	NA	0.97 U	0.49	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.48 U	0.48
	8/6/10	0.50 U	0.50 U	0.50 U	1.0 U	39.4	NA	NA	NA	NA	0.97 U	0.49	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49
	8/27/10	0.50 U	0.50 U	0.50 U	1.0 U	43.6	NA	NA	NA	NA	0.96 U	0.48	0.48 U	0.96 U	0.96 U	0.97 U	0.97 U	0.49 U	0.48
	3/24/11	0.50 U	0.50 U	0.50 U	1.0 U	13.1	NA	NA	NA	NA	0.77 U	0.38	0,38 U	0.77 U	0.77 U	0.77 U	0.77 U	0.38 U	
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	28.6	NA	NA	NA	NA	0.76 U	0.38	0.38 U						0.38
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	27,3	319	NA	NA	NA	0.76 0	0.38	0.38 U	0.76 U 0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	9.7	199	NA	NA	NA	0.78 U	0.39	0.38 U		0.76 U	0.76 U	0.76 U	0.38 U	0.38
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	8.9	NA	NA	NA	NA	0.39 U	0.39	0.39 U	0.39 U	0.39 U	0.39 U	0.25 U	0.25 U	0.25
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	33	NA	NA	NA	NA	0.053 U	0.59		0.39 U	0.39 U	0.39 U	0.25 U	0.25 U	0.25
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	12	NA	NA	NA	NA	0.053 U	0.01	0.045 U	0.030 U	0.131	0.030 U		0.033 U	
	12/27/12	0.21 U	0.20 U	0.29 U	0.50 U	12.2	140 U	NA	NA	NA	0.053 U	0.04	0.045 U 0.38 U	0.030 U	0.034 U	0.030 U		0.033 U	0.027
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	9.2	411	NA		NA	0.38 U	0.38		0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24
	9/16/13	0.21 U	0.31	0.29 U	0.50 U	2.0	NA	NA -	NA NA	NA	0.38 U	0.38	0.38 U 0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24
	7/31/14	0.21 U	0.23 U	0.24 U	0.53 U	8.4	NA	NA		NA	NS	N\$	0.38 U NS	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24
			+						<u> </u>		EN1	CVI	CRI	NS	NS	NS	NŚ	NS	NS

I = Result >= MDL but < RL U = Not Detected µg/L = Micrograms Per Liter

NA = Not analyzed for this parameter NS = Not Sampled

Facility Name: Trout River Food Mart (aka Island Food Store No. 142) Facility I. D. No. 168507541 TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

	Sample	Baaraara	Taluan	Ethyl- Benzene	Total				Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenanh	Acenaph-	Г	Phenan-		Fluoranthe
ocation	Date	Benzene	Toluene		Xylenes	MTBE	TRPH	EDB	Lead	Lead	thalen	Naph-			thene	Flourene	threne	Pyrene	
hapter 62-7	77, F.A.C. GCTL	(1) μg/L	(40) μg/L	(30) μg/L	(20) µg/L	(20) µg/L	(5000)	(0.02)	(15) µg/L		(14)	(28) µg/L		(210)	(20) µg/L	(280) µg/L		(210)	/2001
					· ··-		μg/L	µg/L			μg/L			μg/L	(20/ µB/ C	1200) µg/ L	1(210) μ <u>β</u> / ι	1° . '	(280) µg/L
1W-4 (R)									<u> </u>			· · · · ·		- 10r -		ļ		μg/L	<u> </u>
ASELINE					[1			
	9/28/04	NS	NS	NS	NS	NS	NS				NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/9/06	140	356	163	954	143	2530	0.0096 U			76.9	17.8	22.4	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	6/22/06	3.5	0.50 U	1.3	1.9	74.3	NS	NS	1		1.1 U	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.10	0.56 U	0.46 U
	10/25/06	5.4	1.8	4.3	1.0 U	62.5	NS	NS			1.8	0.48 U	0.80	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	1/19/07	3.9	0.50 U	0.50 U	1.0 U	44.9	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/1/07	10.6	0.50 U	3.0	1.0 U	103	774	NS			2.3	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	8/9/07	3.3	0.50 U	0.50 U	1.0 ∪	57.9	NS	NS			1.31	0.49 U	0.490	0.97U	0.97U	0.97U	0.97U	0.490	0.49 U
	11/1/07	1.4	0.50 U	0.50 U	1.0 U	21	376	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.49 U
	11/29/07	0.50 Ų	0.50 U	0.50 U	1.0 U	13.5	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS NS	0.48 0 NS
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	13.2	NS	NS			0.95 U	0.48 U	0.48 U	0.95 ป	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/20/08	1.0	0.50 U	0.50 U	1.0 U	61.8	NŚ	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08	1.4	0.50 U	0.50 U	1.0 U	80.7	NS	NS .			NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/11/08	0.50 U	0.50 U	0.50 U	1.0 U	16.4	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.50 U	NS	NS	0.48 U NS	0.48 U
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	7.8	720	NA	NA	NA	10.1	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	NS
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.50 0 NS	0.50 U	NS	NS	0.48 U
	4/22/09	1.9	0.50 U	0.50 U	1.0 U	71.8	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0,48 U	0.48 U
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	34	NA	NA	NA	NA	1.00	0.50 U	0.50 U	1.00	1.00	1.00	1.00	0.48 U	0.48 0
	11/16/09	0.50 U	0.50 U	0.50 U	1.0 U	21.9	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.50 U 0.48 U
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	12.5	160 U	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/13/10	0.50 U	0.50 U	0.50 U	1.0 U	79.4	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.0 U	84.8	NA	NA	NA	NA	0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.48 U
	8/27/10	0.50 U	0.50 U	0.50 U	1.0 U	89	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.97 U	0.49 U	0.49 U
	3/24/11	0.50 U	0.50 U	0.50 U	1.0 U	74.9	NA	NA	NA	NA	0.78 U	0.39 U	0.39 U	0.78 U	0.78 U	0.78 U	0.78 U	0.39 U	0.48 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	90.3	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.39 U
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	61.5	781	NA	NA	NA	0.77 U	0.38 U	0.38 U	0.77 U	0.77 U	0.77 U	0.77 U	0.38 U	0.38 U
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	25.6	551	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.77 U	0.58 U	0.38 U 0.24 U
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	12.1	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U 0.24 U
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	90	NA	NA	NA	NA	0.69	0.018 U	0.111	0.030 U	0.151	0.030 U	0.036 U	0.033 U	0.024 0
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	36	NA	NA	NA	NA	0.171	0.053 1	0.050	0.030 U	0.0991	0.033 1	0.036 U	0.033 U	0.0270
	12/27/12	0.21 U	2.0	0.29 U	0.50 U	5.0	636	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.036 U	0.033 U	0.0391
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	11.5	144	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.39 U	0.24 U	0.24 U	0.24 U
	9/16/13	0.21 U	0.20 U	0.29 U	0.50 U	11.2	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 0	0.24 U	0.24 0
	7/31/14	0.63 U	0.69 U	0.72 U	1.6 U	11.0	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	0.24 0 NS
																	CVI	CIN .	

I = Result >= MDL but < RL U = Not Detected µg/L = Micrograms Per Liter NA = Not analyzed for this parameter NS = Not Sampled

Facility I. D. No. 168507541

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

	Sample	Benzene	Toluene	Ethyl-	Total	МТВЕ	TRPH	EDB	Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-		Phenan-		Fluoran-
ocation	Date		londene	Benzene	Xylenes	INTEL	INPO		Lead	Lead	thalene	Naph-	Naph-thalene	thylene	thene	Flourene	threne	Pyrene	thene
Chapter 62	-777, F.A.C. GCTL	(1) μg/L	(40) µg/L	(30) μg/L	(20) µg/L	(20) µg/L	(5000)	(0.02)	(15) µg/L		(14)	(28) µg/L	(28) µg/L	(210) µg/L		(280)	(210) µg/L	(210)	(280) µg/
/W-5											r í	1/ -0/-	<u>/</u>	(220/ µB/ C	(20) µ6/ c	(200)	1210/ µg/ L	1210/	(200) μ <u>β</u>
	7/20/1992	ND	ND	ND	ND	181	NA.	NA			<u>†</u> −−	ND				<u> </u>			<u> </u>
	4/14/1993	20	ND	ND	ND	240	NA				<u> </u>	ND .		<u> </u>	<u> </u>	<u> </u>	<u> </u>		
	*4/94 or 6/94	47	<1.0	<1.0	10	61	NA					<2.0	·	<u> </u>					+
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	14	< 200	1 -			< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	10.1
	6/22/06	9.0	0.50 U	0.50 U	1.0 U	9.0	NS	NS			1.1	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U	< 0.1
	10/25/06	1.9	0.50 U	0.50 U	1.0 U	11.5	NS	NS			3.5	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.38 U	0.36
	1/19/07	0.50 U	0.50 U	0.50 U	1.0 U	11.5	NS	NS			0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.48 U	0.48
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	7.2	624	NS			17.5	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.49 U	0.49
	<u>8/9/</u> 07	0.50 U	0.50 U	0.50 U	1.0 U	4.9	NS	NS			4.8	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.36 U	0.56
	11/1/07	0.50 U	0.50 U	0.50 U	1.0 U	11.2	228	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.49 U	0.49
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	11.9	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48
	5/20/08	0.50 U	0.50 U	0.50 U	1.0 U	12.9	NS	NS	1		7,4	0.48 U	0.48 U	0.96 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48
	6/3/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	N	NS	NS	0.48 NS
	9/11/08	0.50 U	0.86	0.50 U	1.0 U	10.1	NA	NA	NA	NA	2.5	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	0.36 U NS	NS	0.48 NS
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	11.5	208	NA	NA	NA	4.2	1.9 U	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U		
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	NS	<u>NS</u>	NS	NS	NS	0.96 0 NS	0.48 U	0.48
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	5.4	NA	NA	NA	NA	2.1	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	NS	NS
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	10.8	NA	NA	NA	NA	1.0 U	0.51 U	0.51 U	1.00	1.00	1.00		0.48 U	0.48
	11/16/09	0.50 U	0.50 U	0.50 U	1.0 U	11.1	NA	NA	NA	NA	0.98 U	0.49 U	0.49 U	0.98 U	0.98 U	0.98 U	1.0 U	0.51 U	0.51
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	13.2	160 U	NA	NA	NA	0.96 U	0.45 U	0.49 U	0.96 U	0.98 U		0.98 U	0.49 U	0.49
	5/13/10	0.50 U	0.50 U	0.50 U	1.0 U	4.8	NA	NA	NA	NA	2.3	0.48 U	0.48 U	0.96 U		0.96 U	0.96 U	0.48 U	0.48
	8/6/10	0.50 U	0.50 U	0.50 U	1.0 U	3.8	NA	NA	NA	NA	3.9	0.48 U	0.48 U	0.95 U	0.95 U 0.96 U	0.95 U	0.95 U	0.48 U	0.48
	3/24/11	0.50 U	0.50 U	0.50 U	1.0 U	8.8	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.96 U	0.96 U	0.96.U	0.96 U	0.48 U	0.48
	5/31/11	0.50 U	0.50 U	0.50 U	1.0 U	3.5	NA	NA	NA	NA	0.76 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U 0.76 U	0.76 U	0.38 U	0.38
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	3.6	648	NA	NA	NA	0.78 U	0.38 U	0.38 U	0.78 U	0.78 U	0.78 U	0.76 U	0.38 U	0.38
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	8.9	348	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.78 U	0.78 U 0.24 U	0.39 U	0.39
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	0.34 U	NA	NA	NA	NA	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U	0.39 U		0.24 U	0.24
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	2.11	NA	NA	NA	NA	0.52	0.018 U	0.0981	0.030 U	0.39 U	0.030 U	0.24 U	0.24 U	0.24
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	6.7	NA	NA	NA	NA	0.053 U	0.048 U	0.045 U	0.030 U	0.034 U		0.036 U	0.033 U	0.027
	12/27/12	0.21 U	0.20 U	0.29 U	0.50 U	13.6	182	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.34 U	0.030 U 0.38 U	0.036 U	0.033 U	0.027
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	15.1	217	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24
	9/16/13	0.21 U	0.20 U	0.29 U	0.50 U	22.5	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U		0,24 U	0.24 U	0.24
	10/21/13	0.21 U	0.20 U	0.29 U	0.50 U	3.4	NA	NA	NA	NA	0.35 U	0.35 U	0.35 U			0.38 U	0.24 U	0.24 U	0.24
	7/31/14	0.21 U	0.23 U	0.24 U	0.53 U	18	NA	NA	NA	NA	NS	0.35 U NS	0.35 U NS	0.35 U	0.35 U	0.35 U	0.22 U	0.22 U	0.22
							1.01			11/24	CPI			NS	NS	NS	NS	NS	NS
W-5R	5/18/15	0.10 U	0.50	0.50	0.50	18.3	NS	NS	NS	NS	NŚ	NS	NC			L		<u> </u>	<u> </u>
	8/17/15	0.21 U	0.23 U	0.24 U	0.53 U	6.6	NS NS	NS	NS	NS	NS NS	NS NS	NS	NS	NS	NS	NS	NS	NS
	3/8/2016	0.16 U	0.23 U	0.24 U	0.53 U	4.8	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS	NS	NS	NS
					0.000	-n0		11.5	C Fri	- 143	CPI	CM	NS	NS	NS	NS	NS	NS	NS

I = Result >= MDL but < RL U = Not Detected µg/L = Micrograms Per Liter

NA = Not analyzed for this parameter NS = Not Sampled

Facility Name: Trout River Food Mart (aka Island Food Store No. 142) Facility I. D. No. 168507541 TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

	Sample	Benzene	Toluene	Ethyl-	Total	МТВЕ	TRPH	EDB	Total	Dissolve	Naph-	1-Methyl	2-Methyl	Acenaph-	Acenaph-		Phenan-	
Location	Date		Ionaene	Benzene	Xylenes		INCO		Lead	d	thalene	Naph-	Naph-thalene	thylene	thene	Flourene	threne	Pyrene
Chapter 62-	777, F.A.C. GCTL	(1) µg/L	(40) µg/L	(30) μg/L	(20) µg/L	(20) µg/L	(5000) µg/L	(0.02)	(15) µg/L		(14) μg/L	(28) µg/L	(28) µg/L	(210) µg/L	(20) µg/L	(280) µg/L		(210) µg/L
MW-6 R	7/20/1992	ND	ND	NÐ	ND	ND	NA	NA				ND			1	1-007 PB/-	(=+0/ µB/ E	(210) pb/c
	4/14/1993	ND	ND	ND	ND	ND	NA					ND			+	<u> </u>	<u>+</u>	<u> </u>
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	61	NA					<2.0	·			<u> </u>		
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 200				< 0.50	< 0.50	< 0.50	< 0.10	2.3	< 0.10	< 0.10	< 0.10
	6/22/06	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NS	NS			1.1 U	0.56 U	0.56 U	1.1 U	1.1 U	1.1 U	1.1 U	0.56 U
	10/25/06	_ 0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.95 U	0.48 U	1.5	0.95 U	8.5	0.95 U	0.95 U	0.48 U
	1/19/07	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.96 U	0.48 U	0.48 U	0.96 U	4.9	0.96 U	0.96 U	0.48 U
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	184	NS			0.97 U	0.49 U	0.49 U	0.97 U	7.2	0.97 U	0.97 U	0.49 U
	8/9/07	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NS	NS			0.98 U	0.49 U	0.49 U	0.98 U	4.2	0.98 U	0.98 U	0.49 U
	11/1/07	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	193	NS			0.95U	0.48 U	0.48 U	0.95 U	1.2	0.95 U	0.95 U	0.48 U
	2/19/08	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NS	NS			0.95U	0.48 U	0.48 U	0.95 U	1.31	0.95 U	0.95 U	0.48 U
	5/20/08	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.96U	0.48 U	0.48 U	0.96 U	6.5	0.96 U	0.96 U	0.48 U
	6/3/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	N	NS	NS
	9/11/08	0.50 U	1.3	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	1.9	0.96 U	0.96 U	0.48 U
	10/10/08	NS	NS	NS	NS	NS	NS	NS	NŠ	NS	NS	NS	NS	NS	NS	NS	NS	NS
	1/8/09	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	170	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	3.1	0.96 U	0.96 U	0.48 U
	1/26/09	NS	NS	NS	NS	NS	NS	NS	NŞ	NS	NS	NS	NS	NS	NS	NS	NS	NS
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NA	NA	NA	NA .	0.96 U	0.48 U	0.48 U	0.96 U	2.1	0.96 U	0.96 U	0.48 U
	7/23/09	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U
	11/16/09	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.98 U	0.49 U	0.49 U	0.98 U	2.6	0.98 U	0.98 U	0.49 U
	2/10/10	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	233	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	1.21	0.95 U	0.95 U	0.48 U
	5/13/10	0.50 U	0.50 U	0.50 U	1.00	0.50 U	NA	NA	NA	NA	0.95 U	0.48 Ų	1.9 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U
	8/6/10	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	1.5	0.96 U	0.96 U	0.48 U
	3/24/11	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.78 U	0.39 U	0.39 U	0.78 U	0.78 U	0.78 U	0.78 U	0.39 U
	5/31/11	0.50 U	0.50 U	0.50 U	1.0U	0.50 U	NA	NA	NA	NA	0.76 U	0.38 U	1.9 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U
	8/2/11	0.50 U	0.50 U	0.50 U	1.0 U	0.50 U	216 i	NA	NA	NA	0.77 U	0.38 U	0.38 U	0.77 U	0.77 U	0.77 U	0.77 U	0.38 U
	11/15/11	0.20 U	0.20 U	0.20 U	0.52 U	0.34 U	342	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	1.1	0.38 U	0.24 U	0.24 U
	2/2/12	0.20 U	0.20 U	0.20 U	0.52 U	48.1	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U
	4/5/12	0.21 U	0.28 U	0.24 U	0.62 U	0.32 U	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	5/14/12	0.63 U	0.84 U	0.72 U	1.9 U	0.96 U	NA	NA	NA	NA	0.053 U	0.018 U	0.045 U	0.030 U	1.0	0.030 U	0.036 U	0.033 U
	9/10/12	0.21 U	0.28 U	0.24 U	0.62 U	0.32 U	NA	NA	NA	NA	0.053 U	0.048 U	0.045 U	0.030 U	0.29	0.030 U	0.036 U	0.033 U
	12/27/12	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	180	· NA	NA	NA	0.401	0.38 U	0.38 U	0.38 U	0.561	0.38 U	0.24 U	0.24 U
	3/7/13	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	236	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U
	9/16/13	0.21 U	0.20 U	0.29 U	0.50 U	0.21 U	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.441	0.38 U	0.24 U	0.24 U
	7/31/14	0.21 U	0.23 U	0.24 U	0.53 U	0.32 U	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS NS
															1	+		

 $I = Result >= MDL \ but < RL \qquad U = Not \ Detected \ \mu g/L = Micrograms \ Per \ Liter \\ NA = Not \ analyzed \ for \ this \ parameter \ NS = Not \ Sampled$

Facility Name: Trout River Food Mart (aka Island Food Store No. 142) Facility I. D. No. 168507541 TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

S	ample	Benzene	Toluene	Ethyl- Benzene	Total Xylenes	MTBE	TRPH	EDB	Totai Lead	Dissolved Lead	Naph- ithalene	1-Methyl Naph-	2-Methyl Naph-	Acenaph- thylene	Acenaph- thene	Flourene	Phenan- threne	Pyrene	Fluoran- thene
Location	Date	1			·							thalene	thalene	larynene			unene		uiene
Chapter 62-	777, F.A.C. GCTL	(1) µg/L	(40) μg/L	(30) µg/L	(20) µg/L	(20)	(5000)	(0.02) µg/L	(15)		(14) µg/L	(28) µg/L	(28) µg/L	(210) µg/L	(20) µg/l	(280) µg/L	(210) µg/L	(210)	(280) µg/L
MW-7															1		(===0) (46) =		1200/ 46/1
	7/20/1992	ND	ND	ND	ND	488	NA	NA				ND			<u> </u>	<u> </u>	1	<u>{</u> −−−	┢────
	12/14/1992								ND					1	· · · · · · · · · · · · · · · · · · ·		<u> </u>		
	4/14/1993	ND	ND	ND	ND	350	NA					ND				<u> </u>			<u>├───</u>
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	320	NA					<2.0		<u> </u>		<u> </u>		†	<u> </u>
	9/28/04	< 1.0	< 1.0	< 1.0	< 2.0	34	< 200			·	< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	2/9/06	0.50 U	0.50 U	0.50 U	1.0 U	3.2	NS	NS			0.97 U	0.49 U	0.49 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
	6/22/06	0.50 U	0.50 U	0.50 U	1.0 U	10.9	NS	NS			1.1 U	0.56 U	0.56 U	1.1 U	1.10	1.10	1.1 U	0.56 U	0.56 U
	10/25/06	0.50 U	0.50 U	0.50 U	1.0 U	20.7	NS	NS			1.0U	0.50 U	0.50 U	1.00	1.00	1.00	1.00	0.50 U	0.50 U
	1/19/07	0.50 U	0.50 U	0.50 U	1.0 U	1.8	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.30 U
	5/1/07	0.50 U	0.50 U	0.50 U	1.0 U	26.6	21.6	NS			0.98 U	0.49 U	0.49 U	0.98 U	0.98 U	0.98 U	0.98 U	0.49 U	0.49 U
	8/9/07	0.50 U	0.801	0.50 U	1.0 U	20.3	NS	NS	-		0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.49 U	0.490
	11/1/07	0.50 U	0.50 U	0.50 U	1.0 U	20.5	318	NS	-		0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	11/29/07	0.50 U	0.50 U	0.50 U	1.0 U	14	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	2/19/08	NS	NS	NS	NS	NS	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	5/20/08	0.50 U	0.50 U	0.50 U	1.0 U	37.6	NS	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08	0.50 U	0.50 U	0.50 U	1.0 U	53.4	NS	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
	9/11/08	0.50 U	0.50 U	0.50 U	1.0 U	34.8	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	10/10/08	0.50 U	0.50 U	0.50 U	1.0 U	18.5	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	1/8/09	0.50 U	0.50 U	0.50 U	1.0 U	25.7	271	NA	NA	NA	10.8	3.8 U	3.8 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	1/26/09	0.50 U	0.50 U	0.50 U	1.0 U	7.8	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA
	4/22/09	0.50 U	0.50 U	0.50 U	1.0 U	1.7	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
											[<u> </u>					0.500	0,100	0.450
MW-8											<u> </u>	<u> </u>				<u>+</u>	+		<u> </u>
	7/20/1993	ND	ND	ND	ND	ND	NA					ND					<u>+</u>	1	<u> </u>
	*4/94 or 6/94	<0.5	<1.0	<1.0	<5.0	<10	NA					<2.0							<u> </u>
	9/28/2004	< 1.0	< 1.0	< 1.0	< 2.0	< 2.0	< 200	NS			< 0.50	< 0.50	< 0.50	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10	< 0.10
	11/16/2009	0.50 U	0.50 U	0.50 U	1.0 U	3.7	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
															0.500	0.500	0.500	0.460	0.48.0
MW-9								<u> </u>						<u> </u>			<u> </u>	ł	<u>├</u>
	7/20/1993	ND	1.3	ND	ND	11	NA				t —	ND		<u> </u>	t	<u> </u>	<u>+</u>	<u> </u>	<u> </u>
	*4/94 or 6/94	1	<1.0	<1.0	<5.0	13	NA					<2.0		<u> </u>			<u> </u>	ł	<u> </u>
		-																	
DPT-25	4/28/05	< 0.5	< 0.5	< 0.5	< 1.0	< 0.5	NS	NS			<1.0	<0.50	<0.50	<1.0	<1.0	<1.0	<1.0	<0.50	<0.50
DPT-26	4/28/05	< 0.50	< 0.50	< 0.50	< 1.0	< 0.50	215	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS

I = Result >= MDL but < RL U = Not Detected µg/L = Micrograms Per Liter

NA = Not analyzed for this parameter NS = Not Sampled

Facility I. D. No. 168507541

TABLE 2: GROUNDWATER MONITORING WELL AND DPT ANALYTICAL SUMMARY

3	ample	Benze	Toluene	Ethyl-	Total	MTBE	TRPH	EDB	Total	Dissolved	Naph-	1-Methyl	2-Methyl	Acenaph	Acenaph-	Flowers	Phenan-	Dumana	Fluoran-
ocation	Date	ne	romene	Benzene	Xylenes	INIDE		CDD	Lead	Lead	thalene	Naphthalen	Naphthalen	thylene	thene	Flourene	threne	Pyrene	thene
hapter 62-	777, F.A.C. GCTL	(1)	(40) μg/L	(30) µg/L	(20) µg/L	(20)	(5000) µg/L	(0.02) µg/L	(15)		(14)	(28) µg/L	(28) µg/L	(210)	(20) µg/L	(280)	(210)	(210) µg/L	(280) µg/L
OPT-27	4/28/05	1.5	10.1	3.5	19.3	< 0.50	462	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
OPT-28	4/28/05	< 0.50	1.6	< 0.50	2.2	0.86	776	NS			NS	NS	NS	NS	NS	NS	N\$	NS	NS
PT-29	4/28/05	1.5	0.63	5.8	4.2	24.1	400	NS			NS	NS	NS_	NS	NS	NS	NS	NS	NS
	1 100 100								_										<u> </u>
DPT-30	4/28/05	104	674	248	1300	65.3	7960	NS			NS	NS	NS	NS	NS	NS	NS	NS	NS
OW-2R																			
	2/9/06	8440	15400	2390	11800	553	42400	0.0094 U	11.5		744	113	211	9.5 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	6/22/06	0.50	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			1.0U	0.50 U	0.50 U	1.0U	1.0U	1.0U	1.0U	0.50 U	0.50 U
	10/25/06	0.50	4.6	0.50 U	1.0U	0.50 U	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	1/19/07	0.50	0.50 U	0.50 U	1.0U	0.50 U	NS	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/1/07	0.50	0.50 U	0.50 U	1.0 U	0.50 U	297	NS			0.98 U	0.49 U	0.49 U	0.98 U	0.98 U	0.98 U	0.98 U	0.49 U	0.49 U
	8/9/07	0.50	0.50 U	0.50 U	1.00	0.50 U	NS	NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	11/1/07 2/19/08	0.50	0.50 U	0.50 U	1.00	0.50 U	259	NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
	5/20/08	0.50	0.50 U	0.50 U	1.00	0.50 U	NS NS	NS NS			0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U	0.48 U
		0.50 NA	0.771	0.50 U	1.00	0.50 U		NS			0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	6/3/08 9/11/08	0.50	NA	NS	NS	NS	NS	NS .			NS	NS	NS	NS	NS	N	NS	NS	NS
	10/10/08	0.50 NS	1.1 NS	0.50 U NS	1.0U NS	0.50 U	NA	NA	NA	NA	0.96 U	0.48 U	0.48 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	1/8/09	0.50	0.50 U	0.50 U	1.0U	N\$ 0.50 U	NS 173	NS NA	NS	NS	NS	NS	NS	NS NS	NS	NS	NS	NS	NS
	1/26/09	0.50 NS	0.50 U	NS	 NS	0.50 U NS	1/5 NS	NA NS	NA NS	NA NS	3.5 NS	<u>1.9 U</u> NS	1.9 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	4/22/09	0.50	0.50 U	0.50 U	1.0 U	0.50 U	NA	NA	NA	NA NA	0.96 U	0.48 U	NS						
	7/23/09	0.50	0.50 U	0.50 U	1.00	0.50 U	NA	NA	NA	NA NA	0.960	0.48 U 0.49 U	0.48 U 0.49 U	0.96 U	0.96 U	0.96 U	0.96 U	0.48 U	0.48 U
	11/16/09	0.50	0.50 U	0.50 U	1.00	0.50 U	NA	NA	NA	NA	0.97 U	0.49 U	0.49 U 0.48 U	0.97 U	0.97 U	0.97 U	0.97 U	0.49 U	0.49 U
	2/10/10	0.50	0.50 U	0.50 U	1.0U	0.50 U	160 U	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U 0.95 U	0.95 U 0.95 U	0.48 U 0.95 U	0.95 U	0.48 U	0.48 U
	5/13/10	0.50	0.50 U	0.50 U	1.00	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U 0.95 U	0.48 U	0.48 U
	8/6/10	0.50	0.50 U	0.50 U	1.00	0.50 U	NA	NA	NA	NA	0.95 U	0.48 U	0.48 U	0.95 U	0.95 U	0.95 U	0.95 U	0.48 U 0.48 U	0.48 U 0.48 U
	3/24/11	0.50	0.50 U	0.50 U	0.50 U	0.50 U	1.00	0.50 U	NA	NA	0.78 U	0.39 U	0.39 U	0.78 U	0.33 U	0.33 U	0.93 U	0.48 U	0.48 U
	5/31/11	0.50	0.50 U	0.50 U	1.00	0.50 U	NA	NA	NA	NA	0.76 U	0.38 U	0.39 U	0.76 U	0.76 U	0.76 U	0.76 U	0.39 U	0.39 U 0.38 U
	8/2/11	0.50	0.50 U	0.50 U	1.0 U	0.50 U	160	NA	NA	NA	1.9 U	0.38 U	0.38 U	0.76 U	0.76 U	0.76 U	0.76 U	0.38 U	0.38 U
	11/15/11	0.20	0.20 U	0.20 U	0.52 U	0.34 U	140 U	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.38 U	0.38 U 0.24 U
	2/2/12	0.20	0.20 U	0.20 U	0.52 U	0.34 U	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	1.7	0.38 U	0.24 U	0.24 U	0.24 U
	5/14/12	0.63	0.84 U	0.72 U	1.9 U	0.96 U	NA	NA	NA	NA	0.053 U	0.018 U	0.045 U	0.030 U	0.034 U	0.030 U	0.036 U	0.033 U	0.027 U
	9/10/12	0.21	0.28 U	0.24 U	0.62 U	0.32 U	NA	NA	NA	NA	0.053 U	0.048 U	0.045 U	0.030 U	0.034 U	0.030 U	0.036 U	0.033 U	0.027 U
	12/27/12	0.21	0.20 U	0.29 U	0.50 U	0.21 U	140 U	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.030 U	0.033 U	0.027 U
	3/7/13	0.21	0.20 U	0.29 U	0.50 U	0.21 U	147	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
		U													0.000	0.000	0.270	0.240	0.240
	9/16/13	0.21	0.20 U	0.29 U	0.50 U	0.21 U	NA	NA	NA	NA	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.38 U	0.24 U	0.24 U	0.24 U
	7/31/14	0.21	0.23 U	0.24 U	0.53 U	0.32 U	NA	NA	NA	NA	NS	NS	NS	NS	NS	NS	NS	NS	NS
	· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · · · · · · · · · ·	i	i		i		1	1							H	- ····	+'

** Wells MW-4R and MW-7 were re-sampled on November 29, 2007 due to the results from November 1, 2007 being so close to the CTL.

*** Wells MW-4R and MW-7 were re-sampled on June 3, 2008 due to the results from May 20, 2008 event exceeding MTBE CTLs.

+ Well MW-7 was re-sampled on October 10, 2008 due to the results from the September 11, 2008 event exceeding MTBE CTLs.

++ Well MW-7 was re-sampled on January 26, 2009 due to the results from January 08, 2008 event exceeding MTBE CTLs.

+++ Well MW-3R and MW-4R were re-sampled on August 27, 2010 due to results from August 6, 2010 exceeding MTBE CTLs.

 $^{ }$ = same location

I = Result >= MDL but < RL U = Not Detected µg/L = Micrograms Per Liter

NA = Not analyzed for this parameter NS = Not Sampled

SITE 5 – Alpha & Omega Dry Cleaners/Ed Stalvey's Fuel Oil Service

Tank Closure Assessment report, dated August 8, 2003 (text, figures, tables, and laboratory analytical data) – 34 Pages

City of Jacksonville Air and Water Quality Division letter, dated November 5, 2003 – 1 Page

RECEIVED AUG 1 1 2003

TANK CLOSURE ASSESSMENT

Stalvey's Fuel Oil 2945 Broward Road Jacksonville, Duval County, Florida FDEP Facility I.D. # 168629668

UES Project No. 91329-013-01 UES Report No. 19865

August 8, 2003

Prepared for:

Regulatory and Environmental Services Division Air and Water Quality Division 117 West Duval Street, Suite 225 Jacksonville, Florida 32202

Prepared by:

UNIVERSAL ENGINEERING SCIENCES, INC. 5561 Florida Mining Boulevard South Jacksonville, Florida 32257 (904) 296-0757

Report Preparation:

ance ward FOR Vincent S. Price

Staff Engineer

Review & Certification:

8-8-03

Steven G. McInall, P.E. Environmental Engineering Manager Florida License No. 59227

CONSULTANTS:

Geotechnical Engineering • Environmental Sciences • Construction Materials Testing • Threshold Inspection

OFFICES: Daytona Beach • Jacksonville • DeBary • St. Augustine • Orlando • Gainesville Fort Myers • Rockledge • West Palm Beach • Ocala • Tampa • Hollywood

Consultants In: Geotechnical Engineering • Environmental Engineering • Construction Materials Testing • Threshold Inspection • Private Provider Inspection August 8, 2003 August 8, 2003 Offices In: • Daytona Beach • DeBary • Fort Myers • Gainesville • Hollywood • Jacksonville • Ocala • Orlando • Palm Coast • Rockledge • Sarasota • St. Augustine • Tampa

West Palm Beach

Mr. Tom Griffin Regulatory and Environmental Services Division (RESD) Air and Water Quality Division 117 West Duval Street, Suite 225 Jacksonville, Florida 32202

Reference: Tank Closure Assessment (TCA) Stalvey Fuel Oil 2945 Broward Road Jacksonville, Duval County UES Project No. 91329-013-01 and Report No. 19865 FDEP Facility I.D. # 168629668

Dear Mr. Griffin:

Universal Engineering Sciences, Inc. (UES) has completed the Tank Closure Assessment (TCA) report for the above referenced property. The purpose of this investigation was to evaluate on-site soil and groundwater quality in the vicinity of the existing underground storage tank (UST) farm by identifying the presence or absence of contaminant constituents most commonly associated with kerosene, diesel and unleaded gasoline. This assessment was conducted prior to and during the removal of the USTs.

UES has conducted a storage tank closure assessment at the subject property. On July 1, 2003, Guardian Fueling Technologies, Inc removed four 10,000-gallon kerosene, diesel and unleaded gasoline USTs.

In-the-field volatile organic vapor screening of soil samples were collected in the excavation pit. Most of the soil samples collected registered a response on the Organic Vapor Analyzer (OVA) that were 50 parts per million (ppm). Soil boring SB-1 that was 4 feet below land surface (BLS) contained a net OVA reading of approximately 100 ppm. Soil boring SB-4 (4 feet BLS) contained an OVA reading of approximately 120 ppm.

In accordance with the FDEP Storage Tank System Closure Assessment Guidelines, Chapter 62-761, FAC, UES collected a soil sample from an area, which would have the most likely chance of having petroleum contamination. Soil sample SS-1 was collected from the location of soil boring SB-4.

According to the lab results, the soil sample contained three petroleum constituents at concentrations that were below the FDEP Commercial/Industrial and Residential Direct

Exposure Soil Clean Up Target Levels (SCTLs), but above the FDEP leachability standards. Also, the soil sample contained 5,700 mg/kg of Total Petroleum Hydrocarbons (TPH), which is above the FDEP Commercial/Industrial and Residential Direct Exposure SCTLs and the leachability standards.

An additional soil sample (SS-2) was collected from the same location to verify the above results. The sample was analyzed by the Synthetic Precipitate Leaching Procedure (SPLP) to verify the presence of leachable Polynuclear Aromatic Hydrocarbons (PAH) and using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Series Method to verify the TPH result.

According to the lab results, the detected PAHs are not leachable. Additionally, the sample does not contain petroleum constituent concentrations that are above the FDEP (SCTLs).

According to the lab results, the groundwater sample was not impacted with petroleum product constituents above the FDEP Groundwater Cleanup Target Levels (GCTLs). However, the sample contained elevated lead concentrations that were above the FDEP GCTLs. Due to the fact that metals are naturally occurring in soil UES chose to also collect groundwater samples for dissolved lead analysis the dissolved metal laboratory analysis detected no concentrations over the FDEP GCTLs.

Based on the results of this TCA, UES does not recommend further assessment of the underground storage tank area.

UES greatly appreciates the opportunity to offer our environmental services to you on this project. Please do not hesitate to contact our office if you have any further questions regarding this report.

Respectfully submitted,

UNIVERSAL ENGINEERING SCIENCES, INC.

DIVON R

Vincent S. Price Staff Engineer

Steven G. McInall, P.E. Environmental Engineering Manager Florida License No. 59227

SITE DESCRIPTION

The subject property is located at 2945 Broward Road in Jacksonville, Duval County, Florida. The UST farm area was located along the southeast side of the on-site building. The tank farm consisted of four 10,000-gallon USTs (one kerosene UST, one diesel UST, one on-site heating oil UST and one unleaded gasoline UST). Please refer to **Appendix A-1** for the Site Location Map. Please refer to **Appendix A-2** for a graphic illustration of the tank farms, soil boring, laboratory soil sample and temporary monitoring well locations.

TANK REMOVAL ACTIVITIES

Tank Closure Assessment and tank removal activities were conducted on July 1, 2003. When UES arrived at the subject property, the tank pit was partially excavated. The contractor conducting tank removal activities was Guardian Fueling Technology, Inc. Prior to, and after tank removal, the USTs were degassed and cleaned by U.S. Filter Recovery Services. The non-hazardous waste manifest is included in **Appendix B**.

During removal of the four 10,000-gallon USTs were removed no visual damage/deterioration of the USTs were visible. However, a slight petroleum odor was noted from the soils in the western section of excavation pit (at the fill port area).

Photographs were taken to provide visual documentation of the tank removal activities. Site photographs are included in **Appendix C**.

Included in **Appendix D** are the Underground Storage System Installation and Removal Form for Certified Contractors.

SOIL ASSESSMENT ACTIVITIES

Soil samples were collected along the perimeter and from the bottom of the tank farm/excavation pit for volatile organic vapor screening (as illustrated in **Appendix A-2**).

UES conducted in-the-field organic vapor screening using a Heathtech Detecto Pak III Organic Vapor Analyzer (OVA). The OVA is useful for detecting volatile organic compounds (common petroleum product and solvent constituents) in the head space of a soil sample container to a lower limit of one part per million (ppm) calibration gas equivalent. The soil samples were collected using half-filled 16-ounce jars covered with aluminum foil. After allowing the temperature of the soil sample to stabilize for approximately five minutes, the OVA probe was inserted through the foil, and the highest reading was recorded.

In-the-field volatile organic vapor screening of soil samples were collected in the excavation pit. Most of the soil samples collected registered a response on the OVA that was below 50ppm. Soil boring SB-1 (4 feet below land surface (BLS)) contained a net OVA reading of approximately 100 parts per million (ppm). Soil boring SB-4 (4 feet

BLS) contained a net OVA reading of approximately 120 ppm. Net OVA readings are obtained when the OVA filtered reading is subtracted from the total OVA measurement. The Soil OVA Screening Forms are included in **Appendix E**. Table 1, shown below includes the results of the Soil Organic Vapor Screening Results.

Soil Sample	Depth (feet)	Table 1 – Soil Org Total OVA Measurement (ppm)	Filtered Reading (ppm)	Net OVA Reading (ppm)	Observations
SB-1	2	0	0	0	Slight Petroleum Odor
	4	300	200	100	Slight Petroleun Odor
	6	0	0	0	Slight Petroleum Odor
SB-2	2	20	15	5	Slight Petroleun Odor
	4	0	0	0	Slight Petroleum Odor
	6	0	0	0	Slight Petroleum Odor
SB-3	2	0	0	0	Slight Petroleum Odor
	4	0	0	0	Slight Petroleum Odor
	6	0	0	0	Slight Petroleum Odor
SB-4	2	0	0	0	Slight Petroleum Odor
	4	320	200	120	Slight Petroleum Odor
	6	0	0	0	Slight Petroleum Odor
SB-5	2	0	0	0	Slight Petroleun Odor
	4	0	0	0	Slight Petroleun Odor
	6	0	0	0	Slight Petroleun Odor
SB-6	2	0	0	0	Slight Petroleun Odor
	4	0	0	0	Slight Petroleun Odor
	6	0	0	0	Slight Petroleun Odor
SB-7	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	600	600	0	No Petroleum Odor
SB-8	2	800	800	0	Slight Petroleun Odor

Soil Sample	Depth (feet)	Table 1 – Soil Org Total OVA Measurement (ppm)	Filtered Reading (ppm)	Net OVA Reading (ppm)	Observations
	4	400	400	0	Slight Petroleun Odor
	6	0	0	0	Slight Petroleun Odor
SB-9	2	0	0	0	No Petroleum Odor
	4	480	480	0	Slight Petroleun Odor
	6	0	0	0	Slight Petroleun Odor
SB-10	2	220	220	0	No Petroleum Odor
	4	1,800	1,800	0	Slight Petroleun
	6	0	0	0	Slight Petroleun Odor
SB-11	2	200	200	0	Slight Petroleun Odor
ľ	4	30	5	25	Slight Petroleun Odor
	6	0	0	0	Slight Petroleun Odor
SB-12	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-13	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-14	2	0	0	0	No Petroleum Odor
	4	100	100	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-15	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-16	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor

Soil	Depth	Table 1 – Soil Org Total OVA	Filtered	Net OVA	Observations
Sample	(feet)	Measurement (ppm)	Reading (ppm)	Reading (ppm)	
	6	0	0	0	No Petroleum Odor
SB-17	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-18	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-19	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-20	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-21	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-22	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-23	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor
SB-24	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor

Soil Sample	Depth (feet)	Total OVA Measurement (ppm)	Filtered Reading (ppm)	Net OVA Reading (ppm)	Observations
SB-25	2	0	0	0	No Petroleum Odor
	4	0	0	0	No Petroleum Odor
	6	0	0	0	No Petroleum Odor

In accordance with the FDEP Storage Tank System Closure Assessment Guidelines, Chapter 62-761, Florida Administrative Code (F.A.C.), UES collected soil samples from the area which exhibited the highest volatile organic vapor readings (along the west side of the tank pit, at the fill port area). Due to budgetary limitations, samples were collected only from the 'high' OVA measurement area, and not the 'medium' and 'low' areas.

The 'high' OVA soil sample was submitted to IntraLabs for laboratory analysis. A summary of the Soil Sample Analytical Results and Comparison to SCTLS is provided below in Table 2.

Constituents	SS-1 mg/kg	ple Analytical Results an Commercial/Industrial Direct Exposure Levels (mg/kg)	Residential Direct Exposure Levels (mg/kg)	Leachability Based on Groundwater Criteria (mg/kg)
Total Xylenes	0.0062	40,000	5,900	0.2
Napthalene	34	270	40	1.7
2-Methylnapthalene	12	560	80	6.1
1-Methylnapthalene	8.4	470	68	2.2
Acenaphthene	0.93	18,000	1,900	2.1
Fluorene	1.4	28,000	2,200	160
Phenanthrene	3.2	30,000	2,000	250
Anthracene	0.32	260,000	18,000	2,500
TPH	5,700	2,500	340	340
	s and Leacha	ability standards were obtain		

According to the lab results, the soil sample contained three petroleum constituents that had concentrations below the FDEP Commercial/Industrial and Residental Direct Exposure Levels, but above the FDEP Leachability Criteria (Naphthalene at 34 mg/kg, 2-Methylnapthalene at 12 mg/kg and 1-Methylnapthalene at 8.4 mg/kg). Also, the soil sample contained 5,700 mg/kg of TPH, which is above the FDEP Commercial/Industrial and Residential Direct Exposure Limits and the leachability standards.

An additional soil sample (SS-2) was collected from the same location to verify the above results. The sample was analyzed by the Synthetic Precipitate Leaching

Procedure (SPLP) to verify the presence of leachable PAHs. Soil Sample SS-2 was also analyzed for TPH fractions using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Series Method.

The leachablility SCTLs are based on generic conditions and conservative modeling assumptions. The SPLP process simulates the leaching process that occurs in the environment, and therefore provides a more site-specific indication of leachability analysis. This information as well as a comparison to groundwater cleanup target levels (GCTLs) is provided in Table 3 below. Based on the results of the SPLP analysis, the PAHs at the site are not leachable.

Table 3 – Result	s of SPLP Analysis and Co	omparison to GCTLs
Constituents	SS-2 ug/l	Groundwater Cleanup Target Levels ug/l
Napthalene	< 1.0	20
1-Methylnaphthalene	< 1.0	20
2- Methylnaphthalene	< 1.0	20
Groundwater Cleanup Target Levels were of	ptained from FDEP Chapter 62-770)

The TPHCWG series identifies and quantifies TPH petroleum into hydrocarbon fractions (working group fractions). The TPHCWG Method was developed with the assistance of Shell Development Company. The Working Group fractions are based on the expected environmental behavior of individual petroleum constituents. This grouping simplifies the environmental modeling needed to assess potential human exposure to petroleum contamination. This method is designed to characterize C₆ to C₂₈ + petroleum hydrocarbon in soil as a series of aliphatic and aromatic carbon range fractions. The extraction methodology differs from other petroleum hydrocarbon methods because it uses *n*-pentane and not methylene chloride as the extraction solvent.

This method has been specifically designed to resolve and quantify the 13 aliphatic and aromatic fate and transport fractions selected by the Working Group. The Working Group also assigned toxicity criteria to each fraction by selecting toxicity data most representative of the fraction from the toxicology literature on whole products, mixtures and individual petroleum constituents. When paired with the Working Group toxicity criteria, the fate and transport fraction data can be used to assess human health risk associated with exposures to petroleum-contaminated environmental media.

A summary of the TPHCWG Method Analytical Results and a comparison to the SCTLs is provided below in Table 4.

The IntraLabs laboratory analytical report (soil analysis) is included in Appendix F.

Table 4 –	TPHCWG M	ethod Analytical Results a	nd Comparison to S	SCTLs
Constituents	SS-2 (mg/kg)	Commercial/Industrial Direct Exposure Limits (mg/kg)	Residential Direct Exposure Limits (mg/kg)	Leachability Based on Groundwater Criteria (mg/kg)
C ₅ – C ₇ Aromatics	<48	1,800	260	34
>C7 – C8 Aromatics	<70	2,600	380	59
>C ₈ – C ₁₀ Aromatics	<70	2,500	340	340
>C ₁₀ – C ₁₂ Aromatics	<70	5,400	690	520
>C ₁₂ – C ₁₆ Aromatics	<70	11,000	1,200	1,000
>C ₁₆ – C ₂₁ Aromatics	<70	14,000	1,300	3,200
>C ₂₁ – C ₃₅ Aromatics	<70	40,000	2,200	25,000
C ₅ – C ₆ Aliphatics	<70	30,000	4,500	470
>C ₆ – C ₈ Aliphatics	<70	42,000	6,300	1,300
>C ₈ – C ₁₀ Aliphatics	<70	4,400	630	7,000
>C ₁₀ – C ₁₂ Aliphatics	<70	9,400	1,300	51,000
>C ₁₂ – C ₁₆ Aliphatics	<70	19,000	2,300	1,000,000
>C ₁₆ – C ₃₅ Aliphatics	<70	250,000	32,000	1,000,000
Direct Exposure Limits and L Criteria Working Group.	eachability stan	dards were obtained from FDEP CI	hapter 62-777 Total Petro	eum Hydrocarbon

Based on these results, the sample does not contain petroleum constituent concentrations that are above the FDEP SCTLs.

GROUNDWATER ASSESSMENT ACTIVITIES

In accordance with the FDEP Storage Tank System Closure Assessment Guidelines, Chapter 62-761, F.A.C., a temporary monitoring well was installed in the area, which exhibited the highest volatile organic vapor readings (along the west side of the excavation pit, at the fill port locations). The groundwater level was encountered at approximately 5 feet BLS. A groundwater sample was collected to determine if petroleum products impacted the subject property's groundwater quality. After collection, the samples were placed on ice for transport to IntraLabs. IntraLabs analyzed the groundwater samples for common petroleum product parameters by Environmental Protection Agency (EPA) Kerosene Analytical Group Methods. IntraLabs groundwater laboratory analytical report is included in **Appendix G**. A summary of the constituents detected in the groundwater sample is provided in Table 5.

Table 5	- Groundwater Sample Analytical	Results
Constituents	GW-1 ug/L	Groundwater Cleanup Target Levels ug/L
Napthalene	1.8	20
2-Methylnaphthalene	2.3	20
1- Methylnaphthalene	1.9	20
Lead / Dissolved Lead	350 / BDL	15
Groundwater Cleanup Target Levels were	obtained from FDEP Chapter 62-770	

According to the lab results, the groundwater sample was not impacted with petroleum product constituents above the FDEP Groundwater Cleanup Target Levels (GCTLs).

However, the sample contained elevated total lead concentrations that were above the FDEP GCTLs.

However, due to the fact that metals are naturally occurring in soil and the groundwater samples collected by UES was turbid, UES chose to also collect groundwater samples for dissolved metals analysis. Utilizing the dissolved metals analysis, the groundwater samples are filtered in the laboratory to remove suspended sediment within the samples, thus, analyzing the true dissolved metals within each specific sample collected. Therefore, this analysis provides representative results relating to dissolved metal concentrations in groundwater.

The dissolved lead laboratory analysis detected no concentrations over the FDEP GCTLs.

CONCLUSIONS & RECOMMENDATIONS

UES has conducted a storage tank closure assessment at the subject property. On July 1, 2003, Guardian Fueling Technologies, Inc removed four 10,000-gallon USTs. The tank farm consisted of one kerosene UST, one diesel UST, one onsite heating oil UST and one unleaded gasoline UST.

In-the-field volatile organic vapor screening of soil samples were collected in the excavation pit. Most of the soil samples collected registered a response on the OVA that was below the FDEP threshold for kerosene/diesel-contaminated soil. Soil boring SB-1 (4 feet BLS) contained an OVA reading (approximately 100 ppm) that was above the FDEP threshold of 50 ppm. Soil boring SB-4 (4 feet BLS) contained an OVA reading of approximately 120 ppm.

In accordance with the FDEP Storage Tank System Closure Assessment Guidelines, Chapter 62-761, FAC, UES collected a soil sample from an area, which would have the most likely chance of having petroleum contamination. Soil sample SS-1 was collected from the location of Soil boring SB-4.

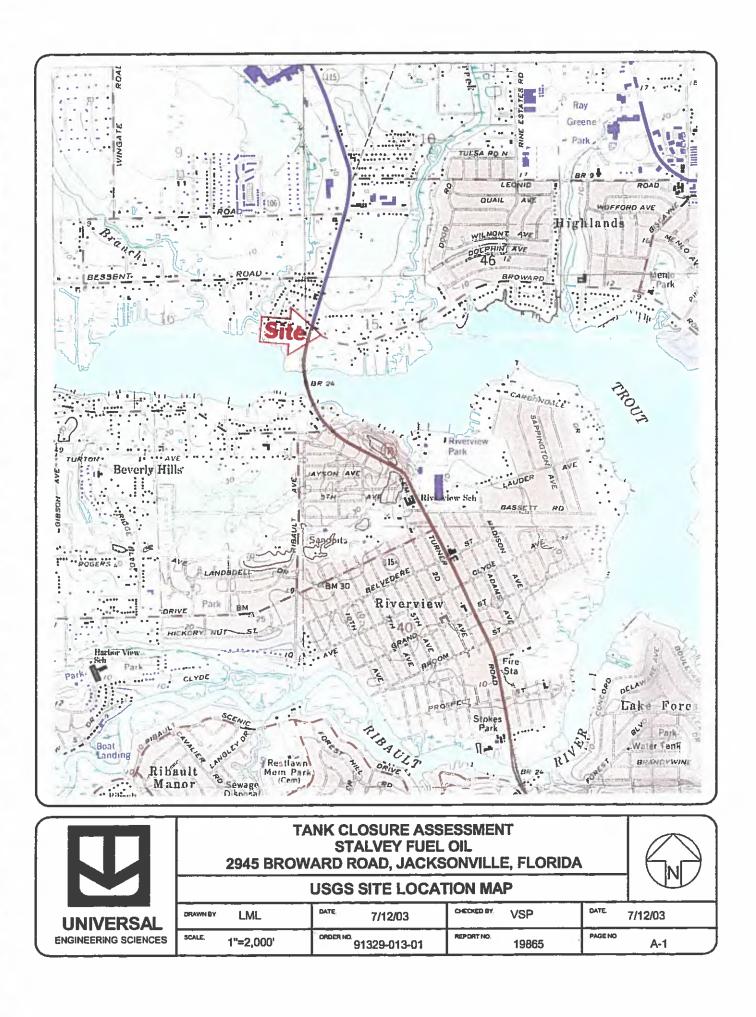
According to the lab results, the soil sample contained petroleum constituents concentration that were below the FDEP Commercial/Industrial and Residental Direct Exposure Levels, but above the FDEP Leachability criteria (Naphthalene at 34 mg/kg, 2-Methylnapthalene at 12 mg/kg and 1-Methylnapthalene at 8.4 mg/kg). However, these concentrations were above the FDEP leachability standards. Also, the soil sample contained 5,700 mg/kg of TPH, which is above the FDEP Commercial/Industrial and Residential Direct Exposure Limits and the leachability standards.

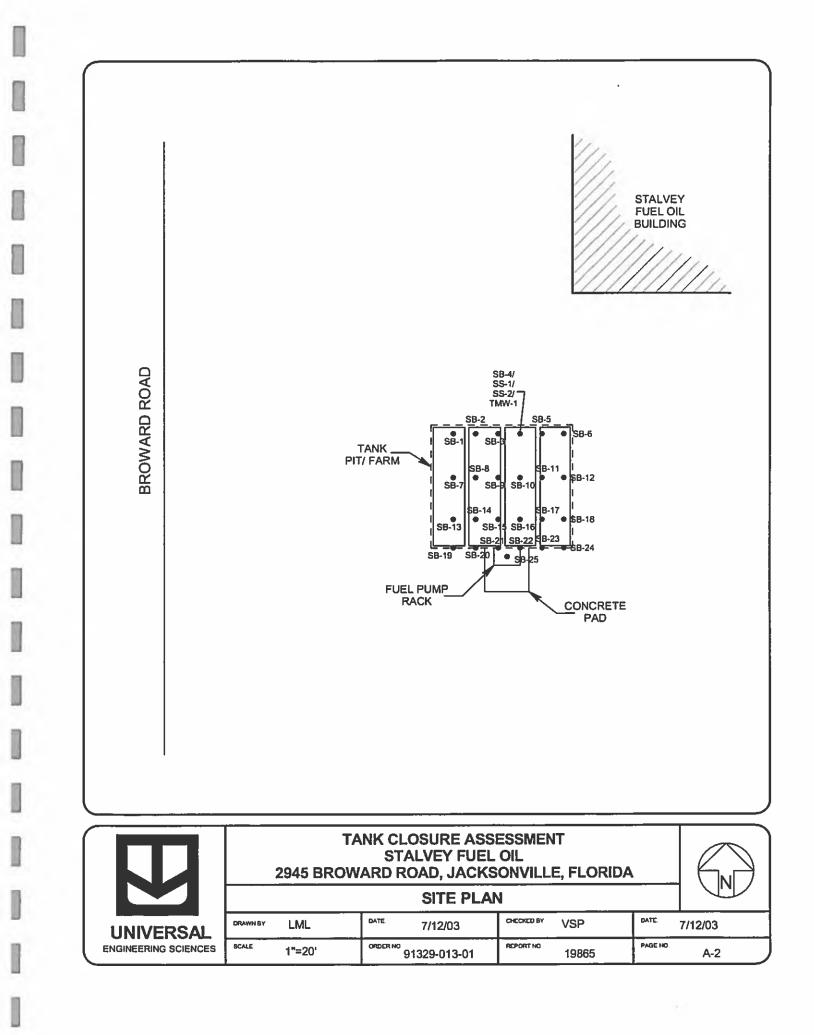
An additional soil sample (SS-2) was collected from the same location to verify the above results. The sample was analyzed for Synthetic Precipitate Leaching Procedure (SPLP) to verify the presence of leachable PAHs, and analyzed using the Total Petroleum Hydrocarbon Criteria Working Group (TPHCWG) Series Method to verify the TPH result.

According to the lab results, the detected PAHs are not leachable. Additionally, according to the TPHCWG laboratory analysis results, the sample does not contain petroleum constituent concentrations that are above the FDEP SCTLs.

According to the lab results, the groundwater sample was not impacted with petroleum product constituents above the FDEP Groundwater Cleanup Target Levels (GCTLs). However, the sample contained elevated total lead concentrations that were above the FDEP GCTLs. The sample was analyzed for dissolved (filtered) lead, which was not detected.

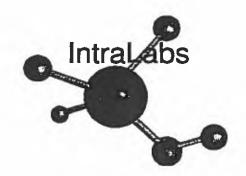
Based on the results of this TCA, UES does not recommend further assessment of the underground storage tank area.




APPENDIX A

5

Ĭ


A-1: USGS SITE LOCATION MAP A-2: SITE PLAN

APPENDIX F

INTRALABS LABORATORY SOIL ANALYTICAL REPORT

Client #: JAX-01-000010 Address: Universal Engineering 5561 Florida Mining Jacksonville, FL 32257 Attn: Vincent Price

Sample Description:

Stalvey Fuel Oil

14

Page: Page 1 of 2 Date: 07/11/2003 Log #: L78490-1

Analytical Report: SS-1 Date Sampled: 07/01/2003 Time Sampled: 20:00 Date Received: 07/03/2003 Collected By: client

- -

					Reportable	Extr.	Analysis	
Parameter	Results	Unit	8	Method	Limit	Date	Date	Analyst
Parent Solids								
Percent Solid	74	*		SM2540B	0.10	07/03	07/03	CP
Porynuclear Aromatic:Hyd	rocarbons							
V Naphthalene	34	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
2-Methylnaphthalene	12	mg/kg	(dw)	3550/8270	2.7	07/02	07/08	LN
I-Methylnaphthalene	8.4	mg/kg	(dw)	3550/8270	1.4	07/02	07/08	LN
Acenaphthylene	BDL	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
V Acenaphthene	0.93	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
✓ Fluorene	1.4	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
✓ Phenanthrene	3.2	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
√Anthracene	0.32	mg/kg	(dw)	3550/B270	0.14	07/02	07/07	LN
Fluoranthene	BDL	mg/kg	(dw)	3550/8270	0,14	07/02	07/07	LN
Pyrene	BDL	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
Benzo (a) anthracene	BDL	mg/kg	(dw)	35S0/8270	0.14	07/02	07/07	LN
Chrysene	BDL	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
Benzo(b) fluoranthene	BDL	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
Benzo(k) fluoranthene	BDL	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
Benzo (a) pyrene	BDL	mg/kg	(dw)	3550/8270	0.081	07/02	07/07	LN
Indeno (1,2,3-c,d) pyrene	BDL	mg/kg	(dw)	3550/8270	0.14	07/02	07/07	LN
Dibenzo (a, h) Anthracene	BDL	mg/kg	(dw)	3550/8270	0.081	07/02	07/07	LN
Benzo(g,h,i)perylene	BDL	mg/kg	(dw)	3550/B270	0.14	07/02	07/07	LN
Dilution Factor	1.0			3550/8270		07/02	07/07	LN
Surrogate Recoverieg:								
Nitrobenzene-d5	115	5		3550/8270	15-121	07/02	07/07	LN
2-Fluorobiphenyl	88.0	N		3550/8270	42-111	07/02	07/07	LN
Terphenyl-d14	89.0	ų,		3550/8270	37-143	07/02	07/07	LN
ETEX Compounds								
Benzene	BDL	mg/kg	(dw)	5035/B260	0.0023	07/01	07/09	JA
Toluene	BDL	mg/kg	(dw)	5035/8260	0.0057	07/01	07/09	AL

Client #: JAX-01-000010 Address: Universal Engineering 5561 Florida Mining Jacksonville, FL 32257 Attn: Vincent Price	Date:	Page 2 of 2 07/11/2003 L78490-1
Sample Description:	Analytical Report: Date Sampled:	
Stalvey Fuel Oil	Time Sampled: Date Received: Collected By:	20:00 07/03/2003

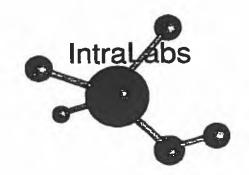
					Reportable	Extr.	Analysis	
Parameter	Results	Uni	ts	Method	Limit	Date	Date	Analyst
BTEX Compounds (contin	nued)							
Ethylbenzene	BDL	mg/kg	(dw)	5035/8260	0.0057	07/01	07/09	JA
✓Total Xylenes	0.0062	mg/kg	(dw)	5035/8260	0.0057	07/01	07/09	JA
MTBE	BDL	mg/kg	(dw)	5035/8260	0.0057	07/01	07/09	JA
Dilution Factor	0.84			5035/8260		07/01	07/09	JA
Surrogate Recoveries:								
Dibromofluoromethane	118	ŧ		5035/8260	52-155	07/01	07/09	JA
Toluene-d6	114	5		5035/8260	47-154	07/01	07/09	JA
4-Bromofluorobenzene	116	ţ		5035/8260	36-138	07/01	07/09	JA
Five de Fatzoleum Range	Organics							
VTPH(C8-C40)	5700	mg/kg	(dw)	FLPRO	1400	07/03	07/08	RR
Dilution Factor	50			FLPRO		07/03	07/08	RR
Surrogate Recoveries:								
o-Terphenyl	DL	\$		FLPRO	62-109	07/03	07/08	RR
Pentatriacontane	DL	ę		FLPRO	10-171	07/03	07/08	RR

All analyses were performed using EPA, ASTM, NIOSH, USGS, or Standard Methods and certified to meet NELAC requirements. Flags: BDL or U-below reporting limit; DL-diluted out; IL-meets internal lab limits; MI-matrix interference; NA-not appl. Plags: CFR-Pb/Cu rule; ND-non detect(RL ostimated); NFL-no free liquids; dw-dry wt; ww-wet wt; C(#)-see attached USB code FLOEA Plags: J(#)-estimated lisuxr. fail 2:no known QC req. 3:QC fail %R or %RPD; 4:matrix int. 5:improper fld. protocol FLDEP Flags: L-exceeds calibration; Q-holding time exceeded; T-value < MDL; V-present in blank FLDEP Flags: Y-improper preservation; B-colonies exceed range; 1-result between MDL and PQL Tests performed by DS Biosystems, Inc.

QAP# 980126 SUB DOH# 86122,86109,886048 SC CERT# 96031001 USACE VA CERT# 00395
 DOH# 2862x0
 NC

 ADEM ID# 40850
 IL

 TN CERT# 02985
 GA CERT# 917


 USDA Soil Permit# S-35240

NC CERT# 444 Il Cert# 200820

Respectfully submitted, Thomas a. Can

Thomas A. Carr Principal

IntraLabs, InterLabs, Inter
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
TS7 Test: 2.9.5 - 0.7 VL Andrease Requested DEEF Fielding (x, f, h, el, U)/ Amilian DEEF Fielding (x, f, h, el, U)/ Registribute Statistics v.e.e. U/v1c1c4r1 Price Registribute Statistics Registribute Statistics v.e.e. U/v1c1c4r1 Price Registribute Statistics Registribute Statistics v.e.e. U/v1c1c4r1 Price Registribute Statistics Registribute Statistics V.m. Date Matrixtic Remarks Lin Date Time Compare Regular Remarks Lin Matrixtic Matrixtic Matrixtic Remarks Lin Lin Matrixtic Compare Matrixtic Matrixtic Remarks Lin Matrixtic Remarks Lin Remarks Lin Lin Matrixtic Remarks Lin Remarks Lin Lin Matrixtic Remarks Lin Remarks Lin Lin Matrixtic Remarks </td
Millianin Implementation Implementation Implementation •••••••••••••••••••••••••••••
$\label{eq:constraints} \begin{tabular}{ c c c c c c c c c c c c c c c c c c c$
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Mutan H Mutan Mutan Mutan Mutan Mutan Mutan Mutan Mutan Date Canadara Citabar Constances Constances Constances Constances Image: Con
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
γ ///57 $\beta_{\rm L}$ // $\beta_{\rm $
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Name Total Number of Containers Image: Section of Contrainers Image: Section of Containers
Image: Section of the section of t
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Image: Non-Arrive state of the Arrive state codes Image: Non-Arrive state codes Image: Non-Arrive state of Connainers → L Vis: Item No. Solution Sol
Ind Total Number of Comainers Image: Comainers Image: Comainers Image: Comainers Nai Total Number of Comainers Image: Comainers Image: Comainers Image: Comainers Via: Image: Comainers Image: Comainers Image: Comainers Image: Comainers Via: Image: Comainers Image: Comainers Image: Comainers Image: Comainers Via: Image: Comainers Image: Comainers Image: Comainers Image: Comainers Via: Image: Comainers Image: Comainers Image: Comainers Image: Comainers Via: Via: Image: Comainers Image: Comainers Image: Comainers Via: Via: Image: Comainers Image: Comainers Image: Comainers Via: Cooler Nu. (s) / Temperature(s) (°C) Sempting Kit No. Equipment ID SN. A = Air GW = Groundwater SE = Sediment SO = Shill SW = Surface Water W = Water (Blanks) O = Other (speci
Ind Total Number of Containers • I Preservatives (see codes) Via: Item No. Relinquished by / Affiliation Date Time Accepted by / Affiliation Date Via: Via: Item No. Relinquished by / Affiliation Date Time Accepted by / Affiliation Date Via: Via: Item No. Relinquished by / Affiliation Date Time Accepted by / Affiliation Date Via: Via: Item No. Relinquished by / Affiliation Date Item Accepted by / Affiliation Date Via: Item No. Relinquished by / Affiliation Date Item Accepted by / Affiliation Date Via: Item No. Item No. Item No. Item No. Item No. Item No. Solution Item No. Item No. Item No. Item No. Item No. Item No. Solution Item No. Item No. Item No. Item No. Item No. Item No. A = Air GW = Groundwater SE = Setiment SO = Statil ter Nater W = Water (Blanks) O = Other (speci
Var.Item No.Relinquished by / AffiliationDateTimeAccepted by / AffiliationDateVia:///
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Vh: Vh: 3°
X = Air GW = Groundwater SE = Sedincut S0 = Stuil SW = Surface Water W = Water D = Other (speci
Cooler Nu. (s) / Temperaturcts) (°C) Sampling Kit No. Equip A = Air GW = Groundwater SE = Sedinvent SO = Suil SW = Surface Water W = Water (Blanks)
Cooler No. (s) / Temperaturcts) (°C) Sampling Kit No. Equip A = Air GW = Groundwater SE = Sediment SO = Suil SW = Surface Water W = Water (Blanks)
A = Air GW = Groundwater SE = Sedincent SO = Stoil SW = Surface Water W = Water (Blanks)
PRESERVATIVE CODES: H = Hydrochlaric acid + ice I = Ice only N = Nitric acid + ice S = Sulfaric acid + ice 0 = (specify)

Client #: JAX-01-000010 Address: Universal Engineering 5561 Florida Mining Jacksonville, FL 32257 Attn: Vincent Price Page: Page 1 of 2 Date: 07/24/2003 Log #: L79057-1

- ----

Analytical Report: SS-2 Date Sampled: 07/18/2003 Time Sampled: 11:00 Date Received: 07/19/2003 Collected By: Client

Stalvey Fuel Oil

Sample Description:

Parameter	Results	Units	Mathod	Reportable Limit	Extr. Date	Anly. Date	Analyst
SPIP Preparation							
SPLP Extraction	07/22	date	1312 EXTR				ĒB
PALE							
Naphthalene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
2-Methylnaphthalene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
1-Methylnaphthalene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Acenaphthylene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Acenaphthene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Fluorene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Phenanthrene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Anthracene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Fluoranthene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Pyrene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Benzo(a) anthracene	BDL	ug/l	3510/8270	0.20	07/23	07/23	LN
Chrysene	BDL	ug/l	3510/8270	1.0	07/23	07/23	LN
Benzo (b) fluoranthene	BDL	ug/l	3510/8270	0,20	07/23	07/23	
Benzo(k) fluoranthene	BDL	ug/l	3510/8270	0.50	07/23	07/23	
Benzo (a) pyrene	BDL	ug/l	3510/8270	0.20	07/23	Q7/23	
Indeno (1, 2, 3-c, d) pyrene	BDL	ug/l	3510/8270	0.20	07/23	07/23	
Dibenzo (a, h) Anthracene	BDL	ug/l	3510/8270	0.20	07/23	07/23	
Benzo (g, h, i) perylene	BDL	ug/l	3510/8270	1.0	07/23	07/23	
Dilution Factor	1.0		3510/8270		07/23	07/23	LN
Surrogate Recoveries:							
Nitrobenzene-d5	33.0	÷.	3510/8270	22-117	07/23	07/23	
2-Fluorobiphenyl	38.0	\$	3510/8270	34-150	07/23	07/23	
Terphenyl-dl4	61.0	¥	3510/8270	58-160	07/23	07/23	LN

	JAX-01-000010 Universal Eng 5561 Florida Jacksonville, Attn: Vincent	ineering Mining FL 32257		I	Page: I Date: (Log #: I	07/24/2	003	
Sample Dea	cription:		Anal	ytical Re				
				Date Sar Time Sar			003	
Stalvey Fu	lel Oil			Date Rede			003	
-				Collecte			•••	
				1	Reportabl	e Extr.	Anly.	
Paramote	r	Results	Units	Method	Limit	Date	Date	Analyst

PAHe by SPLP (continued)

All analyses were performed using EPA, ASTM. NIOSH, USOS, or Standard Methods and certified to meet NELAC requirements. Flags: ADL or U-below reporting limit: DL-diluted out; IL-meets internal lab limits; MI-matrix interference; NA-not appl. Flags: CFR-Pb/Cu rule: ND-non detect(RL estimated): NFL-no free liquids; dw-dry wt; wwwet wt; C(#)-see attached USB code FLDEP Plags: J(#)-estimated l; Surr. fail 2:no known QC req. 3:QC fail &R or %RPD; 4:matrix int. 5:improper fld. protocol PLOEP Flags: L-exceeds calibration; Q-holding time exceeded; T-value < MDL; V-present in blank FLDEP Flags: Y-impropor preservation; B-colonies exceed range; I-result between MDL and PQL

QAP# 980126 SUB DOH# 86122,86109,286048 SC C2RT# 96031301 USACE VA CERT# 00395
 DOHN E8524C
 NC

 ADEM ID# 40850
 IL

 TN CERTH 02985
 GA CERTH 917

 USDA Soil Permit# S-35240

NC CERT# 444 IL CERT# 200020

Respectfully submitted, none a. Can

Thomas A. Carr Principal

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

Analytical Report

For: Mr. Tommy Carr IntraLabs, Inc. 1909 Southampton Road Jacksonville, FL 32207 CC:

> Order Number: C307492 SDG Number: Client Project ID: Project: STALVEY FUEL OIL Report Date: 07/29/2003 Sampled By: Client Sample Received Date: 07/19/2003 Requisition Number:

Rick Hayes, Project Manager rhayes@stl-inc.com

The test results in this report meet all NELAP requirements for parameters for which accreditation is required or available. Any exceptions to NELAP requirements are noted in this report. Pursuant to NELAP, this report may not be reproduced, except in full, without the written approval of the laboratory.

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671

Sample Summary

Order: C307492 Date Received: 07/19/2003

Client Sample ID SS-2 Project: STALVEY FUEL OIL

C307492*1

Client: IntraLabs, Inc.

Matrix Solid Date Sampled 07/18/2003 11:00

STL Pensacola 3355 M

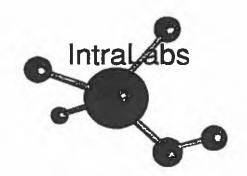
L

3355 McLemore Drive - Pensacola FL 32514 Telephone:(850) 474-1001 Fax:(850) 478-2671

		Ana	-				
Lab Sample ID Description				Matrix	Date Received	Date Sampled	SIG
07492-1 SS-2				Solid	07/19/03	07/18/03 11:00	
Parameter	Units	07492-1	Lab Sample IDs				
TPH-WG-ALI (TPHOWG)							
>/= C6-C8 Aliphatics	mg/kg dw	<70					
>C8-C10 Aliphatics	mg∕kg dw	<70					
>CIO-CI2 Aliphatics	mg/kg dw	<70					
>C12-C16 Aliphatics	mg/kg dw	<70					
>C16-C21 Aliphatics	mg/kg dw	<70					
>C21-C35 Aliphatics	mg/kg dw	<70					
Percent Solids		73					
Dilution Factor		1					
Prep Date		07/21/03					
Analysis Date		07/22/03					
Batch ID		CES357					
Prep Method		TPHONG					
Analyst		IE					
TPH-WG-ARO (TPHCWG)							
>C5-C7 Aromatics	mg/kg dw	<48					
>C7-C8 Aromatics	mg∕kg dw	<70					
>C8-C10 Aromatics	mg/kg dw	<70					
>C10-C12 Aromatics	mg/kg dw	<70					
>C12-C16 Aromatics	mg/kg dw	<70					
>C16-C21 Aromatics	mg/kg dw	<70					
>C21-C35 Aromatics	mg/kg dw	<70					
Percent Solids		73					
Dilution Factor		1					
Prep Date		07/21/03					
Analysis Date		07/22/03					
Batch ID		GES357					
Prep Method		TPHONG					
Analyst		IE					

Analytical Data Report

STL Pensacola 3355 McLemore Drive - Pensacola FL 32514 Telephone: (850) 474-1001 Fax: (850) 478-2671


			Anal	ytical Data Repor	t			
Lab Sample ID	Description				Matrix	Date Received	Date Sampled	SDG
07492-2 07492-3	Method Blank Lab Control	Standard % Reco		Lab Sample IDs	Solid Solid	07/19/03 07/19/03		
Parameter		Units	07492-2	07492-3				
Total TPH	at >/= C6-C3	5 (TPHCNG)						
Total TPH at > Dilution Factor		mg/kg dw	<50 1	76 %				
Prep Date Analysis Date			07/21/03 07/21/03					
Batch ID Prep Method			GES357 TPHCWG	GE5357				
Analyst			IE					
		\sim						

These test results meet all the requirements of NELAC. All questions regarding this test report should be directed to the STL Project Manager who signed this test report.

Czonyan		_	Chain of Custody Record	Record					
Company: Tate Lake Tar		IntraLabs, Inc.	IntraLabs, Inc.			EQ	Pa DEP Form #: <u>62-710-900(2)</u>	Page / of /	
		Phone: (904)	Phone: (904) 398-6868 • Fax: (904) 396-3933	12207 (; (904) 39	6-3933		Form Title: Chain of Custody Record Effective Date: <u>September 23, 1997</u>	lecord 1997	
Phone: Par:			07	Analyses Requested	uested	Ē.	FDEP Facility No.: Project Name: Styly P. P.	hey Fuel O'	
Sampted by (Print Name(s)) / Affiliation Project Manager			91			Sar	Z		1
			קוא				REQUESTED DUE DATE	UE DATE	
Sampler(s) Signature(s)			ZOM				0 X 1 0 1 Remarks	1 05 Lah.No.	
ltem Sampled Grab or No. Field ID No. Date Time Composit	or Matrix Dsit (see codes)	Number of Containers	Hdl				7 DAY TAT	7 AGA)	
1 55-2 7/18/00 B	R	<u> </u>					/		_
						,			
Shipment Method Total Numb	Total Number of Containers -	Ť				•	+ Preservatives (see codes)	(
	ltem No.	Relinquished by / Affiliation	y / Affiliation	Date	Тіпие	Accepted	Accepted by / Affiliation	Date Time	рс
Out: / / Via:		IN PONTINI	9	Thefter	2011	Feed	Le C	ar1 2/8/17	0
Retwmed: / / Via:		te	dec	•	1.	mucho d	multip thrund sz	7-19-03 943	n
Additional Comments:			-					_	
		Couler No. (s) / Temperature(s) (°C)	emperature(s) (oC)		San	Sampling Kit No.	Equip	Equipment ID No.	Π
MATRIX CODES: $A = Air$ GW =	GW = Groundwater	SE = Sediment	ient SO = Soil	SW	= Surfaci		Vater (Blanks)	O = Other (specify)	
PRESERVATIVE CODES: H = Hydrochloric acid + ice		l = Ice only	N = Nitric	N = Nitric acid + ice	S=	S = Sulfuric acid + ice		0 = (specify)	٦

APPENDIX G

INTRALABS LABORATORY GROUNDWATER ANALYTICAL REPORT

Client #: JAX-01-000010 Address: Universal Engineering 5561 Florida Mining Jacksonville, FL 32257 Attn: Vincent Price Page: Page 1 of 3
Date: 07/11/2003
Log #: L78542-1

Sample Description:

Stalvey Fuel Oil

Analytical Report: TMW-1 Date Sampled: 07/02/2003 Time Sampled: 17:00 Date Received: 07/05/2003 Collected By: Client

Parameter	Results	Units	Method	Reportable Limit	Extr. Date	Analysis Date	Analyst
Polymon an Arcmatic Hydr	rocarbons						
✓Naphthalene	1.0	ug/l	3510/8270	1.4	07/08	07/09	LN
✓2-Methylnaphthalene	2.3	ug/1	3510/8270	1.4	07/08	07/09	LN
V1-Methylnaphthalene	1.9	ug/l	3510/8270	1.4	07/08	07/09	LN
Acenaphthylene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Acenaphthene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Fluorene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Phenanthrene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Anthracene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Fluoranthene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Pyrene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Benzo (a) anthracene	EDL	ug/1	3510/8270	0.20	07/08	07/09	LN
Chrysene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Benzo (b) fluoranthene	BDL	ug/l	3510/8270	0.20	07/08	07/09	LN
Benzo (k) fluoranthene	BDL	ug/l	3510/8270	0.50	07/08	07/09	LN
Benzo (a) pyrene	BDL	ug/l	3510/8270	0,20	07/08	07/09	LN
Indeno (1, 2, 3-c, d) pyrene	BDL	ug/l	3510/8270	0.20	07/08	07/09	LN
Dibenzo (a, h) Anthracene	BDL	ug/1	3510/8270	0.20	07/08	07/09	LN
Benzo(g,h,i)perylene	BDL	ug/l	3510/8270	1.4	07/08	07/09	LN
Dilution Factor	1.4	-	3510/8270		07/08	07/09	LN
Surrogate Recoveries:						,	
Nitrobenzene-d5	54.0	ę.	3510/B270	22-117	07/08	07/09	LN
2-Fluorobiphenyl	64.0	ę	3510/8270	34-150	07/08	07/09	LN
Terphenyl-d14	63.0	Ł	3510/8270	58-160	07/08	07/09	LN
RESYLENE Distrint the							
EDB	BDL	ug/l	504	0.020	07/08	07/08	JL
Dilution Factor Surrogate Recoveries:	1.0		504		07/08	07/08	ЪГ
4-Bromofluorobenzene	DL C21	*	504	60-140	07/08	07/08	JL

Client #: JAX-01-000010 Address: Universal Engineering 5561 Florida Mining Jacksonville, FL 32257 Attn: Vincent Price

Sample Description:

Stalvey Fuel Oil

Fage: Page 2 of 3 Date: 07/11/2003 Log #: L78542-1

Analytical Report: TMW-1 Date Sampled: 07/02/2003 Time Sampled: 17:00 Date Received: 07/05/2003 Collected By: Client

				Reportable	e Extr.	Analysi	3
Parameter	Results	Units	Method	Limit	Date	Date	Analyst
Purgearle Byirccarbons							
Bromodichloromethane	BDL	ug/l	5030/8260	0.60	07/09	07/09	BL
Bromoform	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Bromomethane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Carbon Tetrachloride	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Chlorobenzene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Chloroethane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
2-Chloroethylvinyl Ether	BDL	ug/l	5030/8260	50	07/09	07/09	BL
Chloroform	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Chloromethane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Dibromochloromethane	BDL	ug/l	5030/8260	0.40	07/09	07/09	BL.
1,2-Dichlorobenzene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
1.3-Dichlorobenzene	BDL	ug/l	S030/B260	1.0	07/09	07/09	BL
1,4-Dichlorobenzene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Dichlorodifluoromethane	BDL	ug/l	S030/8260	1.0	07/09	07/09	BL
1.1-Dichloroethane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
1.2-Dichloroethane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
1.1-Dichloroethene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Cis-1,2-Dichloroethene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Trans-1.2-Dichloroethene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
1,2-Dichloropropane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Trans-1, 3-Dichloropropen	BDL	ug/l	5030/8260	0.20	07/09	07/09	BL
Cis-1, 3-Dichloropropene	BDL	ug/l	5030/8260	0,20	07/09	07/09	BL
Methylene Chloride	BDL	ug/l	5030/8260	5.0	07/09	07/09	BL
1,1,2,2-Tetrachloroethan	BDL	ug/l	5030/8260	0.20	07/09	07/09	BL
Tetrachloroethene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
1,1,1-Trichloroethane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
1,1,2-Trichloroethane	BDL	ug/1	5030/8260	1.0	07/09	07/09	BL
Trichloroethene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Trichlorofluoromethane	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Vinyl Chloride	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Benzene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Ethylbenzene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Toluene	BDL	ug/1	5030/8260	1.0	07/09	07/09	BL
o-Xylene	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
m, p-Xylenes	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
MTBE	BDL	ug/l	5030/8260	1.0	07/09	07/09	BL
Dilution Factor	1.0	-	5030/8260		07/09	07/09	BL
Surrogate Recoveries:							*
Dibromofluoromethane	88.0	÷	5030/B260	68-145	07/09	07/09	BL .
Toluene-D9	82.0	\$	\$030/8260	62-133	07/09	07/09	BL
4-Bromofluorobenzene	86.0	*	5030/8260	56-135	07/09	07/09	BL
			-				

0000 000 E00 WET 0010T 0007/TT/JO

	JAX-01-000010 Universal Engineering 5561 Florida Mining Jacksonville, FL 32257 Attn: Vincent Price	Date:	Page 3 of 3 07/11/2003 L78542-1
Sample Dea	scription:	Analytical Report:	
Stalvey Fu	nel Oil	Date Sampled: Time Sampled: Date Received: Collected By:	17:00 07/05/2003

	Parameter	Results	Units	Method	Limit	Date	Analysis Date	Analyst	
~	Mecale / Lead	0.35	mg/l	3010/6010	0.0050	07/08	07/10	VR	
	Florida Petroleum Range TPH(C8-C40) Dilution Factor Surrogate Recoveries:	Organics BDL 1.0	mg/l	FLPRO FLPRO	0.65	07/07 07/07	07/08 07/08	RR RR	
	o-Terphenyl Pentatriacontane	39.0 IL 25.0	\$ \$	FLPRO FLPRO	82-142 10-152	07/07 07/07	07/08 07/08	RR RR	

All analyses were performed using EPA, ASTM, NIOSH, USCS, or Standard Methods and certified to meet NELAC requirements. Flags: BDL or U-below reporting limit; DL-diluted out; XL-mosts internal lab limits; MI-matrix interference; NA-not appl. Flags: CFR-Pb/Cu rule; ND-non detect[RL estimated]; NFL-no free liquids; dw-dgy wt; ww-wat wt; C(#)-see attached USB code PLOSF Flags: J(4)-estimated lisurr. fail 2:no known QC req. 3:QC fail %R or %RPO; 4:matrix int. 5:improper fld. protocol FLDEF Plags: 1-exceeds calibration; O-holding time exceeded; T-value < MDL: V-present in blank FLD2P Flags: Y-improper preservation; B-colonies exceed range; I-result between MDL and PQL Tests performed by US Biosystems, Inc.

QAP# 980126 SUB DOH# 86122,86109.086048 SC CERT# 96031001 USACE VA CERT# 00395

DOH# E86240 ADEM 10# 40850 TN CERT# 02985 GA CERT# 917 USDA Soil Permit# 5-35240

NC CERT# 444 1L CERT# 200020 Respectfully submitted,

Thomas A. Carr

Principal

March Frank Flank Militation Proj C 757 Fais C 757 Fais C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1		or Ustody S, Inc. S, Inc. S, Inc. S, Inc. S, Inc. S, Inc. S, Inc. S, Southampton S, Southampton S, S, Inc. S, Inc. S, S,		Page DEP From A: 62-770-800(2) Form Title: Chain of Custody Record Effective Date: Scattender, 21, 1997 Effect Name: Scattender, 21, 1997 Sampling CompQAP No.: Approval Date: Represent No.: Approval Date: Recmarks Preservatives (see codes)	Page of Page of Castody Record in all Castody Record September 21. 1997 No.: September 21. 1997 No.: Approval Date: Approval Date: Approval Date: Approval Date: Lah. Mu. Recmarks Lah. Mu. Recmarks Lah. Mu. Recmarks Lah. Mu. Recmarks Lah. Mu. Recorded Mater Tables 17. 25 Mater Tables 17. 25 Mater Tables 17. 26		
	Conter Nu. (s)	Conter Nu. (x) / Temperature(x) ("C)		Sampling Kit No.	aonn	CI COVIC	
MATRIN CODEN: A = Air GW = G PRESERVATIVE CODEN: H = Hvdnxchhuric acid + icc	GW = Groundwater SE = Sediment	imem SO = Sail S	⊐ ≥l	= Surface Waler	W = Wuter (Blanks)	0 = 0ther (specify)	77

07/11/2003 16:56 FAX 904 396 3933 IntraLabs

→ UNIVERSAL 2005

Page: Page 1 of 1 Client #: JAX-01-000010 Date: 07/24/2003 Universal Engineering Address: Log #: 179057-2 5561 Florida Mining Jacksonville, FL 32257 Attn: Vincent Price Analytical Report: TMW-1 Sample Description: Date Sampled: 07/18/2003 Time Sampled: 11:50 Date Received: 07/19/2003 Stalvey Fuel Oil Collected By: Client Anly. Reportable Extr. Results Units Method Limit Date Date Analyst Parameter

MeCale Dissolved Lead BDL mg/l 3010/6010 0.0050 07/21 07/22 LL

All analyses were performed using EPA, ASTM, NIOSR, USGS, or Standard Methods and certified to meet NELAC requirements. Flags: BDL or U-below reporting limit; DL-diluted out; IL-meets internal lab limits; MI-matrix interference; NA-not appl. Flags: CFR-Pb/Cu rule; ND-non detect(RL estimated); NFL-no free liquids; dw-dry wt; ww-wet wt; C(#)-sos attached USB code FLDEF Flags: J(#)-estimated l:surr. fail 2:no known QC req. 3:QC fail %R or %RPD; 4:matrix int. 5:improper fld. protocol FLDEF Flags: L-exceeds calibration; Q-holding time exceeded; T-value < MDL; V-present in blank FLDEP Plage: Y-improper preservation; B-colonies exceed range; I-result between MDL and PQL

NC CERT# 444

0AP# 980126 SUB DOH# 86122,86109,886048 SC CERT# 96031001 USACE

VA CERT# 00395

 ADEM ID# 40850
 IL CERT# 280020

 TN CERT# 02985
 GA CERT# 917

 USDA Soil Permit# 5-35240
 Soil Permit# 5-35240

DOH# E86240

Respectfully submitted, Thomas Q. Can

Thomas A. Carr Principal

0	٥	/· @		Lab. No.									Time	2711 60	. W. C/ S	3340			= Other (specify)	(y)
	Page (.90012) Cuitody Record anber 23, 1992	5-1	ey (we)	REQUESTED DUE DATE / Remarks			NG	0	ן אר י	150	L 0 1	ee codes)	Date	210	Dig/g	1/3/1	Equipment ID Nu.		O = Other	U = (specify)
	Pege DEP Form 9: 52:770-904/21 Form Title: Chain of Cautody Record Effective Date: September 23, 1992	FDEP Faclity No:	Project Name: 274/V Sampling CompQAP No. Appre	REQUES / Remarks							đ	- Preservatives (see codes)	Accepted by Affiliation	Have	2 dure	Jenro	-		/ = Water (Blanks)	+ ice
	DEP Fom P. Gai Der Fom Tite: Chai Fom Tite: Chai					82	1001			x1 1A	<u>a</u> , e. e.			X		CAM	Sampling Kit No.		= Surface Water W	S = Sulfurix acid + ice
	396-39S	Analyses Requested			<u>. </u>	0				B	#		Dute Time	712/03 11:46	nici later		╞		SW = Sur fa	cjd + icc
Allof Custody Record	htraLabs, Inc. Address: 1909 Southempton Road Jacksonville, FL 32207 Phone: (904) 396-6868 • Fax: (904)		94 #E	7 pr 18 - 0 MD	HAL	7	Z						y / Affiliation	3	-un-	d YN	er Nu. (s) / Temperature(s) (vC)		cnt SO = Suil	N = Nitric acjd + icc
-10	htraLabs, Inc. Address: 1909 Sout Jacksonvi Phone: (904) 396-68			2	Number uf Containers	8	\				•	4	- <u>e</u>	Win Un BO	SK C	E.	Cooler No. (s) / Ter	24	SE = Sediment	
LSOFT	Science Bluel	0120 100		A (60)	Grab un Matrix Composit (see rodes)	GRA9 50	T GU					 Total Number of Cuntainers ->	llein No.						GW = Groundwater	+ ice 1 = Ice only
8	Miversal Engineering Science Sel Florida Mining Bluel	Fauc		my Pue		304. I	11:02					 Total Nu		Viu:	Via:	ing Group ser	wen			H = Hydrochloric acid + ice
	Miversal Englande	C F	Sumpled by [Prins Name(s)] / Affiliation	Sampler(s) Signature(s) Noncon A	Field ID No. Date	3//6	2 1-07					 Shipment Method				Vocking (b lab w		ES: A ≂ Aìr	F 1
j	Company: Univ Address: 5561	Phone: 7 9	Sumpled by {Prins	Sampler(s) Signat	liton No. Field	7-55 1	2-TMW-1					 Ŗ		Otat:	Returned:	Hitter	the Sim		MATRIX CODES:	PRESERVATIVE CODES:

U

REGULATORY & ENVIRONMENTAL SERVICES DEPARTMENT

Particksonvulle rus

Air and Water Quality Division

November 5, 2003

CERTIFIED MAIL - RETURN RECEIPT REQUESTED

Mr. Larry Stalvey Stalvey Fuel Oil, Inc. 2945 Broward Road Jacksonville, Florida 32218 - 5718

Subject: Stalvey Fuel Oil, Inc. 2945 Broward Road Jacksonville, Duval County, Florida FDEP Facility ID# 168629668

Dear Mr. Stalvey:

The Air and Water Quality Division (AWQD) has completed a review of the *Tank Closure* Assessment dated August 8, 2003, (received August 11, 2003) prepared and submitted by Universal Engineering Sciences for the above-referenced facility. The AWQD has determined that the Florida Department of Environmental Protection (FDEP) tank closure assessment requirements have been satisfied. No contamination was identified in this report.

This letter does not constitute approval of the the *Tank Closure Assessment* as a site assessment or "No Further Action" by the FDEP or AWQD. The FDEP identification number for this facility is 168629668. Please use this number on all correspondence with the FDEP or AWQD. If you have any questions or require additional information, please contact us at (904) 630-3404 or at the letterhead address.

Sincerely,

Thomas W. Griffin Storage Tanks Compliance Supervisor

TWG/AGM/ema

Sincerely,

Allene G. McIntosh Petroleum Cleanup and Tanks Program

C: Grace Rivera, FDEP – Tallahassee Steve McInall, P.E., Universal Engineering Sciences File

G:\DATA\IIAZMAT\TANKS\GC509 TASK 6\CLOSURE ASSESSMENTS\CA CORRESPONDENCE\8629668 Stalvey CCLI.doc

117 W. Duval St., Suite 225 Jacksonville, FL 32202 Fax: (904) 630-3638

Air Quality(904) 630-4900Ground Water(904) 630-4900Water Quality(904) 630-3404Hazardous Materials(904) 630-3404

Recipient of the 2001 Governor's Sterling Award

SITE 8 – Franko's Upholstery

No assessment information available

SITE 9 – Allied Auto & Truck Repair, Inc.

No assessment information available

APPENDIX E

CUSTOM SOIL RESOURCE REPORT FOR DUVAL COUNTY, FLORIDA

United States Department of Agriculture

NRCS

Natural Resources Conservation Service A product of the National Cooperative Soil Survey, a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local participants

Custom Soil Resource Report for Duval County, Florida

Preface

Soil surveys contain information that affects land use planning in survey areas. They highlight soil limitations that affect various land uses and provide information about the properties of the soils in the survey areas. Soil surveys are designed for many different users, including farmers, ranchers, foresters, agronomists, urban planners, community officials, engineers, developers, builders, and home buyers. Also, conservationists, teachers, students, and specialists in recreation, waste disposal, and pollution control can use the surveys to help them understand, protect, or enhance the environment.

Various land use regulations of Federal, State, and local governments may impose special restrictions on land use or land treatment. Soil surveys identify soil properties that are used in making various land use or land treatment decisions. The information is intended to help the land users identify and reduce the effects of soil limitations on various land uses. The landowner or user is responsible for identifying and complying with existing laws and regulations.

Although soil survey information can be used for general farm, local, and wider area planning, onsite investigation is needed to supplement this information in some cases. Examples include soil quality assessments (http://www.nrcs.usda.gov/wps/portal/nrcs/main/soils/health/) and certain conservation and engineering applications. For more detailed information, contact your local USDA Service Center (https://offices.sc.egov.usda.gov/locator/app?agency=nrcs) or your NRCS State Soil Scientist (http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/contactus/? cid=nrcs142p2_053951).

Great differences in soil properties can occur within short distances. Some soils are seasonally wet or subject to flooding. Some are too unstable to be used as a foundation for buildings or roads. Clayey or wet soils are poorly suited to use as septic tank absorption fields. A high water table makes a soil poorly suited to basements or underground installations.

The National Cooperative Soil Survey is a joint effort of the United States Department of Agriculture and other Federal agencies, State agencies including the Agricultural Experiment Stations, and local agencies. The Natural Resources Conservation Service (NRCS) has leadership for the Federal part of the National Cooperative Soil Survey.

Information about soils is updated periodically. Updated information is available through the NRCS Web Soil Survey, the site for official soil survey information.

The U.S. Department of Agriculture (USDA) prohibits discrimination in all its programs and activities on the basis of race, color, national origin, age, disability, and where applicable, sex, marital status, familial status, parental status, religion, sexual orientation, genetic information, political beliefs, reprisal, or because all or a part of an individual's income is derived from any public assistance program. (Not all prohibited bases apply to all programs.) Persons with disabilities who require

alternative means for communication of program information (Braille, large print, audiotape, etc.) should contact USDA's TARGET Center at (202) 720-2600 (voice and TDD). To file a complaint of discrimination, write to USDA, Director, Office of Civil Rights, 1400 Independence Avenue, S.W., Washington, D.C. 20250-9410 or call (800) 795-3272 (voice) or (202) 720-6382 (TDD). USDA is an equal opportunity provider and employer.

Contents

Preface	2
How Soil Surveys Are Made	
Soil Map	
Soil Map	9
Legend	10
Map Unit Legend	
Map Unit Descriptions	
Duval County, Florida	13
29—Kureb fine sand, 2 to 8 percent slopes	13
32—Leon fine sand, 0 to 2 percent slopes	14
38—Mascotte fine sand, 0 to 2 percent slopes	16
63—Sapelo fine sand, 0 to 2 percent slopes	17
66—Surrency loamy fine sand, depressional, 0 to 2 percent slopes	19
68—Tisonia mucky peat, 0 to 1 percent slopes, very frequently flooded	I 21
69—Urban land	23
72—Urban land-Ortega-Kershaw complex, 0 to 8 percent slopes	24
99—Water	27
References	28

How Soil Surveys Are Made

Soil surveys are made to provide information about the soils and miscellaneous areas in a specific area. They include a description of the soils and miscellaneous areas and their location on the landscape and tables that show soil properties and limitations affecting various uses. Soil scientists observed the steepness, length, and shape of the slopes; the general pattern of drainage; the kinds of crops and native plants; and the kinds of bedrock. They observed and described many soil profiles. A soil profile is the sequence of natural layers, or horizons, in a soil. The profile extends from the surface down into the unconsolidated material in which the soil formed or from the surface down to bedrock. The unconsolidated material is devoid of roots and other living organisms and has not been changed by other biological activity.

Currently, soils are mapped according to the boundaries of major land resource areas (MLRAs). MLRAs are geographically associated land resource units that share common characteristics related to physiography, geology, climate, water resources, soils, biological resources, and land uses (USDA, 2006). Soil survey areas typically consist of parts of one or more MLRA.

The soils and miscellaneous areas in a survey area occur in an orderly pattern that is related to the geology, landforms, relief, climate, and natural vegetation of the area. Each kind of soil and miscellaneous area is associated with a particular kind of landform or with a segment of the landform. By observing the soils and miscellaneous areas in the survey area and relating their position to specific segments of the landform, a soil scientist develops a concept, or model, of how they were formed. Thus, during mapping, this model enables the soil scientist to predict with a considerable degree of accuracy the kind of soil or miscellaneous area at a specific location on the landscape.

Commonly, individual soils on the landscape merge into one another as their characteristics gradually change. To construct an accurate soil map, however, soil scientists must determine the boundaries between the soils. They can observe only a limited number of soil profiles. Nevertheless, these observations, supplemented by an understanding of the soil-vegetation-landscape relationship, are sufficient to verify predictions of the kinds of soil in an area and to determine the boundaries.

Soil scientists recorded the characteristics of the soil profiles that they studied. They noted soil color, texture, size and shape of soil aggregates, kind and amount of rock fragments, distribution of plant roots, reaction, and other features that enable them to identify soils. After describing the soils in the survey area and determining their properties, the soil scientists assigned the soils to taxonomic classes (units). Taxonomic classes are concepts. Each taxonomic class has a set of soil characteristics with precisely defined limits. The classes are used as a basis for comparison to classify soils systematically. Soil taxonomy, the system of taxonomic classification used in the United States, is based mainly on the kind and character of soil properties and the arrangement of horizons within the profile. After the soil

scientists classified and named the soils in the survey area, they compared the individual soils with similar soils in the same taxonomic class in other areas so that they could confirm data and assemble additional data based on experience and research.

The objective of soil mapping is not to delineate pure map unit components; the objective is to separate the landscape into landforms or landform segments that have similar use and management requirements. Each map unit is defined by a unique combination of soil components and/or miscellaneous areas in predictable proportions. Some components may be highly contrasting to the other components of the map unit. The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The delineation of such landforms and landform segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, onsite investigation is needed to define and locate the soils and miscellaneous areas.

Soil scientists make many field observations in the process of producing a soil map. The frequency of observation is dependent upon several factors, including scale of mapping, intensity of mapping, design of map units, complexity of the landscape, and experience of the soil scientist. Observations are made to test and refine the soil-landscape model and predictions and to verify the classification of the soils at specific locations. Once the soil-landscape model is refined, a significantly smaller number of measurements of individual soil properties are made and recorded. These measurements may include field measurements, such as those for color, depth to bedrock, and texture, and laboratory measurements, such as those for content of sand, silt, clay, salt, and other components. Properties of each soil typically vary from one point to another across the landscape.

Observations for map unit components are aggregated to develop ranges of characteristics for the components. The aggregated values are presented. Direct measurements do not exist for every property presented for every map unit component. Values for some properties are estimated from combinations of other properties.

While a soil survey is in progress, samples of some of the soils in the area generally are collected for laboratory analyses and for engineering tests. Soil scientists interpret the data from these analyses and tests as well as the field-observed characteristics and the soil properties to determine the expected behavior of the soils under different uses. Interpretations for all of the soils are field tested through observation of the soils in different uses and under different levels of management. Some interpretations are modified to fit local conditions, and some new interpretations are developed to meet local needs. Data are assembled from other sources, such as research information, production records, and field experience of specialists. For example, data on crop yields under defined levels of management are assembled from farm records and from field or plot experiments on the same kinds of soil.

Predictions about soil behavior are based not only on soil properties but also on such variables as climate and biological activity. Soil conditions are predictable over long periods of time, but they are not predictable from year to year. For example, soil scientists can predict with a fairly high degree of accuracy that a given soil will have a high water table within certain depths in most years, but they cannot predict that a high water table will always be at a specific level in the soil on a specific date.

After soil scientists located and identified the significant natural bodies of soil in the survey area, they drew the boundaries of these bodies on aerial photographs and

identified each as a specific map unit. Aerial photographs show trees, buildings, fields, roads, and rivers, all of which help in locating boundaries accurately.

Soil Map

The soil map section includes the soil map for the defined area of interest, a list of soil map units on the map and extent of each map unit, and cartographic symbols displayed on the map. Also presented are various metadata about data used to produce the map, and a description of each soil map unit.

Custom Soil Resource Report Soil Map

	MAP LEGEND			MAP INFORMATION		
Area of Int	terest (AOI) Area of Interest (AOI)	8	Spoil Area Stony Spot	The soil surveys that comprise your AOI were mapped at 1:24,000.		
Soils	Soil Map Unit Polygons	00 V	Very Stony Spot Wet Spot	Warning: Soil Map may not be valid at this scale.		
ĩ	Soil Map Unit Lines Soil Map Unit Points	۵ •	Other Special Line Features	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of		
ల	Point Features Blowout	Water Fea		contrasting soils that could have been shown at a more detailed scale.		
×	Borrow Pit Clay Spot	Transport	ation Rails	Please rely on the bar scale on each map sheet for map measurements.		
\$ *	Closed Depression Gravel Pit Gravelly Spot	~	Interstate Highways US Routes	Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)		
: 0 A	Landfill Lava Flow	~	Major Roads Local Roads	Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts		
ん 小 の	Marsh or swamp Mine or Quarry	Backgrou	n a Aerial Photography	distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.		
0	Miscellaneous Water Perennial Water			This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.		
~ +	Rock Outcrop Saline Spot			Soil Survey Area: Duval County, Florida Survey Area Data: Version 15, Jun 11, 2020		
· ·: •	Sandy Spot Severely Eroded Spot			Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.		
◇ ≫	Sinkhole Slide or Slip			Date(s) aerial images were photographed: Dec 5, 2019—Dec 18, 2019		
ø	Sodic Spot			The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.		

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
29	Kureb fine sand, 2 to 8 percent slopes	0.6	1.9%
32	Leon fine sand, 0 to 2 percent slopes	0.1	0.5%
38	Mascotte fine sand, 0 to 2 percent slopes	4.5	15.3%
63	Sapelo fine sand, 0 to 2 percent slopes	0.4	1.4%
66	Surrency loamy fine sand, depressional, 0 to 2 percent slopes	0.2	0.7%
68	Tisonia mucky peat, 0 to 1 percent slopes, very frequently flooded	1.6	5.5%
69	Urban land	13.4	46.1%
72	Urban land-Ortega-Kershaw complex, 0 to 8 percent slopes	2.7	9.2%
99	Water	5.7	19.6%
Totals for Area of Interest		29.2	100.0%

Map Unit Descriptions

The map units delineated on the detailed soil maps in a soil survey represent the soils or miscellaneous areas in the survey area. The map unit descriptions, along with the maps, can be used to determine the composition and properties of a unit.

A map unit delineation on a soil map represents an area dominated by one or more major kinds of soil or miscellaneous areas. A map unit is identified and named according to the taxonomic classification of the dominant soils. Within a taxonomic class there are precisely defined limits for the properties of the soils. On the landscape, however, the soils are natural phenomena, and they have the characteristic variability of all natural phenomena. Thus, the range of some observed properties may extend beyond the limits defined for a taxonomic class. Areas of soils of a single taxonomic class rarely, if ever, can be mapped without including areas of other taxonomic classes. Consequently, every map unit is made up of the soils or miscellaneous areas for which it is named and some minor components that belong to taxonomic classes other than those of the major soils.

Most minor soils have properties similar to those of the dominant soil or soils in the map unit, and thus they do not affect use and management. These are called noncontrasting, or similar, components. They may or may not be mentioned in a particular map unit description. Other minor components, however, have properties and behavioral characteristics divergent enough to affect use or to require different

management. These are called contrasting, or dissimilar, components. They generally are in small areas and could not be mapped separately because of the scale used. Some small areas of strongly contrasting soils or miscellaneous areas are identified by a special symbol on the maps. If included in the database for a given area, the contrasting minor components are identified in the map unit descriptions along with some characteristics of each. A few areas of minor components may not have been observed, and consequently they are not mentioned in the descriptions, especially where the pattern was so complex that it was impractical to make enough observations to identify all the soils and miscellaneous areas on the landscape.

The presence of minor components in a map unit in no way diminishes the usefulness or accuracy of the data. The objective of mapping is not to delineate pure taxonomic classes but rather to separate the landscape into landforms or landform segments that have similar use and management requirements. The delineation of such segments on the map provides sufficient information for the development of resource plans. If intensive use of small areas is planned, however, onsite investigation is needed to define and locate the soils and miscellaneous areas.

An identifying symbol precedes the map unit name in the map unit descriptions. Each description includes general facts about the unit and gives important soil properties and qualities.

Soils that have profiles that are almost alike make up a *soil series*. Except for differences in texture of the surface layer, all the soils of a series have major horizons that are similar in composition, thickness, and arrangement.

Soils of one series can differ in texture of the surface layer, slope, stoniness, salinity, degree of erosion, and other characteristics that affect their use. On the basis of such differences, a soil series is divided into *soil phases*. Most of the areas shown on the detailed soil maps are phases of soil series. The name of a soil phase commonly indicates a feature that affects use or management. For example, Alpha silt loam, 0 to 2 percent slopes, is a phase of the Alpha series.

Some map units are made up of two or more major soils or miscellaneous areas. These map units are complexes, associations, or undifferentiated groups.

A *complex* consists of two or more soils or miscellaneous areas in such an intricate pattern or in such small areas that they cannot be shown separately on the maps. The pattern and proportion of the soils or miscellaneous areas are somewhat similar in all areas. Alpha-Beta complex, 0 to 6 percent slopes, is an example.

An *association* is made up of two or more geographically associated soils or miscellaneous areas that are shown as one unit on the maps. Because of present or anticipated uses of the map units in the survey area, it was not considered practical or necessary to map the soils or miscellaneous areas separately. The pattern and relative proportion of the soils or miscellaneous areas are somewhat similar. Alpha-Beta association, 0 to 2 percent slopes, is an example.

An *undifferentiated group* is made up of two or more soils or miscellaneous areas that could be mapped individually but are mapped as one unit because similar interpretations can be made for use and management. The pattern and proportion of the soils or miscellaneous areas in a mapped area are not uniform. An area can be made up of only one of the major soils or miscellaneous areas, or it can be made up of all of them. Alpha and Beta soils, 0 to 2 percent slopes, is an example.

Some surveys include *miscellaneous areas*. Such areas have little or no soil material and support little or no vegetation. Rock outcrop is an example.

Duval County, Florida

29—Kureb fine sand, 2 to 8 percent slopes

Map Unit Setting

National map unit symbol: sstl Elevation: 0 to 190 feet Mean annual precipitation: 48 to 56 inches Mean annual air temperature: 64 to 72 degrees F Frost-free period: 263 to 293 days Farmland classification: Not prime farmland

Map Unit Composition

Kureb and similar soils: 93 percent *Minor components:* 7 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kureb

Setting

Landform: Rises on marine terraces, dunes on marine terraces Landform position (three-dimensional): Interfluve, side slope Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian deposits or sandy fluvial or marine deposits

Typical profile

A - 0 to 3 inches: fine sand C - 3 to 80 inches: fine sand

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water capacity: Very low (about 1.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 7s
Hydrologic Soil Group: A
Forage suitability group: Sandy soils on ridges and dunes of xeric uplands (G153AA111FL)
Other vegetative classification: Sandy soils on ridges and dunes of xeric uplands (G153AA111FL)
Hydric soil rating: No

Minor Components

Cornelia

Percent of map unit: 3 percent Landform: Knolls on marine terraces, rises on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sandy soils on ridges and dunes of xeric uplands (G153AA111FL) Hydric soil rating: No

Mandarin

Percent of map unit: 2 percent Landform: Flats on marine terraces, rises on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sandy soils on rises and knolls of mesic uplands (G153AA131FL) Hydric soil rating: No

Ortega

Percent of map unit: 2 percent Landform: Rises on marine terraces, knolls on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sandy soils on rises, knolls, and ridges of mesic uplands (G153AA121FL) Hydric soil rating: No

32—Leon fine sand, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2sxqv Elevation: 0 to 250 feet Mean annual precipitation: 47 to 61 inches Mean annual air temperature: 55 to 81 degrees F Frost-free period: 267 to 347 days Farmland classification: Not prime farmland

Map Unit Composition

Leon, non-hydric, and similar soils: 89 percent Minor components: 11 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Leon, Non-hydric

Setting

Landform: Flatwoods Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 8 inches: fine sand E - 8 to 18 inches: fine sand Bh - 18 to 37 inches: fine sand E' - 37 to 45 inches: fine sand B'h - 45 to 80 inches: fine sand

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately low to high (0.06 to 2.00 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water capacity: Low (about 4.0 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 4w
Hydrologic Soil Group: A/D
Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G153AA141FL)
Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G153AA141FL)
Hydric soil rating: No

Minor Components

Leon, hydric

Percent of map unit: 5 percent Landform: Flatwoods Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

Mascotte

Percent of map unit: 3 percent Landform: Flatwoods Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

Mandarin

Percent of map unit: 3 percent Landform: Rises Landform position (three-dimensional): Talf, rise Down-slope shape: Convex, linear Across-slope shape: Convex, linear Other vegetative classification: Sandy soils on rises and knolls of mesic uplands (G153AA131FL) Hydric soil rating: No

38—Mascotte fine sand, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: 2vt0w Elevation: 0 to 180 feet Mean annual precipitation: 40 to 62 inches Mean annual air temperature: 55 to 79 degrees F Frost-free period: 233 to 365 days Farmland classification: Not prime farmland

Map Unit Composition

Mascotte, non-hydric, and similar soils: 94 percent *Minor components:* 6 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Mascotte, Non-hydric

Setting

Landform: Flatwoods Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 9 inches: fine sand Eg - 9 to 16 inches: fine sand Bh - 16 to 29 inches: fine sand E'g - 29 to 36 inches: fine sand Btg - 36 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Capacity of the most limiting layer to transmit water (Ksat): Moderately high (0.20 to 0.57 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm) *Sodium adsorption ratio, maximum:* 4.0 *Available water capacity:* Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 3w
Hydrologic Soil Group: C/D
Forage suitability group: Sandy over loamy soils on flats of hydric or mesic lowlands (G153AA241FL)
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G153AA241FL)
Hydric soil rating: No

Minor Components

Unnamed

Percent of map unit: 5 percent Landform: Flatwoods Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Hydric soil rating: Yes

Surrency

Percent of map unit: 1 percent Landform: Depressions, drainageways Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave, convex Other vegetative classification: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G153AA245FL) Hydric soil rating: Yes

63—Sapelo fine sand, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: ssvp Elevation: 0 to 190 feet Mean annual precipitation: 48 to 56 inches Mean annual air temperature: 64 to 72 degrees F Frost-free period: 263 to 293 days Farmland classification: Not prime farmland

Map Unit Composition

Sapelo and similar soils: 90 percent Minor components: 10 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Sapelo

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 6 inches: fine sand E - 6 to 23 inches: fine sand Bh - 23 to 32 inches: fine sand E' - 32 to 56 inches: fine sand Btg - 56 to 80 inches: fine sandy loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Poorly drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: About 6 to 18 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water capacity: Low (about 4.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3w Hydrologic Soil Group: B/D Forage suitability group: Sandy soils on flats of mesic or hydric lowlands (G153AA141FL) Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G153AA141FL) Hydric soil rating: No

Minor Components

Yonges

Percent of map unit: 2 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Loamy and clayey soils on flats of hydric or mesic lowlands (G153AA341FL) Hydric soil rating: Yes

Albany

Percent of map unit: 2 percent *Landform:* Knolls on marine terraces, ridges on marine terraces *Landform position (three-dimensional):* Interfluve, talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sandy soils on rises and knolls of mesic uplands (G153AA131FL) Hydric soil rating: No

Pelham, non-hydric

Percent of map unit: 2 percent
Landform: Flats on marine terraces
Landform position (three-dimensional): Talf
Down-slope shape: Convex
Across-slope shape: Linear
Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G153AA241FL)
Hydric soil rating: No

Pelham, hydric

Percent of map unit: 2 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G153AA241FL) Hydric soil rating: Yes

Surrency

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G153AA245FL) Hydric soil rating: Yes

66—Surrency loamy fine sand, depressional, 0 to 2 percent slopes

Map Unit Setting

National map unit symbol: ssvs Elevation: 0 to 190 feet Mean annual precipitation: 48 to 56 inches Mean annual air temperature: 64 to 72 degrees F Frost-free period: 263 to 293 days Farmland classification: Not prime farmland

Map Unit Composition

Surrency and similar soils: 92 percent *Minor components:* 8 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Surrency

Setting

Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Parent material: Sandy and loamy marine deposits

Typical profile

A - 0 to 14 inches: loamy fine sand E - 14 to 26 inches: fine sand Btg - 26 to 70 inches: fine sandy loam Cg - 70 to 80 inches: sandy clay loam

Properties and qualities

Slope: 0 to 2 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.20 to 2.00 in/hr)
Depth to water table: About 0 inches
Frequency of flooding: None
Frequency of ponding: Frequent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water capacity: Moderate (about 6.8 inches)

Interpretive groups

Land capability classification (irrigated): None specified
Land capability classification (nonirrigated): 6w
Hydrologic Soil Group: B/D
Forage suitability group: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G153AA245FL)
Other vegetative classification: Sandy over loamy soils on stream terraces, flood plains, or in depressions (G153AA245FL)
Hydric soil rating: Yes

Minor Components

Lynn haven

Percent of map unit: 2 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G153AA141FL) Hydric soil rating: Yes

Pamlico

Percent of map unit: 2 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave

Other vegetative classification: Organic soils in depressions and on flood plains (G153AA645FL)

Hydric soil rating: Yes

Pelham, hydric

Percent of map unit: 2 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sandy over loamy soils on flats of hydric or mesic lowlands (G153AA241FL) Hydric soil rating: Yes

Yonges

Percent of map unit: 1 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Loamy and clayey soils on flats of hydric or mesic lowlands (G153AA341FL) Hydric soil rating: Yes

Stockade

Percent of map unit: 1 percent Landform: Depressions on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave, linear Across-slope shape: Concave Other vegetative classification: Loamy and clayey soils on stream terraces, flood plains, or in depressions (G153AA345FL) Hydric soil rating: Yes

68—Tisonia mucky peat, 0 to 1 percent slopes, very frequently flooded

Map Unit Setting

National map unit symbol: ssvv Elevation: 0 to 150 feet Mean annual precipitation: 48 to 56 inches Mean annual air temperature: 64 to 72 degrees F Frost-free period: 263 to 293 days Farmland classification: Not prime farmland

Map Unit Composition

Tisonia and similar soils: 96 percent *Minor components:* 4 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Tisonia

Setting

Landform: Tidal marshes on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: Organic material over clayey alluvium

Typical profile

Oe - 0 to 18 inches: mucky peat *Cg - 18 to 65 inches:* clay

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Very poorly drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: About 0 to 6 inches
Frequency of flooding: Very frequent
Frequency of ponding: None
Maximum salinity: Strongly saline (16.0 to 32.0 mmhos/cm)
Sodium adsorption ratio, maximum: 35.0
Available water capacity: Very high (about 12.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8 Hydrologic Soil Group: D Forage suitability group: Forage suitability group not assigned (G153AA999FL) Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: Yes

Minor Components

Boulogne

Percent of map unit: 2 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Sandy soils on flats of mesic or hydric lowlands (G153AA141FL) Hydric soil rating: No

Leon, tidal

Percent of map unit: 1 percent Landform: Tidal marshes on marine terraces Landform position (three-dimensional): Dip Down-slope shape: Concave Across-slope shape: Concave Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: Yes

Maurepas

Percent of map unit: 1 percent Landform: Flood plains on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Other vegetative classification: Organic soils in depressions and on flood plains (G153AA645FL) Hydric soil rating: Yes

69—Urban land

Map Unit Setting

National map unit symbol: ssvw Elevation: 0 to 190 feet Mean annual precipitation: 48 to 56 inches Mean annual air temperature: 64 to 72 degrees F Frost-free period: 263 to 293 days Farmland classification: Not prime farmland

Map Unit Composition

Urban land: 95 percent *Minor components:* 5 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Urban Land

Setting

Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Linear Across-slope shape: Linear Parent material: No parent material

Interpretive groups

Land capability classification (irrigated): None specified Forage suitability group: Forage suitability group not assigned (G153AA999FL) Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: Unranked

Minor Components

Hurricane

Percent of map unit: 1 percent Landform: Flats on marine terraces, rises on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear *Other vegetative classification:* Forage suitability group not assigned (G153AA999FL) *Hydric soil rating:* No

Albany

Percent of map unit: 1 percent Landform: Knolls on marine terraces, ridges on marine terraces Landform position (three-dimensional): Interfluve, talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: No

Pelham, hydric

Percent of map unit: 1 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: Yes

Leon

Percent of map unit: 1 percent Landform: Flats on marine terraces Landform position (three-dimensional): Talf Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: No

Ortega

Percent of map unit: 1 percent Landform: Knolls on marine terraces, rises on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: No

72—Urban land-Ortega-Kershaw complex, 0 to 8 percent slopes

Map Unit Setting

National map unit symbol: ssvz Elevation: 30 to 190 feet Mean annual precipitation: 48 to 56 inches Mean annual air temperature: 64 to 72 degrees F *Frost-free period:* 263 to 293 days *Farmland classification:* Not prime farmland

Map Unit Composition

Urban land: 35 percent *Ortega and similar soils:* 30 percent *Kershaw and similar soils:* 25 percent *Minor components:* 10 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Urban Land

Setting

Landform: Rises on marine terraces Landform position (three-dimensional): Interfluve, rise, talf Down-slope shape: Linear Across-slope shape: Convex, linear Parent material: No parent material

Interpretive groups

Land capability classification (irrigated): None specified Forage suitability group: Forage suitability group not assigned (G153AA999FL) Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: Unranked

Description of Ortega

Setting

Landform: Ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Eolian or sandy marine deposits

Typical profile

A - 0 to 5 inches: fine sand

C - 5 to 82 inches: fine sand

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Moderately well drained
Runoff class: Negligible
Capacity of the most limiting layer to transmit water (Ksat): High to very high (6.00 to 20.00 in/hr)
Depth to water table: About 42 to 72 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water capacity: Low (about 3.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 3s Hydrologic Soil Group: A Forage suitability group: Forage suitability group not assigned (G153AA999FL)
 Other vegetative classification: Forage suitability group not assigned (G153AA999FL)
 Hydric soil rating: No

Description of Kershaw

Setting

Landform: Ridges on marine terraces, knolls on marine terraces Landform position (three-dimensional): Side slope, interfluve Down-slope shape: Convex Across-slope shape: Linear Parent material: Sandy marine deposits

Typical profile

A - 0 to 3 inches: fine sand *C - 3 to 80 inches:* fine sand

Properties and qualities

Slope: 2 to 8 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Excessively drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Very high (20.00 to 99.90 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water capacity: Very low (about 2.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: A Forage suitability group: Forage suitability group not assigned (G153AA999FL) Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: No

Minor Components

Ridgewood

Percent of map unit: 5 percent Landform: Knolls on marine terraces, ridges on marine terraces Landform position (three-dimensional): Interfluve Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: No

Hurricane

Percent of map unit: 5 percent *Landform:* Rises on marine terraces, flats on marine terraces *Landform position (three-dimensional):* Interfluve

Custom Soil Resource Report

Down-slope shape: Convex Across-slope shape: Linear Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: No

99—Water

Map Unit Composition

Water: 100 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Water

Interpretive groups

Land capability classification (irrigated): None specified Forage suitability group: Forage suitability group not assigned (G153AA999FL) Other vegetative classification: Forage suitability group not assigned (G153AA999FL) Hydric soil rating: Unranked

References

American Association of State Highway and Transportation Officials (AASHTO). 2004. Standard specifications for transportation materials and methods of sampling and testing. 24th edition.

American Society for Testing and Materials (ASTM). 2005. Standard classification of soils for engineering purposes. ASTM Standard D2487-00.

Cowardin, L.M., V. Carter, F.C. Golet, and E.T. LaRoe. 1979. Classification of wetlands and deep-water habitats of the United States. U.S. Fish and Wildlife Service FWS/OBS-79/31.

Federal Register. July 13, 1994. Changes in hydric soils of the United States.

Federal Register. September 18, 2002. Hydric soils of the United States.

Hurt, G.W., and L.M. Vasilas, editors. Version 6.0, 2006. Field indicators of hydric soils in the United States.

National Research Council. 1995. Wetlands: Characteristics and boundaries.

Soil Survey Division Staff. 1993. Soil survey manual. Soil Conservation Service. U.S. Department of Agriculture Handbook 18. http://www.nrcs.usda.gov/wps/portal/ nrcs/detail/national/soils/?cid=nrcs142p2_054262

Soil Survey Staff. 1999. Soil taxonomy: A basic system of soil classification for making and interpreting soil surveys. 2nd edition. Natural Resources Conservation Service, U.S. Department of Agriculture Handbook 436. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053577

Soil Survey Staff. 2010. Keys to soil taxonomy. 11th edition. U.S. Department of Agriculture, Natural Resources Conservation Service. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/?cid=nrcs142p2_053580

Tiner, R.W., Jr. 1985. Wetlands of Delaware. U.S. Fish and Wildlife Service and Delaware Department of Natural Resources and Environmental Control, Wetlands Section.

United States Army Corps of Engineers, Environmental Laboratory. 1987. Corps of Engineers wetlands delineation manual. Waterways Experiment Station Technical Report Y-87-1.

United States Department of Agriculture, Natural Resources Conservation Service. National forestry manual. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/ home/?cid=nrcs142p2 053374

United States Department of Agriculture, Natural Resources Conservation Service. National range and pasture handbook. http://www.nrcs.usda.gov/wps/portal/nrcs/ detail/national/landuse/rangepasture/?cid=stelprdb1043084

United States Department of Agriculture, Natural Resources Conservation Service. National soil survey handbook, title 430-VI. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/scientists/?cid=nrcs142p2_054242

United States Department of Agriculture, Natural Resources Conservation Service. 2006. Land resource regions and major land resource areas of the United States, the Caribbean, and the Pacific Basin. U.S. Department of Agriculture Handbook 296. http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/soils/? cid=nrcs142p2_053624

United States Department of Agriculture, Soil Conservation Service. 1961. Land capability classification. U.S. Department of Agriculture Handbook 210. http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_052290.pdf

APPENDIX F

ASBESTOS SURVEY REPORT, DATED FEBRUARY 10, 2021

Asbestos Survey Report Bridge No. #720033 SR 115 over Trout River Duval County, Florida

Prepared for: Florida Department of Transportation District 2 1109 South Marion Avenue Lake City, Florida 32025

Prepared by APTIM Environmental & Infrastructure, Inc. 9143 Philips Highway, Suite 400 Jacksonville, Florida 32256

FDOT Contract BE 398 FM 437437-2-C2-06, LOA 50 APTIM Project 631017420 February 10, 2021

ASBESTOS SURVEY TITLE SHEET

Facility Name:	Bridge #720033
Address/Location:	SR 115 over Trout River
City, County, State:	Duval County, Florida
Owner Agency:	Florida Department of Transportation District 2
Date of Survey:	12/3/2020
Consultant:	APTIM Environemental & Infrastructure, Inc.
Consultant Address: _	9143 Philips Highway, Suite 400
City, State, Zip Code:	Jacksonville, Florida 32256
Telephone Number:	904-367-6049

a.

•

David W. Mosher, PE, LAC Licensed Asbestos Consultant, EA-0000078

TABLE OF CONTENTS

ACRONYMS AND ABBREVIATIONS

- SECTION 1 SURVEY SUMMARY FORMS SURVEY OVERVIEW ASBESTOS SURVEY REPORT – FORM 1 ASBESTOS SURVEY AND ASSESSMENT – FORM 2 ASBESTOS HAZARD ASSESSMENT DECISION TREE PERSONNEL SUMMARY – FORM 3
- SECTION 2 BRIDGE DIAGRAM(S)
- SECTION 3 PHOTOGRAPHS
- SECTION 4 LABORATORY ANALYTICAL DATA AND CHAIN OF CUSTODY FORM(S)
- SECTION 5 CREDENTIALS FOR CONSULTANT, INSPECTOR, AND LABORATORY
- SECTION 6 ASBESTOS OPERATIONS AND MAINTENANCE (O&M) PLAN AND RESPONSE ACTION

DISCLAIMER

Acronyms and Abbreviations_____

ACM	asbestos-containing material
AHERA	Asbestos Hazard Emergency Response Act
APR	air-purifying respirator
COC	chain of custody
CR	County Road
EL	excursion limit
EPA	Environmental Protection Agency
FAC	Florida Administrative Code
FDEP	Florida Department of Environmental Protection
FDOT	Florida Department of Transportation
ft	feet
HA	homogeneous area
HEPA	high efficiency particulate air
LF	linear feet
mm	millimeter
NESHAP	National Emissions Standards for Hazardous Air Pollutants
NVLAP	National Voluntary Laboratory Accreditation Program
OSHA	Occupational Safety and Health Administration
PACM	presumed asbestos-containing material
PCM	phase contrast microscopy
PLM	polarized light microscopy
PPE	personal protective equipment
QA/QC	quality assurance / quality control
RACM	regulated asbestos-containing material
SF	square feet
SR	State Road
TWA	time weighted average

SECTION 1

.

SURVEY SUMMARY FORMS

ASBESTOS SURVEY OVERVIEW

The Florida Department of Transportation (FDOT) District 2 will be replacing Bridge #720033, at SR 115 over Trout River, Duval County, Florida, and has requested that an asbestos survey be performed to determine the presence of asbestos-containing materials (ACM). This survey follows the Asbestos Hazard Emergency Response Act (AHERA) sampling protocol and complies with the National Emission Standards for Hazardous Air Pollutants (NESHAP).

Mr. William Zukauskas of APTIM Environmental and Infrastructure, Inc (APTIM) performed the asbestos survey on December 3, 2020, to determine the location, extent, and condition of suspect ACM.

During the asbestos survey, samples of the following materials were collected to determine asbestos content: concrete from the bridge deck, sidewalk, railing, column, pile cap, abutment (rip-rap and poured) and T-beams; felt paper vibration dampeners, expansion joint mastic and rubber, rubber gaskets, lightweight cement patching, road reflector mastic, cementitious deck drains (scuppers), end-cap mastic, abutment seam caulk, and pipe penetration caulk. No suspect Class 5 coatings were identified on the structure.

Samples of suspect materials were submitted for analysis to an independent laboratory certified by the National Voluntary Laboratory Accreditation Program (NVLAP). Additionally, as per FDOT requirements, quality control/quality assurance (QA/QC) samples were collected and submitted for analysis to a second NVLAP-certified laboratory. All samples were analyzed for asbestos of bulk materials by EPA Method 600/R-93/116 using Polarized Light Microscopy (PLM).

Section 2 contains a Site Location Map and an Asbestos Survey Map which identifies each sample location. Section 3 contains a Photograph Log for each sample. Section 4 contains the Laboratory Analytical and Chain of Custody Record for the project samples. Section 5 contains the Credentials for Consultant, Inspectors, and Laboratories. Provided in Section 6 is the Asbestos Operations and Maintenance Plan (O&M) and Response Action for the project.

The following samples from the designated homogeneous areas tested positive for asbestos:

Sample Numbers	HA	Description	
14.1, 14.4	Cementitious scuppers	57 drain deck scuppers	
15.1, 15.2, 15.3	End cap mastic	1 sq. ft. of gray mastic	

The transite drain scuppers listed above were considered to be Category II nonfriable ACM at the time of the survey and would likely become regulated asbestos-containing material (RACM) during bridge demolition. Prior to any demolition or renovation, it is recommended that both the asbestos-cement scuppers and the end cap mastic be removed utilizeing a Florida licensed asbestos abatement contractor. Proper personal protective equipment (PPE) should be used, and containment and air monitoring should be performed to assure that fibers are not released to the environment.

ASBESTOS SURVEY REPORT – FORM 1

BRIDGE IDENTIFICATION

County:	Duval			
Agency:	Florida Department of Transportation District 2			
Bridge Name:				
Bridge No.:	Bridge No.: #720033			
Address and/or Geographic Location: SR 115 over Trout River				
Asbestos Contact Person:	Aja Stoppe	_ Telephone Number: <u>386-961-7521</u>		
FDOT Contact:	Aja Stoppe	Telephone Number: <u>386-961-7521</u>		

SURVEY IDENTIFICATION

Date of Survey:	December 3, 2020	Date of Report:	February 10,2021
Contract No.:	BE 398		
FM No.:	437403-1-C2-01		
Consultant's Name:	David W. Mosher, PE, LA	C License	e No.: <u>EA-0000078</u>
Name of Firm:	APTIM Environmental &	Infrastructure, Inc	
Address:	9143 Philips Highway, Sui	te 400, Jacksonvi	lle, Florida 32256
Telephone Number:	904-367-6049		

BRIDGE INFORMATION

Year of Construction: 195	<u>9 (742 ft long b</u>	<u>y 56 ft wide</u>	<u>e)</u>
Renovation Dates: <u>NA</u>			
Bridge Documents/Drawing	s Available/Cor	nsulted:	
Types: Plans	□Yes ⊠No	Location	
Specifications	□Yes □No	Location	
Other	□Yes □No	Location	
Asbestos Document	s □Yes □No	Location	
	□Yes □No	Location	
	□Yes □No	Location	

STRUCTURAL DATA

Vertical Support:	Concrete	_Horizontal: _	Concrete	
Decking:	Concrete			
Span:	Concrete		····	
Gaskets:	Rubber (bene	eath rail posts)		
Bearing Pads:	NA	Railings:	Concrete and Steel	
If applicable:				

n appnoable.							
Roof:	NA						
Floors:	NA				Ceilings:	NA	
Exterior Walls:	NA				Partition Walls:	NA	
HVAC System:	□Yes	⊠No	Туре:	NA			

SR 115 over Trout River

Bridge No. #720033,

Bridge Name:

Contract No.: <u>BE</u> 398

o 0 0 0 0 0 0 0 0 0 0 0 o 0 o 0 0 0 o Replace Cost Florida Department of Transportation, District 2 0 0 o o o 0 0 o 0 0 o 0 0 0 0 0 o o 0 Mon Cost 0 Response Cost 0 0 0 0 0 o 0 0 0 o 0 o 0 0 0 0 0 0 0 Asbestos Type & % Assumed NAD ៦ Subtotals for this page Consultant Fees O & M Costs Friable, CAT I, or CAT II TOTAL Aia Stoppe z z z z z z z z z z z z Z z z z z z 41.552 SF 17,640 SF 17,640 SF Quantity (Total for HA) 41,552 SF 41,552 SF 17,640 SF 7,056 SF 7,056 SF 8,120 SF 8,120 SF 4,452 SF 4,452 SF 4,452 SF 7,420 SF 7,420 SF 7,420 SF 7,056 SF 8,120 SF FDOT Contact Person: SOUTH CENTRAL BRIDGE ABUTMENT NORTHWEST BRIDGE ABUTMENT NORTHEAST BRIDGE ABUTMENT - crocidolite CENTRAL EAST BRIDGE AREA CENTRAL EAST BRIDGE AREA chry. - chrysotile amo. - amosite trem. - tremolite SOUTHWEST BRIDGE AREA SOUTHWEST BRIDGE AREA Area Description SOUTHWEST BRIDGE AREA NORTHWEST BRIDGE AREA NORTHWEST BRIDGE AREA NORTHEAST BRIDGE AREA NORTHEAST BRIDGE AREA NORTHEAST BRIDGE AREA NORTHEAST BRIDGE AREA SOUTHEAST BRIDGE AREA All quantities given in square feet unless otherwise indicated.
 All costs provided assume one mobilization.
 Shaded and bold text indicates Asbestos-Containing Material (ACM) or assumed ACM. NORTHWEST COLUMN Agency: NORTHEAST COLUMN SOUTHEAST COLUMN о С APTIM Environmental & Infrastructure, Inc. CAT I – Category I CAT II – Category II PC – Point Count Analysis PS – Analyzed to first positive stop Trace – Less than 1% Homo-geneous Area No. ശ **~**-2 2 ო ო ო 4 4 ŝ ഗ ŝ ဖ ø **~**~ N 4 CF – Cubic Feet RIP RAP ABUTMENT CONCRETE RIP RAP ABUTMENT CONCRETE RIP RAP ABUTMENT CONCRETE Material Description December 3, 2020 SIDEWALK CONCRETE SIDEWALK CONCRETE SIDEWALK CONCRETE PILE CAP CONCRETE PILE CAP CONCRETE COLUMN CONCRETE COLUMN CONCRETE COLUMN CONCRETE PILE CAP CONCRETE RAILING CONCRETE RAILING CONCRETE RAILING CONCRETE DECK CONCRETE DECK CONCRETE DECK CONCRETE N – No NA – Not Applicable NAD – No Asbestos Detected COMMENTS/NOTES: LF – Linear feet SF – Square feet Sample No. Assumed HA-5.3 HA-6.2 Date of Survey: HA-2.2 HA-4.2 HA-5.2 HA-6.1 HA-6.3 HA-1.2 HA-1.3 HA-3.2 HA-4.3 HA-5.1 HA-1.1 HA-2.1 HA-2.3 HA-3.1 HA-3.3 HA-4.1 Y-Yes Consultant:

SR 115 over Trout River

Bridge No. #720033,

Bridge Name:

Contract No.: BE 398

С 0 0 0 0 o 0 Q 0 ο 0 o 0 o 0 0 o 0 Replace Cost 2 Florida Department of Transportation, District o 0 0 0 0 0 o 0 0 a o 0 o 0 0 0 o o Air Mon Cost 0 Response Cost 0 0 0 0 0 0 0 0 0 o 0 0 o 0 0 0 0 0 Asbestos Type & % or Assumed NAD Subtotals for this page Consultant Fees O & M Costs TOTAL Friable, CAT I, or CAT II Aja Stoppe z z z z z z z z z z z z z z z z z Quantity (Total for HA) 1120 LF 1120 LF 4,200 SF 4,200 SF 4,200 SF 4,200 SF 448 SF 448 SF 448 SF 112 LF 112 LF 112 LF 112 LF 1120 LF 252 SF 252 SF 252 SF FDOT Contact Person: NORTHEAST BRIDGE ABUTMENT SOUTHWEST BRIDGE ABUTMENT NORTHEAST BRIDGE ABUTMENT SOUTHEAST BRIDGE ABUTMENT SOUTH CENTRAL BRIDGE AREA NORTH CENTRAL BRIDGE AREA NORTH CENTRAL BRIDGE AREA WEST CENTRAL BRIDGE AREA WEST CENTRAL BRIDGE AREA WEST CENTRAL BRIDGE AREA WEST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA amo. - amosite trem. - tremolite cro. - crocidolite F - friable crocidolite chrysotile Area Description NORTHEAST BRIDGE AREA NORTHEAST BRIDGE AREA NORTHEAST BRIDGE AREA SOUTHEAST BRIDGE AREA All quantities given in square feet unless otherwise indicated.
 All costs provided assume one mobilization.
 Shaded and bold text indicates Asbestos-Containing Material (ACM) or assumed ACM. Agency: chry. -APTIM Environmental & Infrastructure, Inc. CAT I - Category I CAT II - Category II PC - Point Count Analysis PS - Analyzed to first positive stop Trace - Less than 1% Homo-geneous Area No. 7 9 10 9 ÷ ÷ œ œ œ Ø တ თ σ ~ ~ ~ Γ-FELT PAPER VIBRATION DAMPENER FELT PAPER VIBRATION DAMPENER FELT PAPER VIBRATION DAMPENER CF – Cubic Feet POURED ABUTMENT CONCRETE POURED ABUTMENT CONCRETE POURED ABUTMENT CONCRETE POURED ABUTMENT CONCRETE EXPANSION JOINT RUBBER EXPANSION JOINT RUBBER EXPANSION JOINT RUBBER EXPANSION JOINT MASTIC EXPANSION JOINT MASTIC **EXPANSION JOINT MASTIC** EXPANSION JOINT MASTIC Material Description December 3, 2020 RUBBER GASKETS RUBBER GASKETS RUBBER GASKETS NA – Not Applicable NAD – No Asbestos Detected LF – Linear feet SF – Square feet COMMENTS/NOTES: HA-7.4 QA HA-9.4 QA HA-10.3 Assumed HA-7.2 HA-10.2 HA-11.2 HA-11.3 Date of Survey: HA-8.2 HA-8.3 HA-9.2 HA-10.1 Sample HA-9.1 HA-9.3 HA-11.1 HA-7.1 HA-7.3 HA-8.1 ő Ь Y-Yes N – N Consultant:

SR 115 over Trout River

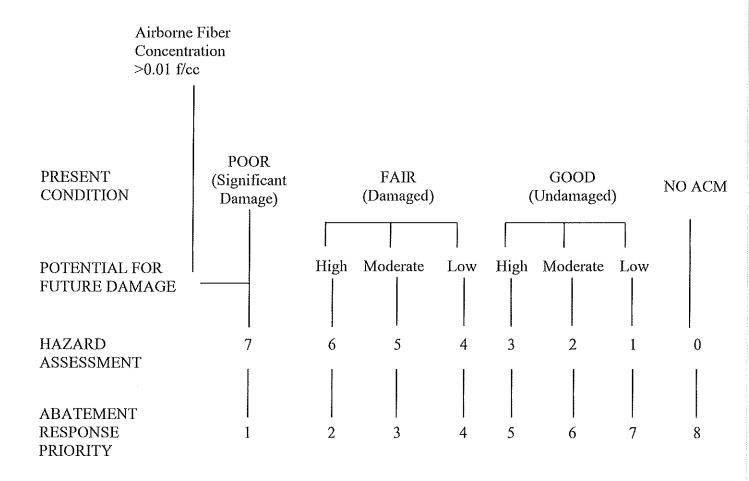
Bridge No. #720033,

Bridge Name:

Contract No.: BE 398

0 0 o 0 0 0 0 0 0 0 0 0 Replace Cost Florida Department of Transportation, District 2 \$2000 0 0 0 0 0 0 o 0 \$1875 0 \$125 Qost Cost 0 Response Cost o 0 0 o 0 0 0 0 0 \$4750 \$250 \$5000 Asbestos Type & % or Chry 0.75 Chry 0.75 Chry 20 Chry 0.50 Chry 20 Chry 30 Assumed Chry 20 NAD NAD NAD DAD DAD NAD NAD NAD NAD Subtotals for this page Consultant Fees O & M Costs Friable, CAT I, or CAT II TOTAL Aja Stoppe z z z z z z z z z z z z z z Z z Quantity (Total for HA) 57 EA 57 EA 120 LF 120 LF 120 LF 42 SF 42 SF 57 EA 69 SF 69 SF 69 SF 42 SF 57 EA 1 SF 1 SF IS E FDOT Contact Person: NORTH CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA EAST CENTRAL BRIDGE AREA crocidolite chrysotile Area Description NORTHWEST BRIDGE AREA NORTHWEST BRIDGE AREA NORTHWEST BRIDGE AREA SOUTHWEST BRIDGE AREA trem. - tremolite NORTHWEST BRIDGE AREA SOUTHWEST BRIDGE AREA amosite All quantities given in square feet unless otherwise indicated.
 All costs provided assume one mobilization.
 Shaded and bold text indicates Asbestos-Containing Material (ACM) or assumed ACM. friable Agency: chry - o amo. - à r бц APTIM Environmental & Infrastructure, Inc. CAT I – Category I CAT II – Category I PC – Point Count Analysis PS – Analyzed to first positive stop Trace – Less than 1% Homo-geneous Area No. 2 14 φ R 4 β <u>6</u> 4 4 5 3 9 ģ ę 4 5 CF – Cubic Feet **CEMENTITIOUS DRAIN SCUPPERS CEMENTITIOUS DRAIN SCUPPERS CEMENTITIOUS DRAIN SCUPPERS CEMENTITIOUS DRAIN SCUPPERS** LIGHTWEIGHT CEMENT PATCH LIGHTWEIGHT CEMENT PATCH LIGHTWEIGHT CEMENT PATCH ROAD REFLECTOR MASTIC ROAD REFLECTOR MASTIC ROAD REFLECTOR MASTIC Material Description ABUTMENT SEAM CAULK ABUTMENT SEAM CAULK ABUTMENT SEAM CAULK December 3, 2020 END CAP MASTIC END CAP MASTIC END CAP MASTIC NA – Not Applicable NAD – No Asbestos Detected LF – Linear feet SF – Square feet COMMENTS/NOTES: HA--14.4 QA HA-12.2 HA-12.3 HA-13.1 HA-13.2 HA-14.1 HA-16.1 HA-16.2 Date of Survey: Assumed HA-15.2 HA-15.3 Sample No. or HA-12.1 HA-13.3 HA-14.2 HA-14.3 HA-15.1 HA-16.3 Υ- Yes N – No Consultant:

0 0 o 0 0 0 0 Replace Cost 2 Florida Department of Transportation, District Contract No.: BE 398 0 0 0 Ö 0 0 0 Air Cost \$2000 Response Cost 0 0 0 0 0 0 0 Asbestos Type & % or Assumed NAD NAD NAD NAD NAD NAD Subtotals for this page Consultant Fees Friable, CAT I, or CAT II Aja Stoppe z z z z z z Quantity (Total for HA) 20,776 SF 20,776 SF 20,776 SF 2 SF 2 SF 2 SF FDOT Contact Person: trem. - tremolite cro. - crocidolite F - friable chry. - chrysotile amo. - amosite Area Description SOUTHWEST BRIDGE AREA SOUTHWEST BRIDGE AREA NORTHWEST BRIDGE AREA SOUTHWEST BRIDGE AREA SOUTHWEST BRIDGE AREA NORTHWEST BRIDGE AREA All quantities given in square feet unless otherwise indicated.
 All costs provided assume one mobilization.
 Shaded and bold text indicates Asbestos-Containing Material (ACM) or assumed ACM. Agency: Bridge No. #720033, SR 115 over Trout River APTIM Environmental & Infrastructure, Inc. CF – Cubic Feet CAT I – Category I CAT II – Category II PC – Point Count Analysis PS – Analyzed to first positive stop Trace – Less than 1% Homo-geneous Area No. 17 <u>8</u> 13 17 17 ê PIPE PENETRATION CAULK PIPE PENETRATION CAULK PIPE PENETRATION CAULK Material Description December 3, 2020 T-BEAM CONCRETE T-BEAM CONCRETE T-BEAM CONCRETE NAD - No Asbestos Detected COMMENTS/NOTES: NA - Not Applicable LF – Linear feet SF – Square feet Date of Survey: HA-17.2 HA-17.3 HA-18.2 Sample No. or Assumed HA-17.1 HA-18.1 HA-18.3 Bridge Name: Υ- Yes 0N – N Consultant:


\$9000

TOTAL

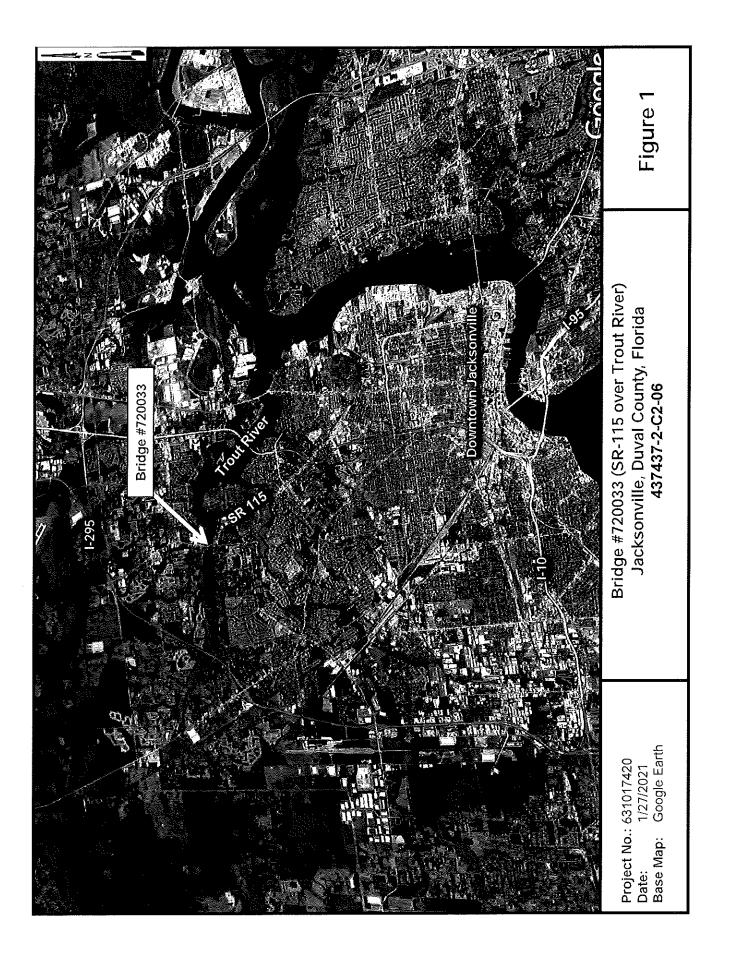
O & M Costs

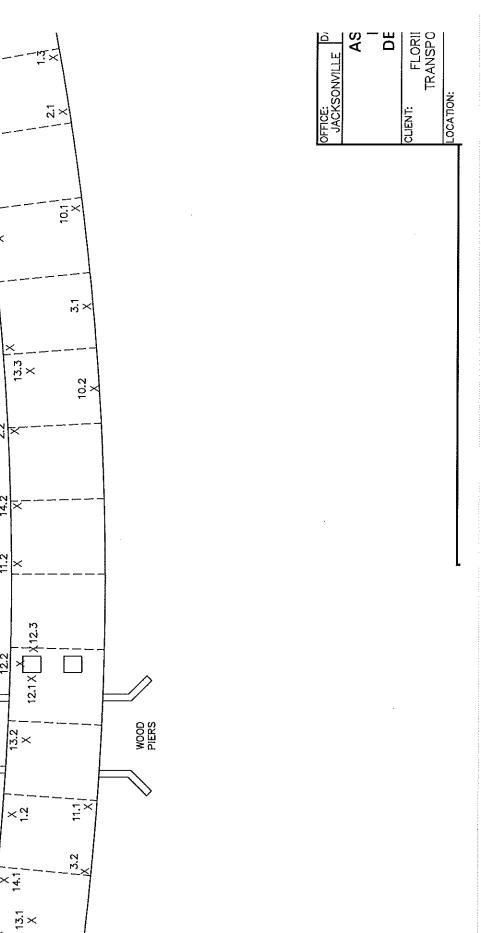
ASBESTOS HAZARD ASSESSMENT DECISION TREE

MATERIAL

Because people tend to equate a "1" with top priority, the assessment numbers are reversed to establish the response priority.

ASBESTOS SURVEY REPORT – FORM 3


PERSONNEL SUMMARY


Facility/Bridge Name: Bridge No.:	SR 115 over Trout Bridge #720033	t River	
Date of Survey:	December 3, 2020		
Name and Address David W. Mosher, PE, LAC APTIM Environmental & Infrastructure, Inc. (f/k/a Shaw Environmental, Inc.) 9143 Philips Highway, Suite 400		Task Performed Asbestos Consultant Asbestos Business	License or Certificate EA-0000078 ZA-317
Jacksonville, Florida 32256 William Zukauskas APTIM Environmental & Ir 9143 Philips Highway, Suit Jacksonville, Florida 32256	nfrastructure, Inc. e 400	Asbestos Inspector	ME68DE08A88EA1447
EMSL Analytical, Inc. (EM 200 Route 130 North Cinnaminson, NJ 08077	SL)	Quality Assurance	NVLAP No. 101048-0
International Asbestos Testi (IATL) 9000 Commerce Parkway, S Mt. Laurel, New Jersey 080	Suite B	Bulk Analysis	NVLAP No. 101165-0

SECTION 2

BRIDGE DIAGRAM(S)

•

14.3 14.4 QA ×

11.3

2.2

14.2

11.2

12.2

WOOD

0

2.3

3.3 ×

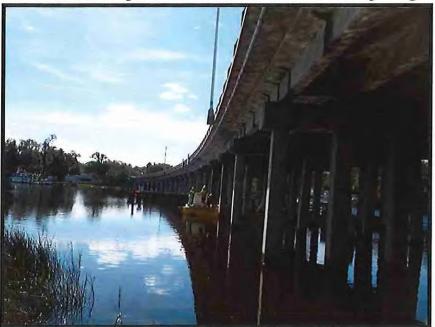

×Ę

10.3 X

٩Ö \otimes

SECTION 3

PHOTOGRAPHS


Project No: 631017420 Photographer: William Zukauskas Description: Bridge #720033, facing north

Photograph No: 1 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: Bridge #720033 abutment.

Photograph No: 2 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: Bridge #720033, facing north.

Photograph No: 3 Date: 12/3/2020

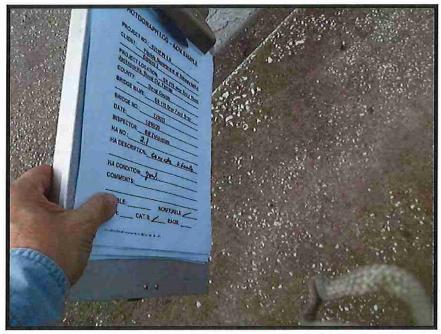
Project No: 631017420Photograph No: 4Photographer: William ZukauskasDate: 12/3/2020Description: Bridge #720033 support and deck drains

A DONDITION FRIABLE NONFRIABLE X CATE CATE × 84.00

Project No: 631017420 Photographer: William Zukauskas Description: HA 1.1 – Deck concrete

Photograph No: 5 Date: 12/3/2020

HOTOGRAPH LOG - AGES CT NO. JUNI 2020 PROJECT LOCATION - MA (15 M) Jackson Hills, Durie Cris Parida BRIDGE NAME: 10 \$5 115 Orn Treat East BRIDGE NU : 119911 DATE. DATE: 125576 INSPECTOR: Bellorollas HA DESCRIPTION. Conside date CONMENTS NONTRABLE X FRABLE: CATE CATE X RACH

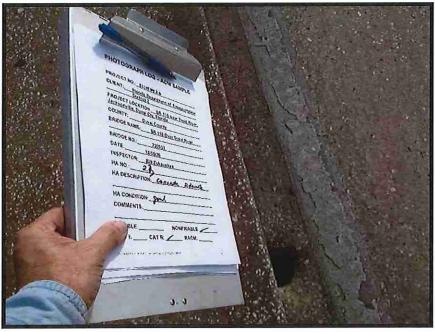

Project No: 631017420 Photographer: William Zukauskas Description: HA 1.2 – Deck concrete

Photograph No: 6 Date: 12/3/2020

TOGRAPH LOG - ACU VECT NO. - SIMITAS ECT LOCATION AR 105 STR.15 SERVE ST. DAYN COLUMN COUNTY BRIDGE NAME SR 115 Onto June Room BRIDGE NO. 726073 DATE NSPECTOR: BIR Extension HA NO.: /2 125470 HA DESCRIPTION LONG to de la HA CONDITION Sml CONVENTS: FRIABLE: NONFRASLE X CATE_ CATE & RACH

Project No: 631017420 Photographer: William Zukauskas Description: HA 1.3 – Deck concrete

Photograph No: 7 Date: 12/3/2020


Project No: 631017420 Photographer: William Zukauskas Description: HA 2.1 – Concrete sidewalk

Photograph No: 8 Date: 12/3/2020

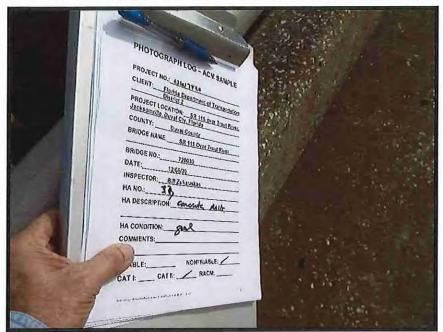
Project No: 631017420 Photographer: William Zukauskas Description: HA 2.2 – Concrete sidewalk

Photograph No: 9 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 2.3 – Concrete sidewalk

Photograph No: 10 Date: 12/3/2020

ATWINE 10300 Print Cy Dards BRIDGE VAVE Dinici Stan Dial BRIDGE NO. DATE Tren INSPECTOR: BE Zubantus HA NO: 31 HA DESCRIPTION Concrete Auto HA CONDITION _ BAS CONMENTS HONFRABLE / BLE: _ CATE ____ RACH CATE -----


Project No: 631017420 Photographer: William Zukauskas Description: HA 3.1 – Concrete railing

Photograph No: 11 Date: 12/3/2020

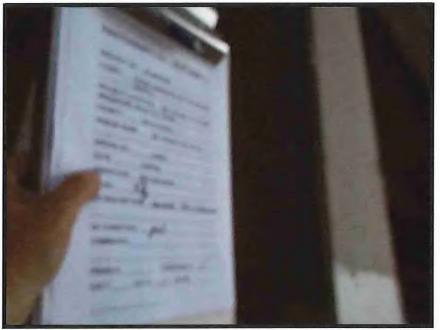
HOTOGRAPH LOG - ACH SAUFLE PROJECT NO. STUDYON CLIENT: Fictida O Olatiki 2 PROJECT LOCATION: 3 Jacksony Cla. Dural Chul COUNTY: BRIDGE NAME: Dura C 52 115 Que 1123 BRIDGE NO .: DATE: 120031 INSPECTOR: 12/05/20 BIZMEN HA NO .: 32 HA DESCRIPTION: Conserve Auto HA CONDITION: SIG COMMENTS: BLE: NONFRAME / CAT I: _ CATI: ___ RACH

Project No: 631017420 Photographer: William Zukauskas Description: HA 3.2 – Concrete railing

Photograph No: 12 Date: 12/3/2020

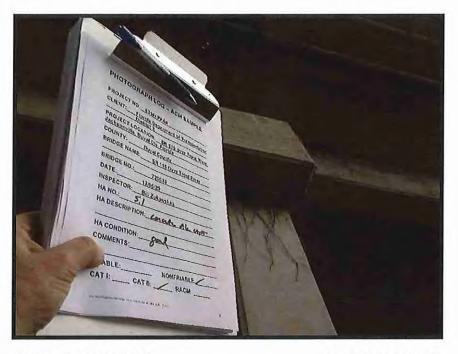
Project No: 631017420 Photographer: William Zukauskas Description: HA 3.3 – Concrete railing Photograph No: 13 Date: 12/3/2020

PHOTOGRAPH LOG - 1 RID DATE: SPECTOR Sie NO. A DESCRIPTION _ CAncele Ale (use HA CONDITION: COMMENTS: FRIABLE MONFRAME / CAT I: ____ CAT E ___ RICH

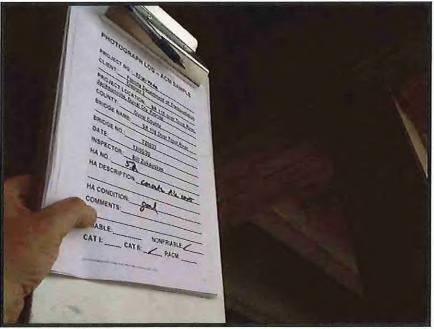

Project No: 631017420 Photographer: William Zukauskas Description: HA 4.1 – Concrete column

Photograph No: 14 Date: 12/3/2020

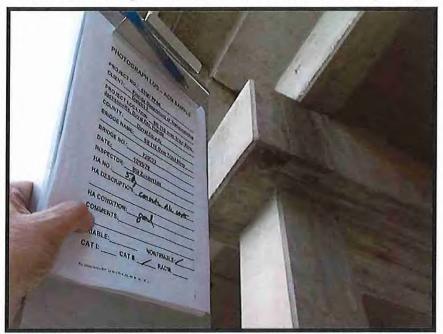
PHOTOGRAPHLOG - ACM SLINDLE PROJECT NO. ALIGOUS PROJECT IN A LAND PROJECT LOCATION Jacksonrea Deval Could Barrai Cou BRIDGE NAME: Denicasi 58 115 One Tools BRIDGE NO .: DATE: 12:011 12:5570 INSPECTOR: Britzetania NO .: YA A DESCRIPTION: Conside Alerfulant HA CONDITION. ANA COMMENTS: FRIABLE:_____ NONFEABLE CAT I: ___ CAT IE ___ RACH __


Project No: 631017420 Photographer: William Zukauskas Description: HA 4.2 – Concrete column

Photograph No: 15 Date: 12/3/2020


Project No: 631017420 Photographer: William Zukauskas Description: HA 4.3 – Column concrete

Photograph No: 16 Date: 12/3/2020


Project No: 631017420 Photographer: William Zukauskas Description: HA 5.1 – Concrete pile caps

Photograph No: 17 Date: 12/3/2020

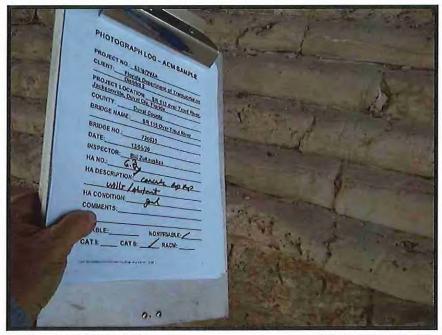
Project No: 631017420 Photographer: William Zukauskas Description: HA 5.2 – Concrete pile caps

Photograph No: 18 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 5.3 – Concrete pile caps

Photograph No: 19 Date: 12/3/2020

OGRAPH LOG - ACM BA GE HANF SR 115 Cape I BRIDGE NO. 12000 DATE HA NO. G. LANDA LANDA LANDAL L ONMENTS: RIABLE: NONFRUBLE / CATE


Project No: 631017420 Photographer: William Zukauskas Description: HA 6.1 – Rip rap abutment concrete

Photograph No: 20 Date: 12/3/2020

PHOTOGRAPH LOG - ACM EAUTLE PROJECT NO. SUSIDIA CUENT. Division of the second PROJECT LOCATOR Jacksonning Data Children BRIDGE NAME: SR 115 Dest Tred to BRIDGE NO .: DATE: 18(41) 12/05/20 INSPECTOR: 6.2 HA NO : HA DESCRIPTION CANCEL BOBS WAlly / Abelent HA CONDITION 2 COMMENTS: NONTRABLE LE: _ CATU. __ RACH TE

Project No: 631017420 Photographer: William Zukauskas Description: HA 6.2 – Rip rap abutment concrete

Photograph No: 21 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 6.3 – Rip rap abutment concrete

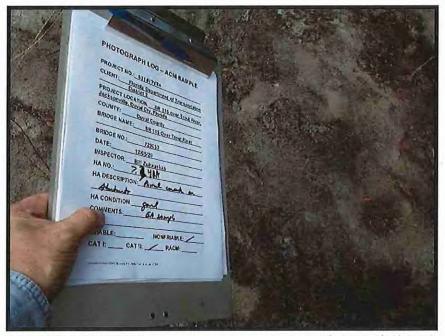
Photograph No: 22 Date: 12/3/2020

PHOTOGRAPH LOG - ACH SAMPLE FROJECT NO : STIELTER CLIENT: Hords Durings Object Doctors Project Location: Schild County: Formation BRIDGE NAME SR 115 Dret Tured R BRIDGE NO : DATE: 126012 INSPECTOR: Bet Zohrahus HA HO: Z. 1255/20 HA DESCRIPTION. Annel Abubente HA CONDITION Send COMMENTS: 6A sample E NONFRIABLE CAT 8: ____ RACN

Project No: 631017420 Photographer: William Zukauskas Description: HA 7.1 – Poured abutment concrete

Photograph No: 23 Date: 12/3/2020

PHOTOGRAPH LOG - ACM BAJ PROJECT NO CONTOURON ficida Data Datual PROJECT LOCATOR Lackatorical Data On The Station Line Annual Control Data On The Station Line Annual Control 53 115 Over Treat Burr BRIDGE NO .: DATE: Treta 12/05/20 INSPECTOR: 2.2 HA NO .. HA DESCRIPTION: Prost wheth Abudante HA CONDITION: COMMENTS: 6A sample NONFRAME / CATE / RACH AT I: -----


Project No: 631017420 Photographer: William Zukauskas Description: HA 7.2 – Poured abutment concrete

Photograph No: 24 Date: 12/3/2020

PHOTOGRAPH LOG - ACM SANPLE Florida Decompositi of Jus PROJECT LOCATION: <u>33 115 Ante 1020</u> Jacksonylas Dyral Dr. 15410 Ante 1000 Ante 1000 Ante 1020 A SR 115 Order Treaters BRIDGE NO .: DATE: 720233 INSPECTOR: UI Zelsuntat HA NO: 7. B HA DESCRIPTION A Abertante HA CONDITION: COMMENTS: 6A sample ABLE: NONFRIABLE: CATI: ____ CATIN: ____ RACN

Project No: 631017420 Photographer: William Zukauskas Description: HA 7.3 – Poured abutment concrete

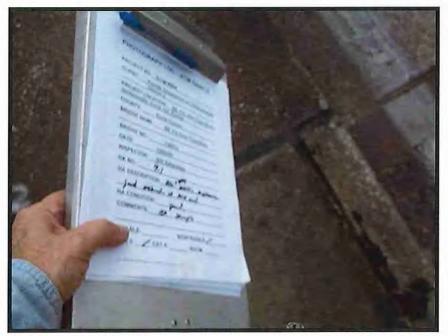
Photograph No: 25 Date: 12/3/2020

Project No: 631017420Photograph No: 26Photographer: William ZukauskasDate: 12/3/2020Description: HA 7.4 QA – Poured abutment concrete

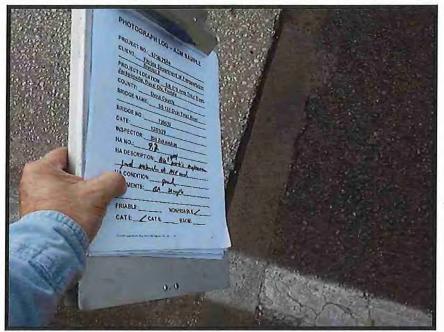
PHOTOGRAPH LOG-ACH BAMPLE PROJECT NO. SIJE NE CLIENT: Line of the second states PROJECT LOCATION SectionTile Darie Continent ActionTile Darie Continent Anne Continent COUNTY BRIDGE NAME: SR 115 Drat Trad Brue BRIDGE NO .: DATE: 726033 INSPECTOR: 1205570 HA NO .: Bill Zutauskas HA DESCRIPTION: All Wath day A proper and core HA CONDITION: COMMENTS:_ A NONFRIABLE CAT II: ____ RACH /

Photograph No: 27 Project No: 631017420 Photographer: William Zukauskas Description: HA 8.1 - Felt paper vibration dampener

Date: 12/3/2020


OTOGRAPH LOG. Sile Rela CTLOCI COUNTY: the Decal Cold BRIDGE NAME Develo BRIDGE NO .: SR 115 OTCITICA DATE: 120000 INSPECTOR: Bit Zutarities HA DESCRIPTION: All winter dres at and and and age HA CONDITION: COMMENTS: NONFRIABLE CAT II: ____ RACH

Photograph No: 28 Project No: 631017420 Date: 12/3/2020 Photographer: William Zukauskas Description: HA 8.2 - Felt paper vibration dampener


COUNTY: BRIDGE NAME Direttes 58 115 Gut Tranker BRIDGE NO.: DATE: 120033 HANO. HA DESCRIPTION All winds de at and and open HA CONDITION: COMMENTS: NONFRIABLE 1 RACM / CAT II:

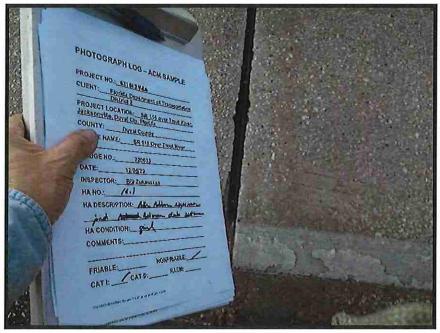
Project No: 631017420 F Photographer: William Zukauskas Description: HA 8.3 – Felt paper vibration dampener

Photograph No: 29 Date: 12/3/2020

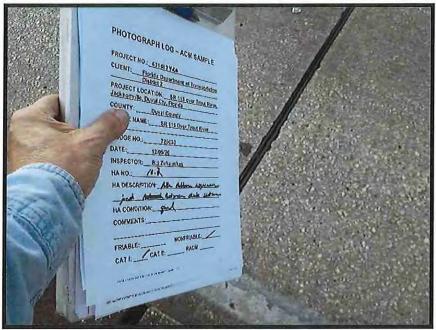
Project No: 631017420 Photographer: William Zukauskas Description: HA 9.1 – Expansion joint mastic Photograph No: 30 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 9.2 – Expansion joint mastic

Photograph No: 31 Date: 12/3/2020


PHOTOGRAPH LOO - ACU SMILL PROJECT NO. U.SUL No. COUNTY BRDGE HAVE IS THE OWNER BRIDGE NO. Then DATE: NSPECTOR DIZALUM HA NO. 2.3 ALL HA DESCRIPTION ARE MENTE AND Jud which is mean HA CONDITION _____ EVITS: AA Hany's NONFRAME FRIASLE CATI _____ ENCH

Project No: 631017420 Photographer: William Zukauskas Description: HA 9.3 – Expansion joint mastic Photograph No: 32 Date: 12/3/2020


STAPH LOG 2.040 FRIABLE MONTRABLE Z CATE CATE RATE 0.0

Project No: 631017420 Photographer: William Zukauskas Description: HA 9.4 QA – Expansion joint mastic

Photograph No: 33 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 10.1 – Expansion joint rubber Photograph No: 34 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 10.2 – Expansion joint rubber

Photograph No: 35 Date: 12/3/2020

PHOTOGRAPH LOG - ACM SAMPLE RO.ECT NO: STINIYOS CUDAT: Forda Destance de Consecto Destat PROFECTURA (1000) - Al 110 per trat los Astronomios Consecto Astronomios Consecto NAVE: SAINDRU TANKER NO. Tren HARDESCRETTOR AR Alter 128920 HA CONDITION and CONSIGNTS: NONFRIDE / FRIABLE: CATE CATE PACE.

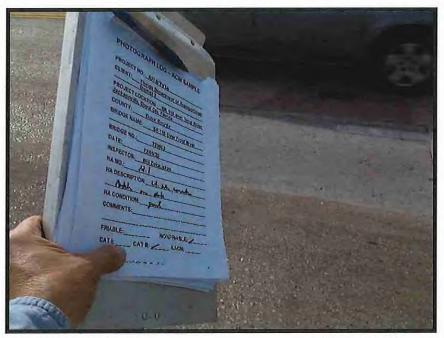
Project No: 631017420 Photographer: William Zukauskas Description: HA 10.3 – Expansion joint rubber

Photograph No: 36 Date: 12/3/2020

PHOTOGRAPH LOG - ACM SANFLE PROJECT NO CLIENT: Florida Disartend of Intersection PROJECT LOCATION. Statistical Income PROJECT LOCATION. Statistical Income Provide Parallelan Tank Income Development Control COUNTY. Cont Control BRIVGE NAME. Statistical Tank Street BRIDGE NO : 120013 DATE 12/05/20 INSPECTOR: Bill Zutankis HA NO. /// HA DESCRIPTION: All Allen guilet under stul dail pote HA CONDITION _____ CONNENTS:____ NONFRIABLE -----FRIABLE:___ RACH. CAT I: ____CAT F: __

Project No: 631017420 Photographer: William Zukauskas Description: HA 11.1 – Rubber gaskets

Photograph No: 37 Date: 12/3/2020

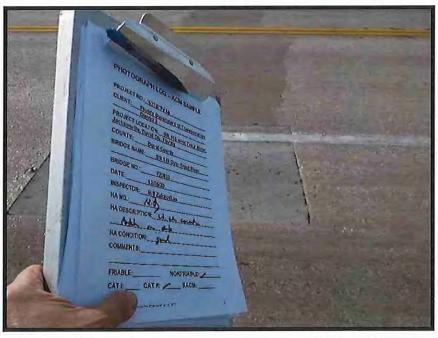

PHOTOGRAPH LOG - ACM BAUPLE PROJECT NO: ETHILIN CLEDT: <u>Too to Destruction</u> Destal PROJECT LOCATION - <u>184 UN DOP TO AND</u> Jakteoria Dira (M. Roda) County - Road County COUNTY David Server E-CODE KAVE: 53111 Ore 1/24/53 BRIDGE NO: 720033 129570 NSPECTOR: ATZAINALIA HADESCRIPTION AND AND SUPER HA CONDITION COMMENTS:___ NON RADE ABLE CATE_____ PACH

Project No: 631017420 Photographer: William Zukauskas Description: HA 11.2 – Rubber gaskets

Photograph No: 38 Date: 12/3/2020

PHOTOGRAPH LOG - ACM SAMPLE PROJECT NO _____ CLIENT: Elorida Department of Transportation District 2 District P PROJECT LOCATION SR 116 over Treat Rine, Jacksonville, David Chr. Plenka COUNTY: Divisit County BRIDGE NAME SR 115 Over Treat Row BRIDGE NO.: 720033 12/05/20 DATE HA NO HIL ALLE Sentat under stal sail porte HA CONDITION and COMMENTS:__ NONFRIABLE BLE: RACM CAT II:_

Project No: 631017420 Photographer: William Zukauskas Description: HA 11.3 – Rubber gaskets Photograph No: 39 Date: 12/3/2020



Project No: 631017420 Photographer: William Zukauskas Description: HA 12.1 – Lightweight cement patch Photograph No: 40 Date: 12/3/2020

PHOTOGRAPH LOG - ACH SAMPLE MACHINE ON TOTONY Flores Duras Datasis PROJECT LOCATION SR UL ONLY Jackstoryma, David Exc Factor COUNTY: BRIDGE NAME: SO SR 115 QUE TO A U TO BRIDGE NO. DATE: 720021 INSPECTOR: Bill Zubriston 12/05/20 HA NO: 12.0 HA DESCRIPTION Copela on dif HA CONDITION: COMMENTS: NONFRIABLE 2 FRIABLE:__ CAT II: ____ RACHL CAT !:___

Project No: 631017420PlPhotographer: William ZukauskasDaDescription: HA 12.2 – Lightweight cement patchDa

Photograph No: 41 Date: 12/3/2020

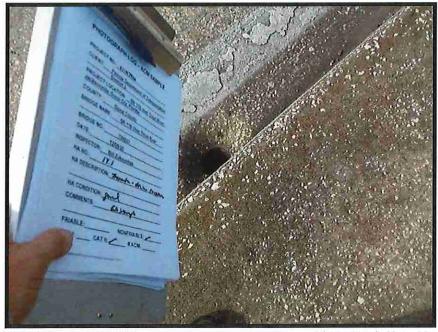
Project No: 631017420 Photographer: William Zukauskas Description: HA 12.3 – Lightweight cement patch

Photograph No: 42 Date: 12/3/2020

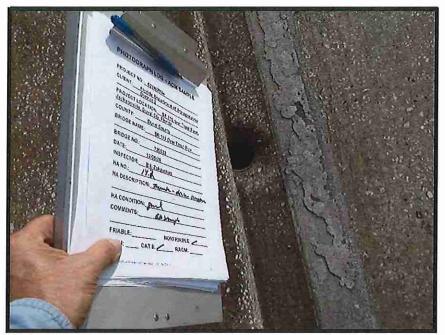
PHOTOGRAPH LOG - ACM SAMPLE FRONT NO SILONIA GLEAT Locate Description of the second ADJECT LOCATION - 30 116 Smith Responses Ornal Confliction DGE NAVE SR 115 Orm Land Co BOGE NO 12:413 ATE. 120575 ASPECTOR BRZOLANDA HA DESCRIPTION All And Autom motic HA CONDITION _ Post COMMENTS: FRIABLE: NONFRAELE CATE___CATE__ RACE 0.0 merel Cars

Project No: 631017420 Photographer: William Zukauskas Description: HA 13.1 – Road reflector mastic

Photograph No: 43 Date: 12/3/2020

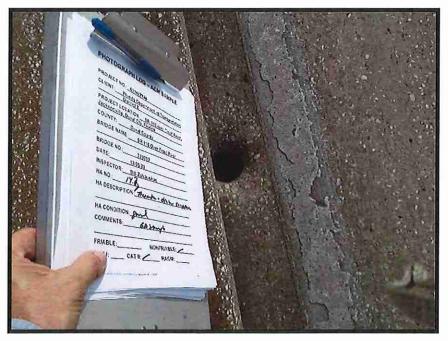

PHOTOGRAPH LOG - ACM SAMPLE PROJECT NO. STILL THE CLENT: Florid Department of Torracions Datriel 7 PROJECTIOCATION: SR-115 over Tress Rever Jacksonrate, Dural City, Florida COUNTY: Duval County BRIDGE NAME: SR 115 Over Treatery ENO .: 720033 12/05/20 INSPECTOR: BHZMENTH HA NO: 117 HA DESCRIPTION All rel antiton Antic HA CONDITION: Out COMMENTS:__ NONFRIABLE : FRIABLE: RACM CAT I: _ CAT II:_

Project No: 631017420 Photographer: William Zukauskas Description: HA 13.2 – Road reflector mastic Photograph No: 44 Date: 12/3/2020

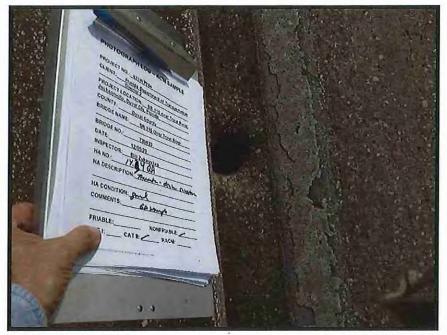

PHOTOGRAPH LOG - ACM BAUPLE PROJECT NO. SILOLYLA CLEAN: Torial Department of Department Department of Department of Department Department of Departme PROJECT LOCATION: SR 115 or 1028 Jacksonville, David Cur Dirade and Coasts COUNTY: Oural County BRIDGE HAVE: SETIEOUS TINITOR 720033 1206/20 ISPECTOR: BEZINEMILS HA DESCRIPTION All contain motic HA CONDITION: COMMENTS:_ FRIABLE:________ NONTRIABLE RACH CAT I: __ CAT D.

Project No: 631017420 Photographer: William Zukauskas Description: HA 13.3 – Road reflector mastic

Photograph No: 45 Date: 12/3/2020



Project No: 631017420Photograph No: 46Photographer: William ZukauskasDate: 12/3/2020Description: HA 14.1 – Cementitious drain scuppers


Project No: 631017420 Photographer: William Zukauskas Description: HA 14.2 – Cementitious drain scuppers

Photograph No: 47 Date: 12/3/2020

Project No: 631017420FPhotographer: William ZukauskasEDescription: HA 14.3 – Cementitious drain scuppers

Photograph No: 48 Date: 12/3/2020

Project No: 631017420 Photograph No: 49 Photographer: William Zukauskas Date: 12/3/2020 Description: HA 14.4 QA – Cementitious drain scuppers

----int at Tomas CLIENT: Fields Departer PROJECT LOCATION: SR 115 OVER TOWN BOAT OUNTY: Duryal County RIDGE NAME: SR 115 Over Trout River NH Arty 500 HA CONDITION COMMENTS: NONFRIABLE: FRIABLE:_ RACH: CATI

Project No: 631017420 Photographer: William Zukauskas Description: HA 15.1 – End cap mastic Photograph No: 50 Date: 12/3/2020

PHOTOGRAPH LOG - ACM SAMPLE BRIDGE NO : 720533 DATE: 720533 INSPECTOR: BUI ZUBAUSAS HA NO : 750 HD DESCRIPTION: 9000 APUT # HA CONDITION: 90 COMMENTS:__ NONFRIABLE: FRIABLE:___ RACH: CAT I al antiv

Project No: 631017420 Photographer: William Zukauskas Description: HA 15.2 –End cap mastic

Photograph No: 51 Date: 12/3/2020

-	CARLO CARLON STAN
1	
	PHOTOGRAPH LOG - ACM SAMPLE PROJECT NO: 53141744 Stanida Sciences of Standards
	CUENT: District 2 SR 115 CYSEL TOUR MILL
0	BRIDGE NAME: 58.310.022
	INSPECTOR: DI ZURBUERS
	- ANDITION: SHE
-	HA CONNENTS: COMMENTS: FRIABLE: CAT II: CAT II: CAT II:
	CAT I:

Project No: 631017420 Photographer: William Zukauskas Description: HA 15.3 – End cap mastic

Photograph No: 52 Date: 12/3/2020

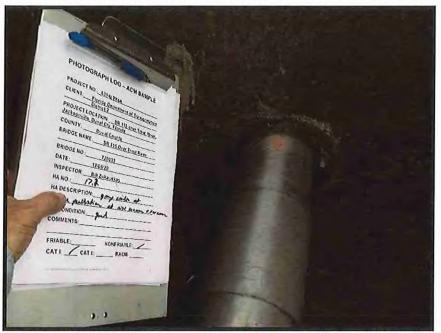
PHOTOGRAPH LOG - ACM SAVELE PROJECT NO - 5316 TYM CLIENT: Florida Distintanti di Terrativati Di Vicità en etti suor finada PROJECT LOCATION BE US and Inc. Rus Jacksonville, David Chr. Hords COUNTY: Durel County BRIDGE NAVE SR 115 Dist Trait Port BRIDGE NO .: 720033 DATE: 120520 INSPECTOR: Bill Zukaustas HA NO .: 14.1 HA DESCRIPTION: 10 and and Abachant Jenn - typeton NITION Pro TS: NONFRIABLE FRIABLE:___ PACN_ CATI CATE

Project No: 631017420 Photographer: William Zukauskas Description: HA 16.1 – Abutment seam caulk Photograph No: 53 Date: 12/3/2020

PHOTOGRAPH LOG - ACM 3A N CT NO : DI STORT TUTOL NO. LUSTIN TUTOL NO. LUSTIN TUTOL TO ANTI-TOTAL TO A BRIDGENO DATE 102000 INSPECTOR BUZAS inn HASPECTOR ERLEANIN HA NO. <u>Kin</u> HA Description: Jack entre in HA CONDITION: Jack HA CONDITION: Jack RIABLE: NONFRIASLE CAT I. CATE RACM 0.0

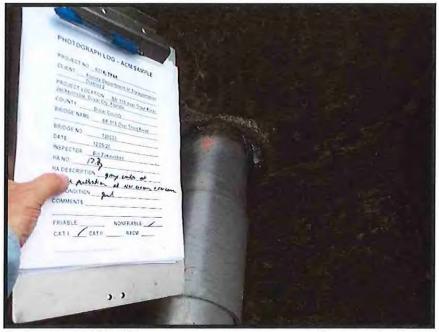
Project No: 631017420 Photographer: William Zukauskas Description: HA 16.2 – Abutment seam caulk

Photograph No:54 Date: 12/3/2020


MABLE: CAT I. CAT E NONFRIABLE 0.0

Project No: 631017420 Photographer: William Zukauskas Description: HA 16.3 – Abutment seam caulk

Photograph No: 55 Date: 12/3/2020


me. NIPECTOR 12:57 HAND R.I. ADESCRIPTO pulpher at my sale at CANVENTS -pl FRABLE MARRIELZ 1.1

Project No: 631017420 Photographer: William Zukauskas Description: HA 17.1 – Pipe penetration caulk Photograph No: 56 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 17.2 – Pipe penetration caulk

Photograph No: 57 Date: 12/3/2020

Project No: 631017420 Photographer: William Zukauskas Description: HA 17.3 – Pipe penetration caulk Photograph No: 58 Date: 12/3/2020

PHOTOGRAPH LOG - ACH BAMPLE PROJECT NO. ESTREVILL Porta Orientes el OJECT LOCATION Collin David Cor. Fia Devel Cite SR 115 Que Intel DGE NO. Iron JATE HA NO: 17.1 HA DESCRIPTION COMMENT 12:57 ATS. Toe News HA CONDITION _ pist COMMENTS: KONFRASIE FRIABLE: CAT I: ____ CAT II. ___ RACH.__

Project No: 631017420 Photographer: William Zukauskas Description: HA 18.1 – Concrete T-beam

Photograph No: 59 Date: 12/3/2020

PHOTOGRAPH LOG-ACIA SUUFU PROJECT NO. 53103714 CUENT: Fizeda Oracio Datrietz PROJECT LOS THE DWING SR 115 Oran Trend Bar JATE: Trim INSPECTOR: CALADASIA HA NO: INT. HA DESCRIPTION CALADASIA Alter Toe News HA CONDITION: pint COMMENTS: NONFRALLE / FRIABLE: CATI: _____ CATIL ____ RACH_ 3 2

Project No: 631017420 Photographer: William Zukauskas Description: HA 18.2 – Concrete T-beam

Photograph No: 60 Date: 12/3/2020

SR 115 over Trout River Bridge#720033 Duval County, Florida – Asbestos Survey Log

PHOTOGRAPH LOG - ACM SANCE Florida Or District 2 115 NO DATE 12:40) INSPECTOR: 12000 HA NO .:___ HA DESCRIPTION Con Tes HA CONDITION 1 COMMENTS: FRIABLE: NONFRIABLE CAT I: ____ CAT E: ____ RACHL_ 8. 0

Project No: 631017420 Photographer: William Zukauskas Description: HA 18.3 – Concrete T-beam Photograph No: 61 Date: 12/3/2020

SECTION 4

LABORATORY ANALYTICAL DATA AND CHAIN OF CUSTODY FORM(S)

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106322	Analyst Observation: Grey Concrete	Location : Deck
Client No.: 720033-1.1	Client Description: Concrete	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106323	An alyst Observation : Grey Concrete	Location : Deck
Client No.: 720033-1.2	Client Description : Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106323(L2)	Analyst Observation: Black Tar	Location : Deck
Client No.: 720033-1.2	Client Description: Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106324	Analyst Observation: Grey Concrete	Location: Deck
Client No.: 720033-1.3	Client Description: Concrete	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106325	Analyst Observation: Grey Concrete	Location: Sidewalk
Client No.: 720033-2.1	Client Description: Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106326	An alyst Observation : Grey Concrete	Location : Sidewalk
Client No.: 720033-2.2	Client Description : Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detect ed	100

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Signature:

Analyst:

12/7/2020
12/13/2020
250
Linda Price

Approved By:

for 2 20

Frank E. Ehrenfeld, III Laboratory Director

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106327	Analyst Observation: Grey Concrete	Location: Sidewalk
Client No.: 720033-2.3	Client Description: Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detecte d	None Detected	100
Lab No.: 7106328	Analyst Observation : Grey Concrete	Location : Rai ling
Client No.: 720033-3.1	Client Description : Concrete	Facili ty:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106329	Analyst Observation : Grey Concrete	Location : Railing
Client No.: 720033-3.2	Client Description : Concrete	Facility:
Percent Asbestos:	Percent Non-Asbest os Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106330	Analyst Observation : Grey Concrete	Location : Railing
Client No.: 720033-3.3	Client Description : Concrete	Facility:
<u>Percent Asbestos:</u>	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106331	Analyst Observation : Grey/White Concrete	Location : Piles/Columns
Client No.: 720033-4.1	Client Description : Concrete	Facility:
Percent Asbestos:	Percent Non-Asbestos Fibrous Material:	Percent Non-Fibrous Material:
None Detected	None Detected	100
Lab No.: 7106332	Analyst Observation : Grey/White Concrete	Location : Piles/Columns
Client No.: 720033-4.2	Client Description : Concrete	Facility:
Percent Asbestos:		

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Signature: Analyst:

ived:	12/7/2020
yzed:	12/13/2020
	25/2-
	Linda Price

Approved By:

fool 2 Ano

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106333	Analyst Observation: Grey/White Concrete	Location : Piles/Columns
Client No.: 720033-4.3	Client Description: Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106334	Analyst Observation: Grey Concrete	Location : Pile Caps
Client No.: 720033-5.1	Client Description: Concrete	Facili ty:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106334(L2)	Analyst Observation: Black Tar	Location : Pile Caps
Client No.: 720033-5.1	Client Description: Concrete	Facili ty:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	2 Cel lulose	98
None Delected		
Lab No.: 7106335	Analyst Observation: Grey Concrete	Location : Pile Caps
Client No.: 720033-5.2	Client Description: Concrete	Facili ty:
Lab No.: 7106335	Analyst Observation: Grey Concrete	Location: Pile Caps
Lab No.: 7106335	Analyst Observation: Grey Concrete	Location : Pile Caps
Client No.: 720033-5.2	Client Description: Concrete	Facility:
Percent Asbestos:	Percent Non-Asbest os Fibrous Material:	Percent Non-Fibrous Material:
Lab No.: 7106335	Analyst Observation: Grey Concrete	Location: Pile Caps
Client No.: 720033-5.2	Client Description: Concrete	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106335(L2)	Analyst Observation: Black Tar	Location: Pile Caps
Lab No.: 7106335	An alyst Observation: Grey Concrete	Location: Pile Caps
Client No.: 720033-5.2	Client Description: Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106335(L2)	An alyst Observation: Black Tar	Location: Pile Caps
Client No.: 720033-5.2	Client Description: Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received:12/7/2020Date Analyzed:12/13/2020Signature:2Analyst:Linda Price

Approved By:

in Francial

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106336(L2)	An alyst Observation : Black Tar	Location: Pile Caps
Client No.: 720033-5.3	Client Description : Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	2 Cel lulose	98
Lab No.: 7106337	Analyst Observation: Grey/Tan Concrete	Location: Rip Rap Walls
Client No.: 720033-6.1	Client Description: Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106338	Analyst Observation: Grey/Tan Concrete	Location: Rip Rap Walls
Client No.: 720033-6.2	Client Description: Concrete	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106339	Analyst Observation: Grey/Tan Concrete	Location: Rip Rap Walls
Client No.: 720033-6.3	Client Description: Concrete	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106340	Analyst Observation: Grey Concrete	Location : Abutment
Client No.: 720033-7.1	Client Description: Poured Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106341	Analyst Observation: Grey Concrete	Location : Abutment
Client No.: 720033-7.2	Client Description: Poured Concrete	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Signature: Analyst:

ed:	12/7/2020
ed:	12/13/2020
	256
	Linda Price

Approved By:

62

Frank E. Ehrenfeld, III Laboratory Director

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106342	Analyst Observation: Grey Concrete	Location : Abutment
Client No.: 720033-7.3	Client Description: Poured Concrete	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106343	Analyst Observation : Black Vibration Dampener	Location: Vibration Damper
Client No.: 720033-8.1	Client Description : Black Felt Paper	Facility:
Percent Asbestos:	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	25 Cel lulose	75
Lab No.: 7106344	Analyst Observation: Black Vibration Dampener	Location : Vibration Damper
Client No.: 720033-8.2	Client Description: Black Felt Paper	Facility:
Percent Asbestos:	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	25 Cel lulose	75
Lab No.: 7106345	Analyst Observation : Black Vibration Dampener	Location : Vibration Damper
Client No.: 720033-8.3	Client Description : Black Felt Paper	Facili ty:
Client No.: 720033-8.3	Client Description: Black Felt Paper	Facility:
Percent Asbestos:	Percent Non-Asbestos Fibrous Material:	Percent Non-Fibrous Material:
Client No.: 720033-8.3	Client Description: Black Felt Paper	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	30 Cel lulose	70
Lab No.: 7106346	Analyst Observation: Black Mastic	Location: Expansion Joint
Client No.: 720033-8.3	Client Description: Black Felt Paper	Facility:
Percent Asbestos:	Percent Non-Asbest os Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	30 Cel lulose	70
Lab No.: 7106346	Analyst Observation: Black Mastic	Location: Expansion Joint
Client No.: 720033-9.1	Client Description: Black/Grey Mastic	Facility:
Percent Asbestos:	Percent Non-Asbest os Fibrous Material:	<u>Percent Non-Fibrous Material:</u>

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received:	12/7/2020	 Approved By:	Frank Frankel
Date Analyzed:	12/13/2020		
	200		Frank E. Ehrenfeld, III
Signature:	Lohan		Laboratory Director
Analyst:	Linda Price		

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106347	Analyst Observation : Black Mastic	Location : Expansion Joint
Client No.: 720033-9.2	Client Description : Black/Grey Mastic	Facility:
<u>Percent Asbestos:</u>	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106347(L2)	Analyst Observation : Grey Mastic	Location : Expansion Joint
Client No.: 720033-9.2	Client Description : Black/Grey Mastic	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106348	Analyst Observation : Black Mastic	Location : Expansion Joi nt
Client No.: 720033-9.3	Client Description : Black/Grey Mastic	Facili ty:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detect ed	100
Lab No.: 7106348(L2)	Analyst Observation : Grey Mastic	Location : Expansion Joint
Client No.: 720033-9.3	Client Description : Black/Grey Mastic	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106349	Analyst Observation : Black Expansion Joint	Location : Expansion Joint
Client No.: 720033-10.1	Client Description : Black Rubber	Facility:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	Percent Non-Fibrous Material:
None Detected	None Detect ed	100
Lab No.: 7106350	Analyst Observation : Black Expansion Joint	Location : Expansion Joi nt
Client No.: 720033-10.2	Client Description : Black Rubber	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detecte d	None Detected	100

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Signature:

Analyst:

ed: 12/7/2020 ed: 12/13/2020 2.5/2 Linda Price Approved By:

6sl e ta

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106351	Analyst Observation : Black Expansion Joint	Location : Expansion Joint
Client No.: 720033-10.3	Client Description : Black Rubber	Facility:
<u>Percent Asbestos:</u>	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106352	Analyst Observation : Black Gasket	Location: Gaskets
Client No.: 720033-11.1	Client Description : Black Rubber	Facility:
<u>Percent Asbestos:</u>	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106353	Analyst Observation : Black Gasket	Location: Gaskets
Client No.: 720033-11.2	Client Description : Black Rubber	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106354	Analyst Observation : Black Gas ket	Location: Gaskets
Client No.: 720033-11.3	Client Description : Black Rubber	Facility:
<u>Percent Asbestos:</u>	Percent Non-Asbestos Fibrous Material:	Percent Non-Fibrous Material:
None Detected	None Detected	100
Lab No.: 7106355	Analyst Observation: Grey Cementitious	Location :
Client No.: 720033-12.1	Client Description: Lt. Wt. Grey Cement Patch	Facili ty:
Percent Asbestos:	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106356	Analyst Observation : Grey Cementitious	Location :
Client No.: 720033-12.2	Client Description : Lt. Wt. Grey Cement Patch	Facili ty:

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Signature:

Analyst:

: 12/7/2020 : 12/13/2020 Linda Price Approved By:

Gol

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106357	Analyst Observation: Grey Cementitious	Location :
Client No.: 720033-12.3	Client Description: Lt. Wt. Grey Cement Patch	Facility:
<u>Percent Asbestos:</u>	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106358	Analyst Observation : Black Mastic	Location :
Client No.: 720033-13.1	Client Description : Black Road Reflective Mastic	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106359	Analyst Observation: Black Mastic	Location :
Client No.: 720033-13.2	Client Description: Black Road Reflective Mastic	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
T 1 N 810/00/0		T
Lab No.: 7106360	Analyst Observation: Black Mastic	Location :
Client No.: 720033-13.3	Client Description: Black Road Reflective Mastic	Facili ty:
Client No.: 720033-13.3	Client Description: Black Road Reflective Mastic	Facility:
Percent Asbestos:	Percent Non-Asbest os Fibrous Material:	Percent Non-Fibrous Material:
Client No.: 720033-13.3	Client Description: Black Road Reflective Mastic	Facility:
Percent Asbestos:	Percent Non-Asbest os Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106361	Analyst Observation: Grey Cement Product	Location:
Client No.: 720033-13.3 Percent Asbestos: None Detected Lab No.: 7106361 Client No.: 720033-14.1 Percent Asbestos: 20 Chrys otile	Client Description: Black Road Reflective Mastic <u>Percent Non-Asbestos Fibrous Material:</u> None Detected Analyst Observation: Grey Cement Product Client Description: Transite Drain Scupper <u>Percent Non-Asbestos Fibrous Material:</u>	Facility: <u>Percent Non-Fibrous Material:</u> 100 Location: Facility: <u>Percent Non-Fibrous Material:</u>

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Signature: Analyst: I: 12/7/2020 I: 12/13/2020 Linda Price Approved By:

2 20 6sl

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106363	Analyst Observation : Sample Not Analyzed	Location :
Client No.: 720033-14.3	Client Description : Transite Drain Scupper	Facility:
<u>Percent Asbestos:</u> Sample Not Analyzed	<u>Percent Non-Asbestos Fibrous Material:</u> Sample Not Analyzed	Percent Non-Fibrous Material:
Lab No.: 7106364	Analyst Observation : Grey Mastic	Location :
Client No.: 720033-15.1	Client Description : Grey Mastic	Facility:
Percent Asbestos:	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
PC 0.75 Chrys otile	None Detect ed	99.25
Lab No.: 7106365	Analyst Observation : Grey Mastic	Location :
Client No.: 720033-15.2	Client Description : Grey Mastic	Facility:
Percent Asbestos:	Percent Non-Asbestos Fibrous Material:	Percent Non-Fibrous Material:
PC 0.75 Chrys otile	None Detected	99.25
Lab No.: 7106366	Analyst Observation : Grey Mastic	Location :
Client No.: 720033-15.3	Client Description : Grey Mastic	Facility:
Percent Asbestos:	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
PC 0.5 Chrys otile	None Detected	99.5
Lab No.: 7106367	Analyst Observation : Grey Caulk	Location : Abutment
Client No.: 720033-16.1	Client Description : Grey Caulk	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106368	Analyst Observation : Grey Caulk	Location : Abutment
Client No.: 720033-16.2	Client Description : Grey Caulk	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Signature:

Analyst:

ved:	12/7/2020
zed:	12/13/2020
	25/2n
	Linda Price

Approved By:

fall 2.

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256

Report Date: 12/13/2020 Report No .: 624212 - PLM Project: FDOT 2 Bridge 720033 Project No .: 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106369	Analyst Observation: Grey Caulk	Location : Abutment
Client No.: 720033-16.3	Client Description: Grey Caulk	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106370	Analyst Observation : Grey Caulk	Location : Pipes Penetration
Client No.: 720033-17.1	Client Description : Grey Caulk	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbest os Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detecte d	None Detect ed	100
Lab No.: 7106371	Analyst Observation : Grey Caulk	Location : Pipes Penetration
Client No.: 720033-17.2	Client Description : Grey Caulk	Facility:
Percent Asbestos:	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106372	Analyst Observation : Grey Caulk	Location : Pipes Penetration
Client No.: 720033-17.3	Client Description : Grey Caulk	Facility:
Lab No.: 7106372	Client Description: Grey Caulk <u>Percent Non-Asbestos Fibrous Material:</u> None Detected	Facility: <u>Percent Non-Fibrous Material:</u> 100
Lab No.: 7106372 Client No.: 720033-17.3 Percent Asbestos:	Client Description : Grey Caulk Percent Non-Asbestos Fibrous Material:	Facility: Percent Non-Fibrous Material:
Lab No.: 7106372 Client No.: 720033-17.3 Percent Asbestos: None Detected Lab No.: 7106373	Client Description: Grey Caulk <u>Percent Non-Asbestos Fibrous Material:</u> None Detected 	Facility: <u>Percent Non-Fibrous Material:</u> 100 Location : Tee Beams
Lab No.: 7106372 Client No.: 720033-17.3 Percent Asbestos: None Detected Lab No.: 7106373 Client No.: 720033-18.1 Percent Asbestos:	Client Description: Grey Caulk <u>Percent Non-Asbestos Fibrous Material:</u> None Detected Analyst Observation: Grey Concrete Client Description: Concrete <u>Percent Non-Asbestos Fibrous Material:</u>	Facili ty: <u>Percent Non-Fibrous Material:</u> 100 Location : Tee Beams Facili ty: <u>Percent Non-Fibrous Material:</u>

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received: Date Analyzed:

Analyst:

12/7/2020 12/13/2020 Signature: Linda Price Approved By:

6sl 2 de

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256
 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Client: SHA873

PLM BULK SAMPLE ANALYSIS SUMMARY

Lab No.: 7106374	Analyst Observation: Grey Concrete	Location : Tee Beams
Client No.: 720033-18.2	Client Description: Concrete	Facility:
<u>Percent Asbestos:</u>	Percent Non-Asbestos Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106374(L2)	Analyst Observation: Black Tar	Location : Tee Beams
Client No.: 720033-18.2	Client Description: Concrete	Facility:
<u>Percent Asbestos:</u>	<u>Percent Non-Asbestos Fibrous Material:</u>	<u>Percent Non-Fibrous Material:</u>
None Detecte d	None Detected	100
Lab No.: 7106375	Analyst Observation : Grey Concrete	Location : Tee Beams
Client No.: 720033-18.3	Client Description : Concrete	Facility:
Percent Asbestos:	Percent Non-Asbest os Fibrous Material:	<u>Percent Non-Fibrous Material:</u>
None Detected	None Detected	100
Lab No.: 7106375(L2)	Analyst Observation : Black Tar	Location : Tee Beams
Client No.: 720033-18.3	Client Description : Concrete	Facility:

Please refer to the Appendix of this report for further information regarding your analysis.

Date Received:	12/7/2020
Date Analyzed:	12/13/2020
Signature: Analyst:	2.5/2 Linda Price

Approved By:

a Enampel

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256

Client: SHA873

 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Appendix to Analytical Report

Customer Contact: Dave Mosher

Method:40 CFR Appendix E to Subpart E of Part 763, interim method for the Determination of Asbestos in Bulk Insulation Samples, and USEPA 600, R93-116 as needed.

This appendix seeks to promote greater understanding of any observations, exceptions, special instructions, or circumstances that the laboratory needs to communicate to the client concerning the above samples. The information below is used to help promote your ability to make the most informed decisions for you and your customers. Please note the following points of contact for any questions you may have.

iATL Customer Service: custom erservice@iatl.com iATL Office Manager: wchampion@iatl.com iATL Account Representative: Kelly Klippel Sample Login Notes: See Batch Sheet Attached Sample Matrix: Bulk Building Materials Exceptions Noted: See Following Pages

General Terms, Warrants, Limits, Qualifiers:

General information about iATL capabilities and client/laboratory relationships and responsibilities are spelled out in iATL policies that are listed at www.iATL.com and in our Quality Assurance Manual per ISO 17025 standard requirements. The information therein is a representation of iATL definitions and policies for tumaround times, sample submittal, collection media, blank definitions, quantification is sues and limit of detection, analytical methods and procedures, sub-contracting policies, results reporting options, fees, terms, and discounts, confidentiality, sample archival and disposal, and data interpretation.

iATL warrants the test results to be of a precision normal for the type and methodology employed for each sample submitted. iATL disclaims any other warrants, expressed or implied, including warranty of fitness for a particular purpose and warranty of merchantability. iATL accepts no legal responsibility for the purpose for which the client uses test results. Any analytical work performed must be governed by our Standard Terms and Conditions. Prices, methods and detection limits may be changed without notification. Please contact your Customer Service Representative for the most current information.

This confidential report relates only to those item(s) tested and does not represent an endorsement by NIST-NVLAP, AIHA LAP LLC, or any agency of local, state or province governments nor of any agency of the U.S. government.

This report shall not be reproduced except in full, without written approval of the laboratory.

Information Pertinent to this Report:

Analysis by US EPA 600 93-116: Determination of Asbestos in Bulk Building Materials by Polarized Light Microscopy (PLM).

Certifications:

- NIST-NVLAP No. 101165-0
- NYSDOH-ELAP No. 11021
- AIHA-LAP, LLC No. 100188

Quantification at <0.25% by volume is possible with this method. (PC) Indicates Stratified Point Count Method performed. (PC-Trace) means that asbestos was detected but is not quantifiable under the Point Counting regimen. PC Trace represents a <0.25% amount. Analysis includes all distinct separable layers in accordance with EPA 600 Method. If not reported or otherwise noted, layer is either not present or the client has specifically requested that it not be analyzed (ex. analyze until positive instructions). Small asbestos fibers may be missed by PLM due to resolution limitations of the optical microscope. Therefore, PLM is not consistently reliable in detecting asbestos in non-friable organically bound (NOB) materials. Quantitative transmission electron microscopy (TEM) is currently the only method that can pronounce materials as non-asbestos containing.

Analytical Methodology Alternatives: Your initial request for analysis may not have accounted for recent advances in regulatory requirements or advances in technology that are routinely used in similar situations for other qualified projects. You may have the option to explore additional analysis for further information. Below are a few options, listed as the matrix followed by the appropriate methodology. Also included are links to more information on our website.

Bulk Building Materials that are Non-Friable Organically Bound (NOB) by Gravimetric Reduction techniques employing PLM and TEM: ELAP 198.6 (PLM-NOB), ELAP 198.4 (TEM-NOB)

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256

Client: SHA873

 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

Loose Fill Vermiculite Insulation, Attic Insulation, Zonolite (copyright), etc.: US EPA 600 R-4/004 (multi-tiered analytical process) Sprayed On Insulation/Fireproofing with Vermiculite (SOF-V): ELAP 198.8 (PLM-SOF-V)

Soil, sludge, sediment, aggregate, and like materials analyzed for asbestos or other elongated mineral particles (ex. erionite, etc.): ASTM D7521, CARB 435, and other options available

Asbestos in Surface Dust according to one of ASTM's Methods (very dependent on sampling collection technique - by TEM): ASTM D 5755, D5756, or D6480

Various other asbestos matrices (air, water, etc.) and analytical methods are available.

Disclaimers / Qualifiers:

There may be some samples in this project that have a "NOTE:" associated with a sample result. We use added disclaimers or qualifiers to inform the client about something that requires further explanation. Here is a list with highlighted disclaimers that may be pertinent to this project. For a full explanation of these and other disclaimers, please inquire at customerservice@iatl.com.

- 1) Note: No mastic provided for analysis.
- 2) Note: Insufficient mastic provided for analysis.
- 3) Note: Insufficient material provided for analysis.
- 4) Note: Insufficient sample provided for QC reanalysis.
- 5) Note: Different material than indicated on Sample Log / Description.
- 6) Note: Sample not submitted.
- 7) Note: Attached to asbest os containing material.
- 8) Note: Received wet.
- 9) Note: Possible surface contamination.
- 10) Note: Not building material. 1% threshold may not apply.
- 11) Note: Recommend TEM-NOB analysis as per EPA recommendations.
- 12) Note: Asbestos detected but not quantifiable.
- 13) Note: Multiple identical samples submitted, only one analyzed.
- 14) Note: Analyzed by EPA 600/R-93/116. Point Counting detection limit at 0.080%.
- 15) Note: Analyzed by EPA 600/R-93/116. Point Counting detection limit at 0.125%.
- 16) Note: This sample contains > 10% vermiculite mineral. See Appendix for Recommendations for Vermiculite Analysis.

Recommendations for Vermiculite Analysis:

Several analytical protocols exist for the analysis of asbestos in vermiculite. These analytical approaches vary depending upon the nature of the vermiculite mineral being tested (e.g. un-processed gange, homogeneous exfoliated books of mica, or mixed mineral composites). Please contact your client representative for pricing and turnaround time options available.

iATL recommends initial testing using the EPA 600/R-93/116 method. This method is specifically designed for the analysis of as bestos in bulk building materials. It provides an acceptable starting point for primary screening of vermiculite for possible asbestos.

Results from this testing may be inconclusive. EPA suggests proceeding to a multi-tiered analysis involving wet separation techniques in conjunction with PLM and TEM gravimetric analysis (EPA 600/R-04/004).

For New York State customers, NYSDOH requires disclaimers and qualifiers for various vermiculite containing samples that direct analysis via ELAP198.6 and ELAP198.8 for samples that contain >10% vermiculite mineral where ELAP198.6 may be used to evaluate the asbest content of the material. However, any test result using ELAP198.6 will be reported with the following disclaimer: "ELAP198.6 method does not remove vermiculite and may underestimate the level of asbest present in a sample containing >10% vermiculite."

Further information on this method and other vermiculite and asbestos issues can be found at the following: Agency for Toxic Substances and Disease Registry (ATSDR) www.atsdr.cdc.gov, United States Geological Survey (USGS) www.minerals.usgs.gov/minerals/, US EPA www.epa.gov/asbestos. The USEPA also has an informative brochure "Current Best Practices for Vermiculite Attic Insulation" EPA 747F03001 May 2003, that may assist the health and remediation professional. NYS customers please follow current NYSDOH ELAP requirements per policy on subject of surfacing and vermiculite, May 6, 2016, Testing Requirements for Surfacing Material Containing Vermiculite (https://www.wadsworth.org/sites/default/files/WebDoc/I198_8_02_2.pdf)

The following is a summary of the analytical process outlines in the EPA 600/R-04/004 Method:

1)Analytical Step/Method: Initial Screening by PLM, EPA 600R-93/116 Requirements/Comments: Minimum of 0.1 g of sample. ~0.25% for most samples.

CERTIFICATE OF ANALYSIS

Client: Aptim

9143 Phillips Highway, Suite 400 Jacksonville FL 32256

Client: SHA873

 Report Date:
 12/13/2020

 Report No.:
 624212 - PLM

 Project:
 FDOT2 Bridge 720033

 Project No.:
 631017420

2)Analytical Step/Method:Wet Separation by PLM Gravimetric Technique, EPA R-04/004 Requirements/Comments: Minimum 50g** of dry sample. Analysis of "Sinks" only.

3)Analytical Step/Method:Wet Separation by PLM Gravimetric Technique, EPA R-04/004 Requirements/Comments: Minimum 50g** of dry sample. Analysis of "Floats" only.

4)Analytical Step/Method:Wet Separation by TEM Gravimetric Technique, EPA R-04/004 Requirements/Comments: Minimum 50g** of dry sample. Analysis of "Sinks" only.

5)Analytical Step/Method:Wet Separation by TEM Gravimetric Technique, EPA R-04/004 Requirements/Comments: Minimum 50g** of dry sample. Analysis of "Suspension" only. *With advance notice and confirmation by the laboratory.

**Approximately 1 Liter of sample in double-bagged container (~9x6 inch bag of sample).

	INTERNATIONAL ASVESTOS TESTING LADORAHORIES	Chain of Custod Bulk As		0	9000 Commerce Parkway Suite B Mt. Laurel, NJ 08054 Toll Free: 877 428-4285 <u>info@latl.com</u> www.iatl.com
	Client: <u>APTIM</u> 9143 Philips Hwy, Su Jacksonville, FL 322	ite 400 P	roject Name roject No.:	: FDOT 2 Bridge 720 6310174	0033 2.0
	Office Phone: <u>904-367-6033</u> Cell Phone: <u>904-509-9662</u> FAX / Email 1:	C	Contact 1: Contact 2: AX / Email 1	greg.dever@aptim.c william.zukauskas@ 2)aptim.com
	Special Invoice Allen: Greg Dever - gre	.dever@aplim.com			
	Matrix: Air Soil Water Paint	Bulk Surface Dust) / Wipe	Other	
	Analysis Method:				
\langle	PLM : Bulk Asbestos Building Mate	rials EPA 600 / R 93-116			
	PLM : Point Counting PC : via ELAP 198.1 PC : 400 Points PC : 800 Points * PC : other Points *		AUP : by H AUP : by M : Non-Building	Positive (Positive Stop omogenous Area as No aterial Type as Noted Material *, **(Dust, W miculite Analysis *, **	ted /ipe, Tape, Soil)
	PLM : Gravimetric Reduction PLM : NOB via 198.6 PLM : Friable via EPA 600 If <1% by PLM, to TEM vi If <1% by PLM, Hold for In	2.3 a 198.4 * structions	Analyze and Report Com Report All I Only Analy:	or Multi-Layered Sampl I Report All Separable I posite for Drywall Syst ayers and Composite V ze and Report Specifica	Layers per EPA 600 ems per NESHAP Vhere Applicable Ily Noted Layer
1	* Additional charge and turnaround may be rea	uired. ** Alternative Method (ex:	EPA 600/R-04/0	04) may be recommended	I by Laboratory.
	Turnaround Preliminary Result Time:	Requested By date / tim		□ Verbals □ F	AX X Email
	10 Day 5 Day 3 * End of next business day unless other	Day 2 Day 1 Da		Iour** 6 Hour* notify the lab before ship	L
	Client #(s):(start)	3 – 1.1 to 7d.0037 iA (end) ampling information (ex. Volumes, area	ATL#(s):	(start) (end) ations, etc.) or download form	Total: 54
	Chain of Custody: Relinquished (Name / Organizati Received (Name / iATL): Sample Login (Name / iATL): Sample Prep (Name / iATL): Analysis(Name(s) / iATL): QA/QC Review (Name / iATL): Archived / Released:		Ò	Date: $/2/y/a_0$ Date: $/1000000000000000000000000000000000000$	Time: 17:00 2U/Time: Time: Time: Time: Time: Time:

Chain of Custody / Sample Log Bulk Asbestos

9000 Commerce Parkway Suite B Mt. Laurel, NJ 08054 Toll Free: 877 428-4285 <u>info@iatl.com</u> www.iatl.com

Client: APTIM 9143 Philips Hwy, Suite 400, Jax FL
 Project Name:
 FDOT 2 Bridge 720033

 Project No.:
 63/6/742 9

Sampling Date: 12/3/20

Client Sample ID:	iATL Sample ID:	Sample Description / Location	Notes
720033 - 1.1	7106324	concrete deck	
1.2	7106323		
1.3			
2.1	7106224	concrete sidewalk	
2.2	7188328		
2.3	7106327	d	
3.1	7106328	concrute Railing	
3.7	7106329		
3.3	7106330	l l	
4.1	7106331	concrite piles /columns	
4,2	7106032		
¥.3	7108333	V	
5.1	7106034		
5.2	7106335		
5.3	7108336	L	
6.1	7106037	Concrete Rip Rap 49/15	
6.2			
6.3	7106000	4	
	7106640	Poured concrete Abot ment	
7.2			
2.3		<u> </u>	
8.1	7106343	Blh felt Paper vibration DA mysed	
8.2	7108644		
P.3	7106345	ų	
9.1	1-1100000	Blk/gray Mastic expansion juint	
9.2	7106347		
9.3	7100048		§
10.1	1100349	Blk Autoken expansion joint	

Chain of Custody / Sample Log Bulk Asbestos

9000 Commerce Parkway Suite B Mt. Laurel, NJ 08054 Toll Free: 877 428-4285 <u>info@iatl.com</u> www.iatl.com

Client:	APTIM
	9143 Philips Hwy, Suite 400, Jax FL

Project Name: FDOT 2 Bridge 720033 Project No.: 63/0/7420

Sampling Date: 12/3/20

Client Sample ID:	iATL Sample ID:	Sample Description / Location	Notes
220033 - 10.2	7106350	Blk Rikken exponsion juint	
	7106351	1	
11.(7106252	Blk pilster gaskets	
11.2	7106353		
11.3	7106354	N.	
12.1	7106355	Lt. Wt. gray coment Patch	
12.2	7106356		
14.3	7106357	<u>l</u>	· · · · · · · · · · · · · · · · · · ·
18.1	7106358	BILL Road Reflecture Mothe	
13.2	7106359		
13.3	7106360	d.	
19.1		transite Amin sugges	
14.1	7106362		
14.8	7106363	V	
15.1		gray motic	
1512	7106364		
15.3	7106367	V.	
16.1		gray coulte on Abut mut	
16.2	7106358	·	
16.3	7106369	N.	
17.1	7106370	gray cauth at pipes pentration	
17.2	7106371	· · · · · · · · · · · · · · · · · · ·	
12.3	7106372	J.	
18.1	7106373	concute Tee Beans	
18.2	7106374		
18.3	7106375	V	

EMS	Tel/Fax: (904) 337-6418 / (904) 337-6423	EMSL Order: Customer ID: Customer PO: Project ID:	SHAE77	
Atter	ntion: Bill Zukauskas	Phone:	(904) 636-9360	_
	APTIM Environmental & Infrastructure	Fax:	(904) 636-9356	
	9143 Phillips Highway	Received Date:	12/03/2020 2:45 PM	
	Suite 400	Analysis Date:	12/10/2020	
	Jacksonville, FL 32256	Collected Date:		
Pro	oject: FDOT 2 Bridge 720033			

Test Report: Asbestos Analysis of Bulk Materials via EPA 600/R-93/116 Method using Polarized Light Microscopy

			Non-A	sbestos	Asbestos
Sample	Description	Appearance	% Fibrous	% Non-Fibrous	% Туре
72033 - 7.4 GA 542001815-0001	Poured Concrete	Gray Non-Fibrous Homogeneous		50% Quartz 50% Non-fibrous (Other)	None Detected
72033 - 9.4 GA-Mastic - Gray	Blk/Gray Mastic	Gray Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
542001815-0002					
72033 - 9.4 GA-Mastic - Black	Blk/Gray Mastic	Black Non-Fibrous Homogeneous		100% Non-fibrous (Other)	None Detected
542001815-0002A					
72033 - 14.4 GA	Transite Drain Pipe	Gray Fibrous		70% Non-fibrous (Other)	30% Chrysotile
542001815-0003		Homogeneous			

Analyst(s)

Chad Layne (4)

Chad Layne, Asbestos Supervisor or Other Approved Signatory

EMSL maintains liability limited to cost of analysis. Interpretation and use of test results are the responsibility of the client. This report relates only to the samples reported above, and may not be reproduced, except in full, without written approval by EMSL. EMSL bears no responsibility for sample collection activities or analytical method limitations. The report reflects the samples as received. Results are generated from the field sampling data (sampling volumes and areas, locations, etc.) provided by the client on the Chain of Custody. Samples are within quality control criteria and met method specifications unless otherwise noted. The above analyses were performed in general compliance with Appendix E to Subpart E of 40 CFR (previously EPA 600/M4-82-020 "Interim Method") but augmented with procedures outlined in the 1993 ("final") version of the method. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST or any agency of the federal government. Non-friable organically bound materials present a problem matrix and therefore EMSL recommends gravimetric reduction prior to analysis . Unless requested by the client, building materials manufactured with multiple layers (i.e. linoleum, wallboard, etc.) are reported as a single sample. Estimation of uncertainty is available on request.

Samples analyzed by EMSL Analytical, Inc. Jacksonville, FL NVLAP Lab Code 600265-0

Initial report from: 12/10/2020 12:08:25

Chain of Custody

EMSL Analytical, Inc.

.

.

-

542001815

Asbestos Lab Services .

3303 Parkway Center Ct Orlando, FL 32808 Phone: (407) 599-5887 Fax: (407) 599-9063 http://www.emsl.com

Please print all information legibly. .

Company:	Bill To:
Address 1: 9143 Philips Highway	Address1: 9143 Philips Highway
Address2: Suite 400	Address2 Suite 400
City, State: Jacksonville, Florida	City State Jacksonville, Florida
Zip/Post Code: 32256	Zip/Rost Code: 32256
Country: USA	Country USA
Contact Nume: Bill Zukauskas	Ann Bill Zukauskas
Phone: 904-509-9662	Phone 904-509-9662
Fax: 904-367-6001	Fax 904-367-6001
Email: Greg.dever@aptim.com	Email: Greg.dever@aptim.com
Email William.zyukauskas@aptim.com	P.O. Number:
Project Name/Number: FDOT 2 Bridge 720033	· · · · · · · · · · · · · · · · · · ·

Invoice Atten: Greg Dever - greg.dever@aptim.com

	MATRIX				TURNAROUND						
	Air	Soil	Micro-Vac	۳ <u>ا</u>	3 Hours		6 Hours	E	Same Day or 12 Hours*		24 Hours (1 day)
$\langle \rangle$	Bulk	Drinking Water		E	48 Hours (2 days)	[]	72 Hours (3 days)	E	96 Hours (4 days)	N	120 Hours (5 days)
	Wipe	Wastewater		[]	144+ hour	s (6-	10 days)		~	~ <u></u>	

TEM AIR, 3 hours, 6 hours, Please call ahead to schedule. There is a premium charge for 3-hour tat, please call 1-800-220-3675 for price prior to sending samples. You will be asked to sign an authorization form for this service.

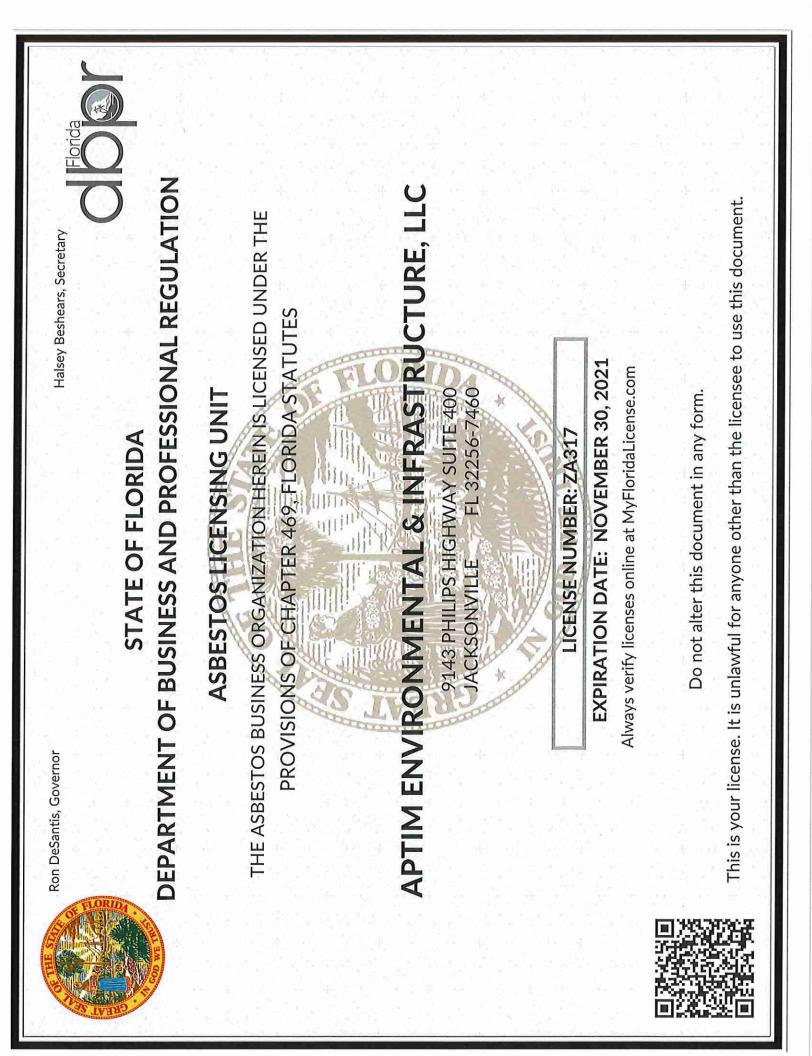
*12 hours (must arrive by 11:00a.m. Mon -Fri.), Please Refer to Price Quote

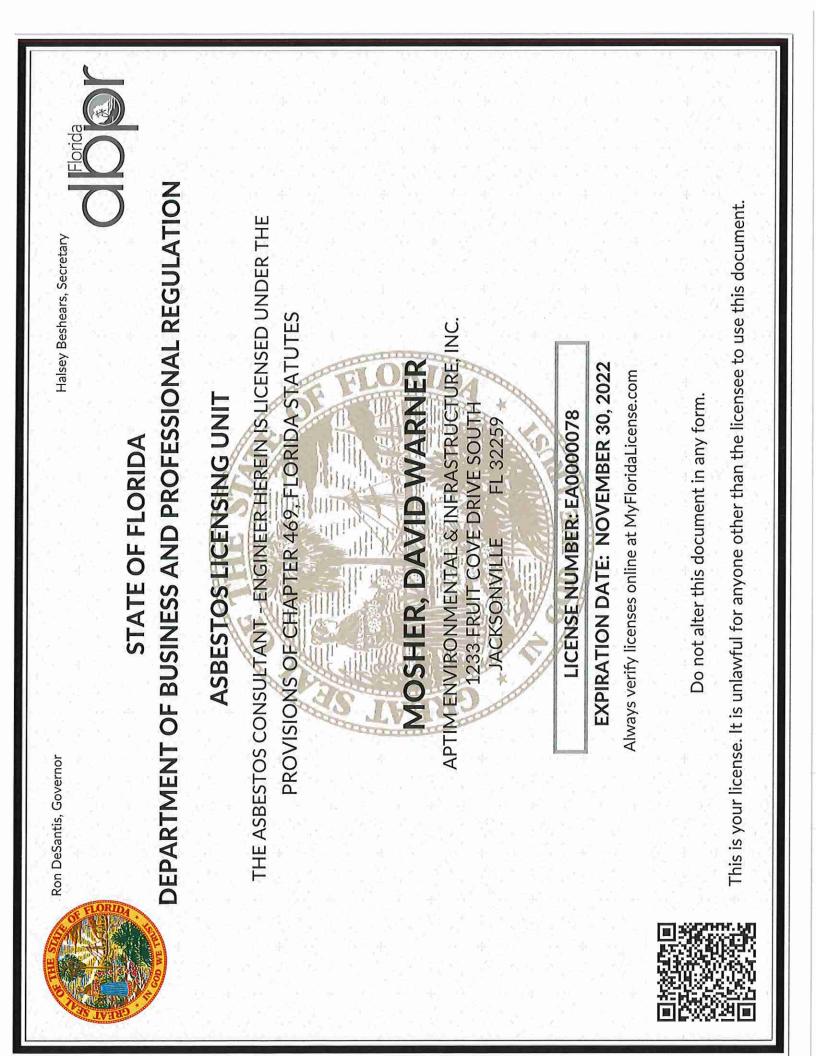
PCM - Air	TEM Air	TEM WATER
NIOSH 7400(A) Issue 2: August 1994	AHERA 40 CFR, Part 763 Subpart	EPA 100.1
OSHA w/TWA	NIOSH 7402	CI EPA 100.2
Other:	EPA Level II	NYS 198.2
PLM - Bulk	TEM BULK	TEM Microvac/Wipe
EPA 600/R-93/116	Drop Mount (Qualitative)	ASTM D 5755-95 (quantative method
EPA Point Count	Chatfield SOP - 1988-02	U Wipe Qualitative
NY Stratified Point Count	THE NOB (Gravimetric) NYS 198.4	

.

.

EMEL 502 C	Emsl Standard Addition: Chain of Custody	EMSL Analytical, I
	Asbestos Lab Services	3303 Parkway Cente Orlando, FL 32 Phone: (407) 599-5 Fax: (407) 599-9
Please print all informatio Client Sample # (s)_72	Date: 12-3-2020	2 • 0 3 J - 14. 4 total Samples #:3
Relinquished:	Date: 12/3/20	Time: 1235-
Received: Mau	<u>Relacel</u> Date: 12-3-2020	Time: 2:45 PM
Relinquished:	Date:	Time:
Received:	Date:	Time:
SAMPLE NUMBER	SAMPLE DESCRIPTION/LOCATION	VOLUME (if applicable)
72033- 7.4GA	poursel concrute	
9.464	poured concrete Blk Igny motic Transite deain pipe	
14.463	Transite daging ange	
		4
	- -	
	· · · · · · · · · · · · · · · · · · ·	


QUALITY ASSURANCE SAMPLING


Quality assurance (QA) sampling was performed in accordance with the State of Florida Asbestos Survey Procedure Manual. QA samples (sample Nos. 7.4, 9.4, and 14.4) were collected next to sample Nos. 7.3, 9.3, and 14,3, respectively. The laboratory analyses indicated that the QA sample 14.4 contained asbestos. The result of all QA samples were consistent with the original sample analysis.

SECTION 5

CREDENTIALS FOR CONSULTANT, INSPECTOR, AND LABORATORY

.

Deal. alles Dean Althage Instructor Thomas Mayhew Bull ML President has on 1/7/2020, in Jacksonville FL completed the requirements for asbestos accreditation under Section 206 of TSCA Title II, 15 USC 2646 from 1/7/2020 to 1/7/2020 and passed the associated exam on 1/7/2020 with a Mayhew Environmental Training Associates 800.444.6382 INCORPORATED 4-hour Asbestos Building Inspector Refresher V+E+T+A as approved by FL and the US EPA under 40 CFR 763 (AHERA) William Zukauskas www.metaenvironmental.net Training Provider #: FL49-0001221 Certificate # 4W8ZH4VXSZ5M Lawrence, KS. 66044 score of at least 70% SSN: XXX-XX-5245 Expiration: 1/7/2021 Course #: 0004718 FL License #: ĩ P.O. Box 786 VIAN HEW KCICN

United States Department of Commerce National Institute of Standards and Technology	NVLAP LAB CODE: 101165-0	International Asbestos Testing Laboratories Mt. Laurel, NJ	is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:	Asbestos Fiber Analysis	This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).	2020-07-01 through 2021-06-30 Effective Dates Effective Dates For the National Voluntary Laboratory Accreditation Program
--	--------------------------	---	---	-------------------------	--	--

United States Department of Commerce National Institute of Standards and Technology	NVLAP LAB CODE: 101151-0	EMSL Analytical, Inc. Orlando, FL	is accredited by the National Voluntary Laboratory Accreditation Program for specific services, listed on the Scope of Accreditation, for:	Asbestos Fiber Analysis	This laboratory is accredited in accordance with the recognized International Standard ISO/IEC 17025:2017. This accreditation demonstrates technical competence for a defined scope and the operation of a laboratory quality management system (refer to joint ISO-ILAC-IAF Communique dated January 2009).	2020-07-01 through 2021-06-30 Effective Dates Effective Dates For the National Voluntary Laboratory Accreditation Program
--	--------------------------	--------------------------------------	---	-------------------------	--	--

SCOPE OF ACCREDITATION TO ISO/IEC 17025:2017

EMSL Analytical, Inc.

3303 Parkway Center Court Orlando, FL 32808 Mr. Carlos Rivadeneyra Phone: 407-599-5887 Email: crivadeneyra@emsl.com http://www.emsl.com

ASBESTOS FIBER ANALYSIS

NVLAP LAB CODE 101151-0

Bulk Asbestos Analysis

Code	Description
18/A01	EPA 40 CFR Appendix E to Subpart E of Part 763, Interim Method of the Determination of Asbestos in Bulk Insulation Samples
18/A03	EPA 600/R-93/116: Method for the Determination of Asbestos in Bulk Building Materials

Airborne Asbestos Analysis

Code 18/A02

Description

U.S. EPA's "Interim Transmission Electron Microscopy Analytical Methods-Mandatory and Nonmandatory-and Mandatory Section to Determine Completion of Response Actions" as found in 40 CFR, Part 763, Subpart E, Appendix A.

For the National Voluntary Laboratory Accreditation Program

SECTION 6

,

ASBESTOS OPERATIONS AND MAINTENANCE (O&M) PLAN AND RESPONSE ACTION

.

.

O&M PLAN AND RESPONSE ACTION FOR BRIDGE #720033 SR 115 OVER TROUT RIVER DUVAL COUNTY, FLORIDA TO BE REPLACED

Any regulated asbestos-containing material (RACM), must be abated in accordance with 40 CFR, Subpart M, Part 61.145, as stated in abatement specifications required by Chapter 255, FS and OSHA Standard 1926.58 for the construction industry, prior to demolition or renovation. RACM is identified as follows:

Friable ACM

- Category I nonfriable ACM that has become friable
- Category I nonfriable ACM that will be or has been subject to sanding, grinding, cutting, or abrading
- Category II nonfriable ACM that has a high probability of becoming, or has become, crumbled, pulverized, or reduced to powder by the forces expected to act on such material

1. Introduction

1.1 This plan is an abbreviated description of task requirements prepared for the removal of asbestos-containing materials (ACM) from Bridge #720033, at SR-115 over Trout River in Jacksonville, Duval County, Florida.

1.2 Financial Management No., LOA 51.

1.3 All work shall be performed in strict compliance with all federal, state, and local regulations and ordinances, and in a manner which conforms to the intent of all health and safety laws.

1.4 All work must comply with abatement procedures described in Master Specifications for Asbestos Abatement developed for the State of Florida, Department of Transportation District 2, and to sections applicable to the scope of work (SOW), which are to be used as the primary requirements in conjunction with the Work Plan.

2. Scope of Work

2.1 A brief description of the work is as follows:

Bridge #720033 – Removal of 57 cementitious drain scuppers on the roadway deck and the end cap mastic identified on the bridge structure prior to demolition. Exterior isolation criteria are required during removal.

3. General Requirements

3.1 Existing conditions are reflected correctly to the best of the Department's Representative's knowledge.

3.2 In the event that conditions are encountered in the field which were not identified in the Work Plan, the Department's Representative shall be notified immediately.

3.3 Modifications to the Work Plan can be made in writing by the Department's Representative.

3.4 If the Contractor proceeds, without written notification from the Department's Representative, the Contractor shall be solely and completely responsible for those efforts.

4. **Project Coordination**

4.1 The project will be coordinated with the Department's Certification Compliance Administrator in conjunction with the Department's Representative. The Contractor shall perform no work unless approval by the Department or the Department's Representative has been received. Under no circumstances shall a Contractor disrupt the daily activities of any facility/bridge without the prior approval of the Department.

4.2 The Contractor shall make all necessary provisions for power, water, etc., and shall provide said utilities to the Department's Representative.

4.3 The Contractor shall not perform any work in the absence of the Department's Representative, who shall decide, in absolute discretion, as to the meaning and applicability of any part of the Work Plan and/or Master Specifications for the Asbestos Abatement.
4.4 All project related documentation including Pre-job Submittals, Project Quotes, FDEP Notifications, Post-Job Submittals, application for final payment, etc., shall include the FDOT Financial Management Number as specified in Section 1.2 of this Work Plan.
4.5 Prior to commencement of work, the Contractor shall submit one copy of the required information, as per Section 1 of the Master Specifications to the Department Representative. No work will be allowed to commence without the required submittals. 4.6 Notifications for

abatement or demolition shall be sent to the proper authorities via certified mail – return receipt requested. A copy of the signed return receipt shall be included as part of the project file.

5. Asbestos Abatement Requirements

5.1 Personnel and Respiratory Protection. During isolation and preparation of the Work Area(s), a half-face negative pressure air-purifying respirator (APR) shall be the minimum required protection. Additional respiratory protection during abatement activities may be required as determined by the Department's Representative.

5.2 Personal Protection Equipment (PPE). PPE shall consist of hoods, gloves, boots, and disposable coveralls during all isolation, preparation, and abatement activities.

5.3 All abatement methods shall conform to the requirements as specified in the Work Plan and the Master Specifications.

5.4 No asbestos abatement activities shall be performed without prior approval of the Department's Representative.

6. Air Sampling Protocol

The following air sampling strategy shall be complied with during the project delineated in the SOW of this Work Plan.

6.1 Air sampling protocol before, during, and after the removal of all asbestos work areas shall include pre-abatement air sampling (as determined by the Department's Representative), postabatement air sampling (in those areas subject to negative pressure during removal for clearance sampling), and daily air samples. All air samples shall be analyzed using phase contrast microscopy (PCM) in accordance with the NIOSH 7400 Analytical Method. All air pumps shall be fitted with 24 mm ester cellulose filter cassettes.

6.2 Personnel air monitoring: A minimum of three personnel air samples shall be collected for the purposes of determining time weighted averages (TWA) and excursion limit (EL). Personnel air samples shall be collected from the breathing zone of a minimum of

25 percent of the abatement workers performing asbestos removal activities. Personnel samples are the responsibility of the Contractor and will not be supplied by the Department's Representative as a means of meeting OSHA requirements.

7. Disposal of Asbestos-Containing Material Waste

7.1 Disposal of ACM waste shall be in strict compliance with Section 13 of the Master Specifications. All material shall be placed in a closed top push cart, or equal, before being taken outside the Work Area. In no case shall asbestos waste containers be carried unprotected from the Work Area where the distance to the dumpster or transport is more than a 50-foot distance.

8. Post-Job Submittals

8.1 After successful completion of the project, submit one copy of the required documentation, as per applicable Sections of the Master Specifications, to the Department's Representative. Final payment to the Contractor will not be made until the required Post-Job Submittals have been received and approved by the Department's Representative. All submittals must be received by the Department's Representative within 10 calendar days of the project completion.

End Of Work Plan

DISCLAIMER

The services described in this report were performed consistent with generally accepted professional consulting principles and practices. No other warranty, express or implied, is made. These services were performed consistent with our agreement with our client. This report is solely for the use and information of our client unless otherwise noted. Any reliance on this report by a third party is at such party's sole risk.

This report is the result of a limited investigation of the referenced bridge, and every attempt has been made to discover and inventory all asbestos-containing building materials (ACBM) in the structure. However, due to the limited and nondestructive nature of the inspection, it is possible that other concealed and inaccessible suspect materials may exist. Should any additional suspect ACMs be uncovered during renovation or demolition which are not listed in this report, then those materials should be sampled and submitted for analysis.

Opinions and recommendations contained in this report apply to conditions existing when services were performed and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

APPENDIX G

LIMITED LEVEL 2 SOIL ASSESSMENT REPORT, DATED JUNE 17, 2020

LIMITED LEVEL 2 SOIL ASSESSMENT SR 115 (Lem Turner Road) near the intersection of Trout River Boulevard Jacksonville, Duval County, Florida

Contract BE 398 Financial Project Number 440552-1-C2-06 APTIM Project No. 631013374

June 17, 2020

Submitted to:

Florida Department of Transportation District 2 1109 S. Marion Avenue Lake City, Florida 32025

Submitted by:

Aptim Environmental & Infrastructure,LLC 1228 Winter Garden Vineland Road Winter Garden, Florida 34787

LIMITED LEVEL 2 SOIL ASSESSMENT SR 115 (Lem Turner Road) NEAR THE INTERSECTION OF **TROUT RIVER BOULEVARD** JACKSONVILLE, DUVAL COUNTY, FLORIDA

Contract BE 398 Financial Project Number 440552-1-C2-06 APTIM Project No. 631013374

June 17, 2020

Submitted to:

Florida Department of Transportation District 2 1109 S. Marion Avenue Lake City, Florida 32025

Submitted by:

Aptim Environmental & Infrastructure, Inc., 1228 Winter Garden Vineland Road Winter Garden, Florida 34787

1	
1 th	
yng	
	app

Prepared by:

Maryann Hooper Staff Scientist

Approved by:

Gregory A. Dever, P.E. Contract Manager

Date:

Date:

Table of Contents_____

Table	of Contents	į
	f Tables f Figures	
Acror	nyms and Abbreviations	ii
1.0	Introduction	
2.0	Field Investigative Procedures	
	2.1 Soil Investigation	2-1
3.0	Investigation Results	
	3.1 Soil Investigation Results	
4.0	Conclusions and Recommendations	
5.0	Limitations	5-1

List of Tables _____

Table 1 OVA Soil Screening Results

List of Figures _____

Figure 1	Project Location Map
Figure 2	Boring Location Map

Acronyms and Abbreviations

SR State Road	APTIM bls EPA FAC FDEP FDOT ft OVA PID ppm SOP	Aptim Environmental & Infrastructure, LLC below land surface Environmental Protection Agency Florida Administrative Code Florida Department of Environmental Protection Florida Department of Transportation foot or feet organic vapor analyzer photoionization detector parts per million Standard Operating Proceedure
SOPStandard Operating ProcedureSRState Road	ppm	parts per million
SR State Road	SOP	Standard Operating Procedure
	SR	State Road

1.0 Introduction

Aptim Environmental & Infrastructure, LLC (APTIM), is pleased to present this report summarizing soil sample field screening activities along the State Road (SR) 115 (Lem Turner Rd) right-of-way at the intersection of Trout River Blvd with Lem Turner Rd. in Jacksonville, Duval County, Florida (**Figure 1**). A preliminary desktop screening review by the Department identified specific areas along the corridor with the potential for contamination to impact the light pole installation. Limited Level 2 assessment activities were performed at the locations identified by the Department and listed below:

- STA 105+34, RT (Pole 4, southeast corner of Trout River Blvd and Lem Turner Rd)
- STA 105+74, RT (Pole 5, southeast corner of Trout River Blvd and Lem Turner Rd)
- STA 106+96, LT (Pole 7, southwest corner of Trout River Blvd and Lem Turner Rd)
- STA 107+52, LT (Pole 8, southwest corner of Trout River Blvd and Lem Turner Rd)
- STA 106+25, RT (Pole 6, northwest corner of Trout River Blvd and Lem Turner Rd)

The level of detail contained herein is adequate for Florida Department of Transportation (FDOT) planning purposes. This report should not be considered all-inclusive with respect to potential contamination. Contamination scenarios may vary in terms of the magnitude and types of contaminants that may be present as a result of identified property uses, and changes in property conditions following the assessment and prior to implementation of the proposed improvements.

2.1 Soil Investigation

On March 19, 2020, APTIM performed soil sample headspace vapor screening for samples collected from 5 soil borings, designated SB-1 to SB-5, at locations near proposed light pole locations (Poles 4, 5, 6, 7, and 8) adjacent to the Department's identified areas of concern. Field activities included utility location and clearance of all soil borings. Soil borings were advanced to a total depth of 5-ft below land surface (bls) using a stainless-steel hand auger with a 3-inch diameter bucket. All field activities, including equipment decontamination, were performed in accordance with Florida Department of Environmental Protection (FDEP) Standard Operating Procedures (DEP-SOP-001/01).

Soil grab samples were collected at 1-ft intervals and field screened for organic vapor concentration with a Mini-RAE 3000 organic vapor analyzer (OVA) equipped with a photoionization detector (PID) in accordance with the procedure in FDEP Chapter 62-780.200(17), Florida Administrative Code (FAC). Depth to groundwater throughout the project area was below 5 ft bls and not encountered in any boring. All soil samples soil type, appearance, odor, and water table depth were noted. A summary of the field organic vapor screening results is provided in **Table 1**. The soil boring locations are shown on **Figure 2** and **Figure 3**.

3.0 Investigation Results

3.1 Soil Investigation Results

No elevated headspace organic vapor concentrations were detected in any of the soil samples. Due to OVA concentrations at or below 0.1 part per million (ppm), no samples from the soil investigation were retained for laboratory analysis.

Based on the soil sample headspace vapor screening results, lack of petroleum odors, petroleum staining or other indications of contamination noted in the soil samples, there are no anticipated impacts for the proposed light pole construction. If subsurface construction plans change significantly, additional sampling may be required.

5.0 Limitations

The observations and recommendations described in this report are consistent with generally accepted professional consulting principles and practices. No other warranty, expressed or implied, is made. Opinions and recommendations contained in this report apply to conditions presently known and are intended only for the client, purposes, locations, time frames, and project parameters indicated. We are not responsible for the impacts of any changes in environmental standards, practices, or regulations subsequent to performance of services. We do not warrant the accuracy of information supplied by others, nor the use of segregated portions of this report.

APTIM makes no representation or warranty that the past or current operations at the property are, or have been, in compliance with all applicable federal, state and local laws, regulations and codes. This report does not warrant against future operations or conditions, nor does it warrant against operations or conditions present of a type or at a location not investigated. Regardless of the findings and recommendations stated in this report, APTIM is not responsible for consequences or conditions arising from facts that were not fully disclosed to APTIM.

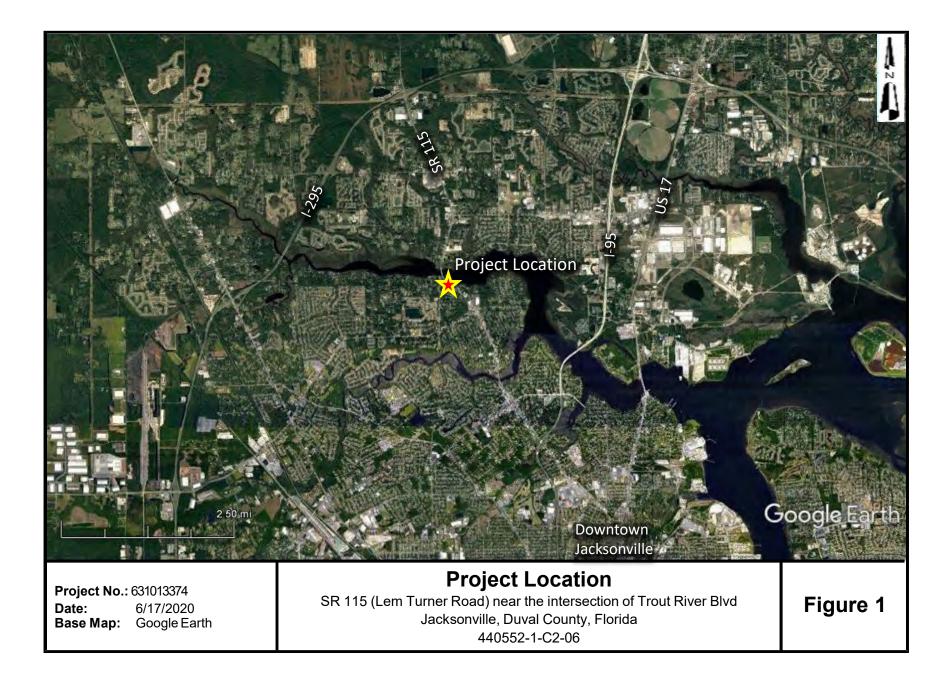
Tables

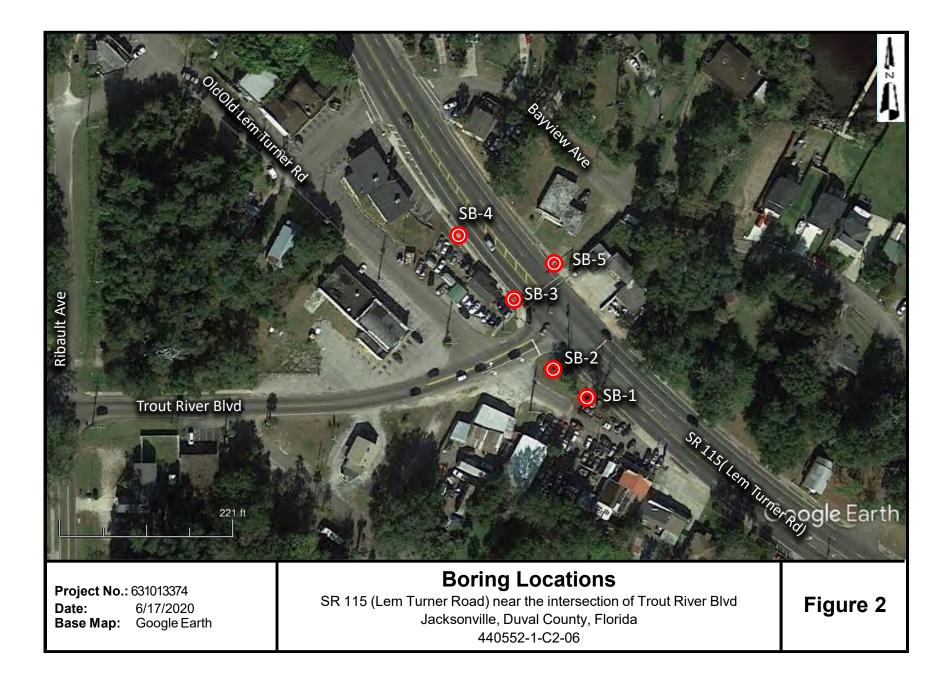
TABLE 1 OVA SOIL SCREENING RESULTS

SR 115 (Lem Turner Road) near the intersection of Trout River Boulevard

Jacksonville, Duval County, FL

440552-1-C2-06


Soil Boring ID / Date Collected	Depth (ft bls)	OVA-PID Response (ppm)	Soil Description
SB-1	1	<0.1	Gray dry sand, no odor
STA 41+30, RT	2	<0.1	Gray moist sand, no odor
3/19/2020	3	<0.1	Gray moist sand, no odor
	4	<0.1	Gray moist sand, no odor
	5	<0.1	Light gray moist sand, no odor
SB-2	1	<0.1	Gray moist sand, no odor
STA 42+00, RT	2	<0.1	Gray moist sand, no odor
3/19/2020	3	<0.1	Gray moist sand, no odor
	4	<0.1	Gray moist sand, no odor
	5	<0.1	Gray moist sand, no odor
SB-3	1	<0.1	Brown moist sand, no odor
STA 106+96, LT	2	<0.1	Brown moist sand, no odor
3/19/2020	3	<0.1	Light tan moist sand, no odor
	4	<0.1	Light tan moist sand, no odor
	5	<0.1	Light tan moist sand, no odor
SB-4	1	<0.1	Brown moist sand, no odor
STA 107+52, LT	2	<0.1	Brown moist sand, no odor
3/19/2020	3	<0.1	Light tan moist sand, no odor
	4	<0.1	Light tan moist sand, no odor
	5	<0.1	Light tan moist sand, no odor
SB-5	1	<0.1	Brown moist sand, no odor
STA 106+25, RT	2	<0.1	Brown moist sand, no odor
3/19/2020	3	<0.1	Light tan moist sand, no odor
	4	<0.1	Light tan moist sand, no odor
	5	<0.1	Light tan moist sand, no odor


Notes:

ppm = parts per million

< = less than

Figures

APPENDIX H

QUALIFICATIONS OF ENVIRONMENTAL PROFESSIONALS

Kevin Ashman, PG Geologist

YEARS WITH COMPANY 10 Years TOTAL YEARS OF EXPERIENCE 10 Years OFFICE Jacksonville, FL ACADEMIC BACKGROUND BA, Geology, Georgia Southern University, 2009 Minor, Geographic Information Systems (GIS), Georgia Southern University, 2009 REGISTRATIONS/CERTIFICATIONS Registered Professional Geologist: Florida #PG2948 Georgia #PG002225 Mississippi #0977	 PROFESSIONAL TRAINING Occupational Safety and Health Administration (OSHA) 40-hr. Hazardous Waste Operations and Emergency Response (HAZWOPER) Operations Security (OPSEC) Awareness for Military Members, Department of Defense (DoD) Employees and Contractors OSHA Permit-Required Confined Spaces Radiation Safety and Operation of Portable X-ray fluorescence (XRF) Analyzers Transport of Lithium Ion Batteries Transport of Radioactive Sealed Sources in XRF Analyzers Cardiopulmonary Resuscitation (CPR)/First Aid/Automated External Defibrillators (AED) Bloodborne Pathogens
--	---

Mr. Ashman has over eight years of experience in the environmental industry. He has actively participated in a wide range of environmental applications, including Phase I/II Environmental Site Assessments (ESAs), Transaction Screen Process (TSPs), contamination screening evaluations (CSEs) for corridor studies along right-of-ways, environmental reviews for neighborhood stabilization program areas, Environmental Compliance Evaluations (ECEs), and Emergency Planning and Community Right-to-Know Act (EPCRA) Section 311/312/313 compliance. Mr. Ashman's responsibilities have included site inspections, field sampling, and report writing as part of environmental due diligence projects. Mr. Ashman also has experience in collecting, analyzing, and compiling field data and has prepared technical reports, including Phase I/II ESAs. As part of Phase I ESAs, he has performed preliminary asbestos-containing material, lead-based paint, mold, and wetland evaluations. As part of Phase II ESAs, he has experience performing soil boring completion, soil screening using an organic vapor analyzer, soil sampling, groundwater well installation, groundwater monitoring, groundwater sampling, and sediment sampling.

Experience Highlights

<u>EPCRA Sections 311/312/313 Compliance Support, United States Army Corps of Engineers (USACE), Fort</u> <u>Belvoir, VA</u> – Project Manager on EPCRA compliance projects at Fort Belvoir. Conducted site inspections and interviews, developed inventory summaries, and prepared and reviewed necessary reporting forms, submittals, and compliance documentation.

<u>ECEs, Headquarters United States Marine Corps (USMC), CH2M Hill, Various Marine Corps Installations</u> – Evaluator II for the USMC ECE Program at the following installations: Marine Corps Air Ground Combat Center (MCAGCC) 29 Palms, Marine Corps Air Station (MCAS) Beaufort, MCAS Camp Pendleton, MCAS Cherry Point, MCAS Iwakuni, MCAS Miramar, MCAS New River, MCAS Yuma, Marine Corps Base Camp (MCB) Camp Lejeune, MCB Camp Pendleton, MCB Hawaii, MCB Quantico, Marine Corps Logistics Base (MCLB) Albany, MCLB Barstow, Marine Corps Recruit Depot (MCRD) Parris Island, and Marine Corps Support Facility (MCSF) Blount Island. Project responsibilities included evaluating USMC installation and unit environmental compliance and assessing risks. Findings were input into the USMC Web Compliance Assessment & Sustainment Systems (WEBCASS) application.

<u>CSE, Interstate 10 (I-10) Capacity Improvements from I-295 to I-95, Parsons, Jacksonville, FL</u> – Project Scientist and GIS Technician for a Level 1 CSE along a five-mile stretch of I-10 between I-295 and I-95. The

proposed construction activities for the subject corridor consisted of the widening and reconstruction of I-10 by adding two general-purpose lanes in each travel direction. Aerostar SES LLC (ASL) identified a total of 74 sites as having the potential to impact the subject corridor and evaluated multiple proposed pond sites along the subject corridor. The assessment was completed in accordance with the Florida Department of Transportation Project Development and Environment (PD&E) Manual.

<u>Miscellaneous Phase I ESAs and TSPs, Southeastern US</u> – Geologist for multiple Phase I ESAs and TSPs on vacant land, managed forests, residential, commercial, and industrial properties in Alabama, Florida, Georgia, Mississippi, and Tennessee with property sizes ranging up to 6,500 acres.

<u>Habijax Urban Redevelopment Project, Habitat for Humanity of Jacksonville, Inc., Various Properties,</u> <u>Jacksonville, FL</u> – Project Scientist for the Habijax Urban Redevelopment Project in Jacksonville, Florida. Performed pre-screening of homes and vacant land for redevelopment in the Downtown Jacksonville area through federal Housing and Urban Development procedures. Conducted approval process through Florida's SHPO. Pre-screening included wetland identification, asbestos risk identification, Federal Emergency Management Agency (FEMA) flood risk identification, and lead-based paint risk identification.

<u>EPCRA Sections 311/312 Compliance Support, Deutsche Bank and Wells Fargo, Jacksonville, FL</u> – Project Manager on EPCRA compliance projects for Deutsche Bank and Wells Fargo facilities located in the southeastern United States. Conducted site inspections and/or interviews, developed inventory summaries, and completed Tier II R forms for each facility with reportable quantities of hazardous materials.

<u>EPCRA Sections 311/312/313 Compliance Support, Naval Facilities Engineering Command (NAVFAC)</u> <u>Southeast</u> – Project Manager on EPCRA compliance projects at Naval Air Station (NAS) Jacksonville and Naval Station (NS) Mayport. Conducted site inspections and interviews, developed inventory summaries, and prepared and reviewed necessary reporting forms, submittals, and compliance documentation.

<u>Environmental Assessment of District Lands, St. Johns River Water Management District, Florida</u> – Project Scientist and GIS Technician for Phase I ESAs. Performed site inspections, historical aerial photograph reviews, regulatory database reviews, conducted interviews with the property owners, representatives and government agencies, and completed reports documenting the findings.

<u>Ash Remediation Sites, England Thims & Miller, Jacksonville, FL</u> – Field Scientist for the investigation of possible contamination associated with the presence of incinerator ash in and around former municipal ash disposal sites including the Brown's Dump Site, Forest Street Incinerator Site, 5th & Cleveland Street Incinerator Site, and Lonnie C. Miller Park. The investigation determines exposure to incinerator ash and contaminants of concern including lead, arsenic, polynuclear aromatic hydrocarbons, and dioxins within the ash and soil. Soil samples are field screened for metals using an XRF instrument, and visually inspected for the presence of incinerator ash. Soil samples for laboratory analysis are collected using various Florida Department of Environmental Protection accepted sampling techniques utilizing geoprobes and hand augers.

<u>Consulting Services and Technical Support for Army Environmental Command, USACE Jacksonville, FL</u> – GIS Technician for Land Use Control Implementation Plans (LUCIPs) and Community Involvement Plans (CIPs) for multiple Army Installations. Project responsibilities included the gathering of data from the installations and the creation of maps using ArcGIS software.

<u>Consolidated Site History Report, USACE Louisville District, Formerly Used Defense Sites (FUDS), Kinross,</u> <u>Michigan</u> – GIS Technician and Researcher for an Air Force base that operated during World War II and was later used as an Air Defense Command and Strategic Air Command facility. The project required extensive site reconnaissance, the collection of GPS coordinates, and the creation of multiple maps using ArcGIS software.

<u>Preliminary Assessments, USACE Louisville District, Multiple FUDS</u> – GIS Technician for Preliminary Assessments for FUDS Camp Mount Vernon, Rockville Air Force Station, and Freeman Army Airfield. Project responsibilities included gathering data and the creation of multiple maps using ArcGIS software.

<u>Assessment and Remediation, New York Deli Site, Orlando, Florida</u> – Geologist for the soil and groundwater assessment and remediation activities for petroleum contamination at the New York Deli site located in downtown Orlando. Performed site activities including the installation of a remedial system to treat remaining impacted soils and the groundwater at the site.

<u>Mercury Remediation, Philpot Dam, USACE Wilmington District, VA</u> – Geologist for performed sampling and remediation of the residual mercury within the transformer containment area at the Philpot Dam. Screened, sampled, and removed 59 tons of gravel and 110 gallons of sediment and water.

<u>Watershed Hydrological Assessments, Fort Campbell, USACE Mobile District</u> – GIS Technician for the watershed hydrological assessment project to assess impaired water bodies which are located on the installation. Project responsibilities included gathering data and preparing multiple maps using ArcGIS software.

<u>Pre-Construction Potable and Non-Potable Well Sampling – Sabal Trail Underground Pipeline, Sabal Trail</u> <u>Transmission LLC, Florida</u> – Project Scientist for the pre-construction groundwater sampling of multiple potable and non-potable wells located within 150 feet of the construction work space along the proposed pipeline route. Water quantity parameters were collected from each well, and groundwater samples were collected from each well for laboratory analysis.

<u>Miscellaneous CSEs, Throughout FL</u> – Project Scientist and GIS Technician for Level I CSE activities for assessment and management of potentially impacted soil and groundwater within the proposed construction right-of-way for roadway improvement and seawall rehabilitation projects. Activities included site reconnaissance, an extensive review of historical documentation (aerial photographs, Sanborn Fire Insurance Maps, and city directories) and regulatory files, and the creation of maps using ArcGIS software.

Frank Redway, Senior Program Manager

 YEARS WITH COMPANY	 PROFESSIONAL TRAINING Occupational Safety and Health Administration
17 Years TOTAL YEARS OF EXPERIENCE	(OSHA) 30-hr. Construction Safety and Health OSHA 40-hr. Hazardous Waste Operations and
27 Years OFFICE	Emergency Response (HAZWOPER) and 8-hr.
Jacksonville, FL ACADEMIC BACKGROUND MS, Environmental Engineering Science,	Refreshers United States Army Corps of Engineers
University of Florida, 1993 BS, Geography, University of Florida, 1989 REGISTRATIONS/CERTIFICATIONS Certified Indoor Air Quality Professional #376 Environmental Protection Agency (EPA)	(USACE)/Naval Facilities (NAVFAC) Construction
Asbestos Hazard Emergency Response Agency	Quality Management Operations and Security (OPSEC) Awareness for
(AHERA)-Certified Asbestos Inspector EPA AHERA-Certified Asbestos Management	Military Members, Department of Defense (DoD)
Planner Florida Department of Health (FDOH)-Certified	Employees and Contractors OSHA Permit-Required Confined Spaces First Aid/Cardiopulmonary Resuscitation
Radon Measurement Technician	(CPR)/Automated External Defibrillators (AED) Bloodborne Pathogens Lead Awareness

Mr. Redway has over 27 years of experience as an environmental scientist for all aspects of environmental projects including environmental compliance/risk management, Phase I/II Environmental Site Assessments (ESAs), United States Department of Housing and Urban Development (HUD) assessments, contamination screening evaluations, contamination assessments, remedial action plans, asbestos and lead-based paint (LBP) assessments, indoor air quality, and Quality Assurance/Quality Control (QA/QC) for environmental and construction projects. Mr. Redway has extensive experience in contract management, proposal preparation, client/regulatory interaction, technical oversight, supervision and collection of field data, and report preparation.

Experience Highlights -

<u>2016-Present: Former Dixie Automatic Drycleaners, Jacksonville, FL</u> – Project Director for the assessment and conceptual remedial design to address soil and groundwater quality impacts at a former drycleaner. The assessment phase included the advancement of soil borings, the installation of 65 monitor wells (varying depths to 90 feet), and the collection and laboratory analysis of soil and groundwater samples. The results were used to design and obtain approval for a conceptual remedial action plan that included the injection of a microemulsion and chemical reducing solution, accompanied with natural attenuation monitoring.

<u>2012-Present: QC/Independent Technical Review Team (ITRT) Leader, Various DoD Projects</u> – Quality Control/ITRT Leader for numerous DoD projects, responsible for independent technical review of work plans and technical reports that are appropriate to the level of risk and complexity inherent in the project, as defined in the Quality Control Plan. During the independent technical review, compliance with established policy principles and procedures, utilizing justified and valid assumptions, is verified. This includes review of assumptions; methods, procedures and material used in analyses; the appropriateness of data used and level of data obtained; and reasonableness of the results including whether the product meets the customer's needs consistent with laws and existing federal policies. Projects include Preliminary Assessments for Formerly Used Defense (FUDS) sites, a Remedial Investigation/Feasibility Study (RI/FS) for a former NIKE Missile site, development and long-term monitoring of an Oyster Castle Habitat, and Comprehensive Environmental

Response, Compensation, and Liability Act (CERCLA) five-year reviews for the former Joliet Army Ammunition Plant, Seymour Johnson Air Force Base, and Joint Base Charleston.

<u>2019: Assessment and Remediation, Former Shooting Range, Palm Coast, FL</u> – Project Director for the assessment and remediation of a former trap/skeet and rifle shooting range. Assessment activities included the collection and analysis of soil samples in the primary lead-shot fallout zone, rifle backstop areas, and unused areas of the site for background comparison.

<u>2011-2017: Site Assessment, Linden Avenue Dump Site, City of Jacksonville (COJ), FL</u> – Project Director for site assessment activities at the site in accordance with Chapter 62-780, Florida Administrative Code (FAC). Activities included advancing soil borings, installing monitor wells, and submitting soil and groundwater samples for laboratory analysis of hydrocarbons and metals. Managed aquifer tests, determined groundwater flow, performed a historical records search, and performed a potable well survey for the site.

<u>2015-2016: Interior Building 4031 Repairs, Naval Submarine Base (NSB), Kings Bay, GA</u> – Project Director for the exterior painting and interior building repairs for the Ready Store Facility. Mr. Redway was responsible for security clearance processing; development of a Work Plan; Accident Prevention Plan and Environmental Protection Plan; QA/QC of the project; coordination of asbestos abatement activities; and coordination of painting, carpenter, and carpet installation crews.

<u>2015-2016: Mold Remediation, Seven Buildings, NSB Kings Bay, Kings Bay, GA</u> – Mr. Redway served as the Project Manager and QA/QC Manager for mold remediation in seven buildings at Kings Bay. Activities included supervision of field crews; air sample collection and laboratory analysis for mold; Heating, Cooling & Ventilation duct cleaning; removal and replacement of mold-impacted building materials and painting of walls in containment; and preparation of a Work Plan that included an Accident Prevention Plan, Quality Control Plan, and Environmental Protection Plan.

2014-2016: Level II Contamination Impact Assessment (CIA), Wekiva Parkway/State Road (SR) 46 <u>Realignment Corridor, Orange and Lake Counties, FL</u> – Project Director for soil and groundwater sampling activities along a 4.79-mile roadway corridor in Lake and Orange counties. Prior to initiation of field activities, a Sampling and Analysis Plan was prepared documenting sampling procedures and laboratory analyses for the various types of properties along the corridor. Field activities included the advancement of 48 soil borings, collection and laboratory analysis of 14 soil samples, installation of 6 temporary wellpoints, and the collection and laboratory analysis of 6 groundwater samples. The results of the investigation were presented in a CIA Report.

2014-2016: Asbestos-Containing Materials (ACM), LBP, and Hazardous Materials (HM) Surveys, Wekiva Parkway Improvements, Orange, Lake, and Seminole Counties, FL – Project Director for ACM, LBP, and HM Surveys for demolition of structures which will be impacted by improvements to the Wekiva Parkway in Lake, Orange, and Seminole counties. Surveys were conducted on 80 buildings to evaluate for the presence of ACM, LBP, and HMs in the structures by AHERA- and EPA-certified inspectors under the direction of a Licensed Asbestos Consultant (LAC).

<u>2016: Mold Repair Kings Bay Buildings 1063, 1059, and 2012, Kings Bay, GA</u> – Project Director for mold remediation and construction repairs for three secure buildings at NSB, Kings Bay, Georgia. Tasks included coordination with building security personnel, security clearance processing, preparation of work plans, execution of remediation and construction activities, and returning impacted spaces to the client for occupation.

<u>2010-2014: Neighborhood Stabilization Program, St. Johns County, FL</u> – Project Manager for asbestos, LBP, mold, and Chinese drywall inspection services to the St. Johns County Housing and Community Services Department as part of the HUD-funded Neighborhood Stabilization Program. Under this accelerated program, Aerostar inspected homes targeted for acquisition for asbestos, LBP, mold, and Chinese drywall. Asbestos inspections included identification, quantification and sampling of friable suspect ACMs, and preparation of a report with recommendations.

<u>2014: Phase I ESA, St. Johns County, FL</u> – Project Manager for a contamination screening evaluation for SR 313, a 5.2-mile, four-lane divided arterial limited-access facility from SR 16 to US 1. The design was taken to a 45% level of completion for the purpose of determining right-of-way requirements. The project traversed through a rural area with numerous wetland involvements.

2011-2013: Vertical Missile Packaging Buildings (VMPBs) Painting and Roof Replacement, NSB Kings Bay, Kings Bay, GA – Project Director for the painting of two VMPBs located in the Limited Area of Strategic Weapons Facility Atlantic, NSB Kings Bay. As Project Director, Mr. Redway was responsible for security clearance processing; development of a Work Plan, Accident Prevention Plan, and Environmental Protection Plan; coordination of asbestos abatement activities; and coordination of field painting crews.

<u>2012: Hurricane Sandy Emergency Response, Bulk Petroleum Terminal, Linden, NJ</u> – Project Manager for interior building damage assessments and debris removal for three buildings flooded during Hurricane Sandy. Flooding from the hurricane allowed a tidal surge of six feet of water to enter an office building, a petroleum bulk fuel processing building, and a petroleum dock terminal building. Assessment activities included removal of office furniture/debris, ACM and moisture surveys, building material removal, and building dry-out. Mr. Redway coordinated and supervised asbestos abatement activities prior to interior demolition, as well as electrical contractors, and building material demolition and disposal.

<u>2009-2011: Neighborhood Stabilization Program, COJ, FL</u> – Project Manager for the completion of over 200 HUD Environmental Assessments (EAs), asbestos, mold, and LBP surveys for the COJ's Neighborhood Stabilization Program. Checklist evaluations include historic preservation, noise, coastal zone management, floodplain management, and hazardous materials.

<u>2008-2010: Remedial Services, Fort Jefferson, National Park Service, Dry Tortugas, FL</u> – Project Director for maintenance dredging and shoreline stabilization activities at historic Ft. Jefferson National Park, an 11-acre fort located within the Dry Tortugas National Park. The project consisted of dredging approximately 4,000 cubic yards from the moat and along the existing docks, and using the dredged sand to stabilize the existing shoreline. The project required preparation and submittal of permits, and coordination with the National Park Service (NPS), Florida Department of Environmental Protection (FDEP), the USACE, and the National Marine Fisheries (NMF). The project also required extensive coordination for delivery of heavy equipment and supplies to enable field crews to live on the island for extended periods of time. Field activities included dredging and placement of sand, erection of measures to protect natural (fish and wildlife) and architectural resources.

<u>2007-2010: Hampton Shell Remedial Action Plan (RAP). FDEP, Jacksonville, FL</u> – Quality Control Manager for a hydrocarbon remediation system for the FDEP. The project included the closure of two underground storage tanks, the removal of 235 tons of petroleum-contaminated soil, the design of an air sparge and soil vapor extraction system, the installation of 26 air sparge and 10 soil vapor extraction wells, the installation of pipe trenches and a remedial system trailer, and operations and maintenance inspections.

<u>2006: Soil and Groundwater Assessment, Proposed Commercial Development, FL</u> – Project Manager for soil and groundwater assessment of a former citrus grove. Pesticide impacts to the soil from historic agricultural operations were identified during the completion of a Phase I and II ESA. Subsequent assessment activities identified concentrations of dieldrin above soil cleanup target levels in isolated areas across the site. Aerostar's completion of assessment activities with subsequent remedial cost estimate allowed the client to evaluate potential liabilities prior to acquisition of the property and proceed with remediation and site development.

<u>2006: Soil and Groundwater Investigation, Operating Golf Course, Northeast FL</u> – Project Director for a soil and groundwater investigation at an operating golf course in northeast Florida. The assessment focused on potential impacts to the soil and groundwater in historic possible mix/load pesticide areas. Assessment activities included the collection and laboratory analysis of over 100 soil samples, the installation of over 30 monitor wells, the collection and laboratory analysis of groundwater samples, the collection and laboratory analysis of surface water and irrigation well samples, and an evaluation of potential off-site receptors.